Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2019

Open Access 01-12-2019 | Research article

Efficient two-step multivariate random effects meta-analysis of individual participant data for longitudinal clinical trials using mixed effects models

Authors: Hisashi Noma, Kazushi Maruo, Masahiko Gosho, Stephen Z. Levine, Yair Goldberg, Stefan Leucht, Toshi A. Furukawa

Published in: BMC Medical Research Methodology | Issue 1/2019

Login to get access

Abstract

Background

Mixed effects models have been widely applied in clinical trials that involve longitudinal repeated measurements, which possibly contain missing outcome data. In meta-analysis of individual participant data (IPD) based on these longitudinal studies, joint synthesis of the regression coefficient parameters can improve efficiency, especially for explorations of effect modifiers that are useful to predict the response or lack of response to particular treatments.

Methods

In this article, we provide a valid and efficient two-step method for IPD meta-analyses using the mixed effects models that adequately addresses the between-studies heterogeneity using random effects models. The two-step method overcomes the practical difficulties of computations and modellings of the heterogeneity in the one-step method, and enables valid inference without loss of efficiency. We also show the two-step method can effectively circumvent the modellings of the between-studies heterogeneity of the variance-covariance parameters and provide valid and efficient estimators for the regression coefficient parameters, which are the primary objects of interests in the longitudinal studies. In addition, these methods can be easily implemented using standard statistical packages, and enable synthesis of IPD from different sources (e.g., from different platforms of clinical trial data sharing systems).

Results

To assess the proposed method, we conducted simulation studies and also applied the method to an IPD meta-analysis of clinical trials for new generation antidepressants. Through the numerical studies, the validity and efficiency of the proposed method were demonstrated.

Conclusions

The two-step approach is an effective method for IPD meta-analyses of longitudinal clinical trials using mixed effects models. It can also effectively circumvent the modellings of the between-studies heterogeneity of the variance-covariance parameters, and enable efficient inferences for the regression coefficient parameters.
Literature
1.
go back to reference Little RJ, D'Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, Frangakis C, Hogan JW, Molenberghs G, Murphy SA, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367(3):1355–60.CrossRef Little RJ, D'Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, Frangakis C, Hogan JW, Molenberghs G, Murphy SA, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367(3):1355–60.CrossRef
2.
go back to reference O'Neill RT, Temple R. The prevention and treatment of missing data in clinical trials: an FDA perspective on the importance of dealing with it. Clin Pharm Ther. 2012;91(3):550–4.CrossRef O'Neill RT, Temple R. The prevention and treatment of missing data in clinical trials: an FDA perspective on the importance of dealing with it. Clin Pharm Ther. 2012;91(3):550–4.CrossRef
3.
go back to reference National Research Council. The prevention and treatment of missing data in clinical trials. Washington, DC: National Academies Press; 2010. National Research Council. The prevention and treatment of missing data in clinical trials. Washington, DC: National Academies Press; 2010.
4.
go back to reference European Medicines Agency. Guideline on missing data in confirmatory clinical trials. London: European Medicine Agency; 2010. European Medicines Agency. Guideline on missing data in confirmatory clinical trials. London: European Medicine Agency; 2010.
5.
go back to reference Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 1982;38(4):963–74.CrossRef Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 1982;38(4):963–74.CrossRef
6.
go back to reference Verbeke G, Molenberghs G. Linear mixed models for longitudinal data. New York: Springer; 2000. Verbeke G, Molenberghs G. Linear mixed models for longitudinal data. New York: Springer; 2000.
7.
go back to reference Mallinckrodt CH, Clark WS, David SR. Accounting for dropout bias using mixed-effects models. J Biopharm Stat. 2001;11(1–2):9–21.CrossRef Mallinckrodt CH, Clark WS, David SR. Accounting for dropout bias using mixed-effects models. J Biopharm Stat. 2001;11(1–2):9–21.CrossRef
8.
go back to reference Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ. 2010;340:c221.CrossRef Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ. 2010;340:c221.CrossRef
9.
go back to reference Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions. Chichester: Wiley-Blackwell; 2008.CrossRef Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions. Chichester: Wiley-Blackwell; 2008.CrossRef
10.
go back to reference Riley RD, Kauser I, Bland M, Thijs L, Staessen JA, Wang J, Gueyffier F, Deeks JJ. Meta-analysis of randomised trials with a continuous outcome according to baseline imbalance and availability of individual participant data. Stat Med. 2013;32(16):2747–66.CrossRef Riley RD, Kauser I, Bland M, Thijs L, Staessen JA, Wang J, Gueyffier F, Deeks JJ. Meta-analysis of randomised trials with a continuous outcome according to baseline imbalance and availability of individual participant data. Stat Med. 2013;32(16):2747–66.CrossRef
11.
go back to reference Riley RD, Price MJ, Jackson D, Wardle M, Gueyffier F, Wang J, Staessen JA, White IR. Multivariate meta-analysis using individual participant data. Res Synth Methods. 2015;6(2):157–74.CrossRef Riley RD, Price MJ, Jackson D, Wardle M, Gueyffier F, Wang J, Staessen JA, White IR. Multivariate meta-analysis using individual participant data. Res Synth Methods. 2015;6(2):157–74.CrossRef
12.
go back to reference Ishak KJ, Platt RW, Joseph L, Hanley JA, Caro JJ. Meta-analysis of longitudinal studies. Clin Trials. 2007;4(5):525–39.CrossRef Ishak KJ, Platt RW, Joseph L, Hanley JA, Caro JJ. Meta-analysis of longitudinal studies. Clin Trials. 2007;4(5):525–39.CrossRef
13.
go back to reference Jones AP, Riley RD, Williamson PR, Whitehead A. Meta-analysis of individual patient data versus aggregate data from longitudinal clinical trials. Clin Trials. 2009;6(1):16–27.CrossRef Jones AP, Riley RD, Williamson PR, Whitehead A. Meta-analysis of individual patient data versus aggregate data from longitudinal clinical trials. Clin Trials. 2009;6(1):16–27.CrossRef
14.
go back to reference Furukawa TA, Maruo K, Noma H, Tanaka S, Imai H, Shinohara K, Ikeda K, Yamawaki S, Levine SZ, Goldberg Y, et al. Initial severity of major depression and efficacy of antidepressants: individual-participant data meta-analysis. Acta Psychiatr Scand. 2018;137(6):450–8.CrossRef Furukawa TA, Maruo K, Noma H, Tanaka S, Imai H, Shinohara K, Ikeda K, Yamawaki S, Levine SZ, Goldberg Y, et al. Initial severity of major depression and efficacy of antidepressants: individual-participant data meta-analysis. Acta Psychiatr Scand. 2018;137(6):450–8.CrossRef
15.
go back to reference McCulloch CE, Searle SR, Generalized NJM. Linear, and mixed models. 2nd ed. New York: Wiley; 2008. McCulloch CE, Searle SR, Generalized NJM. Linear, and mixed models. 2nd ed. New York: Wiley; 2008.
16.
go back to reference Mallinckrodt CH, Kaiser CJ, Watkin JG, Molenberghs G, Carroll RJ. The effect of correlation structure on treatment contrasts estimated from incomplete clinical trial data with likelihood-based repeated measures compared with last observation carried forward ANOVA. Clin Trials. 2004;1(6):477–89.CrossRef Mallinckrodt CH, Kaiser CJ, Watkin JG, Molenberghs G, Carroll RJ. The effect of correlation structure on treatment contrasts estimated from incomplete clinical trial data with likelihood-based repeated measures compared with last observation carried forward ANOVA. Clin Trials. 2004;1(6):477–89.CrossRef
17.
go back to reference Mallinckrodt CH, Lane PW, Schnell D, Peng Y, Mancuso JP. Recommendations for the primary analysis of continuous endpoints in longitudinal clinical trials. Drug Info J. 2008;42(4):303–19.CrossRef Mallinckrodt CH, Lane PW, Schnell D, Peng Y, Mancuso JP. Recommendations for the primary analysis of continuous endpoints in longitudinal clinical trials. Drug Info J. 2008;42(4):303–19.CrossRef
18.
go back to reference Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc A. 2009;172(1):137–59.CrossRef Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc A. 2009;172(1):137–59.CrossRef
19.
go back to reference Gosho M, Hirakawa A, Noma H, Maruo K, Sato Y. Comparison of bias-corrected covariance estimators for MMRM analysis in longitudinal data with dropouts. Stat Methods Med Res. 2017;26(5):2389–406.CrossRef Gosho M, Hirakawa A, Noma H, Maruo K, Sato Y. Comparison of bias-corrected covariance estimators for MMRM analysis in longitudinal data with dropouts. Stat Methods Med Res. 2017;26(5):2389–406.CrossRef
20.
go back to reference Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Soft. 2015;67(1). Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Soft. 2015;67(1).
21.
go back to reference Jackson D, Riley R, White IR. Multivariate meta-analysis: potential and promise. Stat Med. 2011;30(20):2481–98.CrossRef Jackson D, Riley R, White IR. Multivariate meta-analysis: potential and promise. Stat Med. 2011;30(20):2481–98.CrossRef
22.
go back to reference Mavridis D, Salanti G. A practical introduction to multivariate meta-analysis. Stat Methods Med Res. 2013;22(2):133–58.CrossRef Mavridis D, Salanti G. A practical introduction to multivariate meta-analysis. Stat Methods Med Res. 2013;22(2):133–58.CrossRef
23.
go back to reference White IR. Multivariate Radom-effects meta-analysis. Stata J. 2009;9:40–56.CrossRef White IR. Multivariate Radom-effects meta-analysis. Stata J. 2009;9:40–56.CrossRef
24.
go back to reference White IR. Multivariate random-effects meta-regression: updates to mvmeta. Stata J. 2011;11:255–70.CrossRef White IR. Multivariate random-effects meta-regression: updates to mvmeta. Stata J. 2011;11:255–70.CrossRef
25.
go back to reference Gasparrini A, Armstrong B, Kenward MG. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat Med. 2012;31(29):3821–39.CrossRef Gasparrini A, Armstrong B, Kenward MG. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat Med. 2012;31(29):3821–39.CrossRef
26.
go back to reference Cox DR, Reid N. Parameter orthogonality and approximate conditional inference. J R Stat Soc B. 1986;49(1):1–39. Cox DR, Reid N. Parameter orthogonality and approximate conditional inference. J R Stat Soc B. 1986;49(1):1–39.
27.
go back to reference Taichman DB, Sahni P, Pinborg A, Peiperl L, Laine C, James A, Hong ST, Haileamlak A, Gollogly L, Godlee F, et al. Data sharing statements for clinical trials: a requirement of the International Committee of Medical Journal. Ann Intern Med. 2017;167(1):63–5.CrossRef Taichman DB, Sahni P, Pinborg A, Peiperl L, Laine C, James A, Hong ST, Haileamlak A, Gollogly L, Godlee F, et al. Data sharing statements for clinical trials: a requirement of the International Committee of Medical Journal. Ann Intern Med. 2017;167(1):63–5.CrossRef
28.
go back to reference Taichman DB, Sahni P, Pinborg A, Peiperl L, Laine C, James A, Hong ST, Haileamlak A, Gollogly L, Godlee F, et al. Data sharing statements for clinical trials. BMJ. 2017;357:j2372.CrossRef Taichman DB, Sahni P, Pinborg A, Peiperl L, Laine C, James A, Hong ST, Haileamlak A, Gollogly L, Godlee F, et al. Data sharing statements for clinical trials. BMJ. 2017;357:j2372.CrossRef
29.
go back to reference Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: Evolution, critique and future directions. Stat Med. 2009;28(25):3049–67.CrossRef Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: Evolution, critique and future directions. Stat Med. 2009;28(25):3049–67.CrossRef
30.
go back to reference Carmody TJ, Rush AJ, Bernstein I, Warden D, Brannan S, Burnham D, Woo A, Trivedi MH. The Montgomery Asberg and the Hamilton ratings of depression: a comparison of measures. Eur Neuropsychopharmacol. 2006;16(8):601–11.CrossRef Carmody TJ, Rush AJ, Bernstein I, Warden D, Brannan S, Burnham D, Woo A, Trivedi MH. The Montgomery Asberg and the Hamilton ratings of depression: a comparison of measures. Eur Neuropsychopharmacol. 2006;16(8):601–11.CrossRef
31.
go back to reference Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6(2):461–4.CrossRef Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6(2):461–4.CrossRef
32.
go back to reference Burke DL, Ensor J, Riley RD. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. Stat Med. 2017;36(5):855–75.CrossRef Burke DL, Ensor J, Riley RD. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. Stat Med. 2017;36(5):855–75.CrossRef
33.
go back to reference Brockwell SE, Gordon IR. A comparison of statistical methods for meta-analysis. Stat Med. 2001;20(6):825–40.CrossRef Brockwell SE, Gordon IR. A comparison of statistical methods for meta-analysis. Stat Med. 2001;20(6):825–40.CrossRef
34.
go back to reference Jackson D, Riley RD. A refined method for multivariate meta-analysis and meta-regression. Stat Med. 2014;33(4):541–54.CrossRef Jackson D, Riley RD. A refined method for multivariate meta-analysis and meta-regression. Stat Med. 2014;33(4):541–54.CrossRef
35.
go back to reference Noma H. Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections. Stat Med. 2011;30(28):3304–12.CrossRef Noma H. Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections. Stat Med. 2011;30(28):3304–12.CrossRef
37.
go back to reference Salanti G, Higgins JP, Ades AE, Ioannidis JP. Evaluation of networks of randomized trials. Stat Methods Me Res. 2008;17(3):279–301.CrossRef Salanti G, Higgins JP, Ades AE, Ioannidis JP. Evaluation of networks of randomized trials. Stat Methods Me Res. 2008;17(3):279–301.CrossRef
39.
go back to reference Morris TP, Fisher DJ, Kenward MG, Carpenter JR. Meta-analysis of Gaussian individual patient data: two-stage or not two-stage? Stat Med. 2018;37(9):1419–38.CrossRef Morris TP, Fisher DJ, Kenward MG, Carpenter JR. Meta-analysis of Gaussian individual patient data: two-stage or not two-stage? Stat Med. 2018;37(9):1419–38.CrossRef
40.
go back to reference Noma H, Nagashima K, Maruo K, Gosho M, Furukawa TA. Bartlett-type corrections and bootstrap adjustments of likelihood-based inference methods for network meta-analysis. Stat Med. 2018;37(7):1178–90.CrossRef Noma H, Nagashima K, Maruo K, Gosho M, Furukawa TA. Bartlett-type corrections and bootstrap adjustments of likelihood-based inference methods for network meta-analysis. Stat Med. 2018;37(7):1178–90.CrossRef
41.
go back to reference Fitzmaurice GM, Laird NM, Ware J. Applied longitudinal analysis. Hoboken, NJ: John Wiley & Sons; 2011.CrossRef Fitzmaurice GM, Laird NM, Ware J. Applied longitudinal analysis. Hoboken, NJ: John Wiley & Sons; 2011.CrossRef
42.
go back to reference Duchateau L, Janssen P. The frailty model. New York: Springer; 2008. Duchateau L, Janssen P. The frailty model. New York: Springer; 2008.
Metadata
Title
Efficient two-step multivariate random effects meta-analysis of individual participant data for longitudinal clinical trials using mixed effects models
Authors
Hisashi Noma
Kazushi Maruo
Masahiko Gosho
Stephen Z. Levine
Yair Goldberg
Stefan Leucht
Toshi A. Furukawa
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2019
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-019-0676-1

Other articles of this Issue 1/2019

BMC Medical Research Methodology 1/2019 Go to the issue