Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2015

Open Access 01-12-2015 | Research article

The need to balance merits and limitations from different disciplines when considering the stepped wedge cluster randomized trial design

Authors: Esther de Hoop, Ingeborg van der Tweel, Rieke van der Graaf, Karel G. M. Moons, Johannes J. M. van Delden, Johannes B. Reitsma, Hendrik Koffijberg

Published in: BMC Medical Research Methodology | Issue 1/2015

Login to get access

Abstract

Background

Various papers have addressed pros and cons of the stepped wedge cluster randomized trial design (SWD). However, some issues have not or only limitedly been addressed. Our aim was to provide a comprehensive overview of all merits and limitations of the SWD to assist researchers, reviewers and medical ethics committees when deciding on the appropriateness of the SWD for a particular study.

Methods

We performed an initial search to identify articles with a methodological focus on the SWD, and categorized and discussed all reported advantages and disadvantages of the SWD. Additional aspects were identified during multidisciplinary meetings in which ethicists, biostatisticians, clinical epidemiologists and health economists participated. All aspects of the SWD were compared to the parallel group cluster randomized design. We categorized the merits and limitations of the SWD to distinct phases in the design and conduct of such studies, highlighting that their impact may vary depending on the context of the study or that benefits may be offset by drawbacks across study phases. Furthermore, a real-life illustration is provided.

Results

New aspects are identified within all disciplines. Examples of newly identified aspects of an SWD are: the possibility to measure a treatment effect in each cluster to examine the (in)consistency in effects across clusters, the detrimental effect of lower than expected inclusion rates, deviation from the ordinary informed consent process and the question whether studies using the SWD are likely to have sufficient social value. Discussions are provided on e.g. clinical equipoise, social value, health economical decision making, number of study arms, and interim analyses.

Conclusions

Deciding on the use of the SWD involves aspects and considerations from different disciplines not all of which have been discussed before. Pros and cons of this design should be balanced in comparison to other feasible design options as to choose the optimal design for a particular intervention study.
Literature
1.
go back to reference Donner A, Klar N. Design and analysis of cluster randomization trials in health research. 1st ed. London: Arnold; 2000. Donner A, Klar N. Design and analysis of cluster randomization trials in health research. 1st ed. London: Arnold; 2000.
2.
go back to reference Rietbergen C, Moerbeek M. The design of cluster randomized crossover trials. J Educ Behav Stat. 2011;36:472–90.CrossRef Rietbergen C, Moerbeek M. The design of cluster randomized crossover trials. J Educ Behav Stat. 2011;36:472–90.CrossRef
4.
go back to reference Hawkins NG, Sanson-Fisher RW, Shakeshaft A, D’Este C, Green LW. The multiple baseline design for evaluating population-based research. Am J Prev Med. 2007;33:162–8.CrossRefPubMed Hawkins NG, Sanson-Fisher RW, Shakeshaft A, D’Este C, Green LW. The multiple baseline design for evaluating population-based research. Am J Prev Med. 2007;33:162–8.CrossRefPubMed
5.
go back to reference Rhoda DA, Murray DM, Andridge RR, Pennell ML, Hade EM. Studies with staggered starts: multiple baseline designs and group-randomized trials. Am J Public Health. 2011;101:2164–9.CrossRefPubMedPubMedCentral Rhoda DA, Murray DM, Andridge RR, Pennell ML, Hade EM. Studies with staggered starts: multiple baseline designs and group-randomized trials. Am J Public Health. 2011;101:2164–9.CrossRefPubMedPubMedCentral
7.
go back to reference Sanson-Fisher RW, D’Este CA, Carey ML, Noble N, Paul CL. Evaluation of systems-oriented public health interventions: alternative research designs. Annu Rev Public Health. 2014;35:9–27.CrossRefPubMed Sanson-Fisher RW, D’Este CA, Carey ML, Noble N, Paul CL. Evaluation of systems-oriented public health interventions: alternative research designs. Annu Rev Public Health. 2014;35:9–27.CrossRefPubMed
8.
go back to reference The Gambia Hepatitis Study Group. The Gambia hepatitis intervention study. Cancer Res. 1987;47:5782–7. The Gambia Hepatitis Study Group. The Gambia hepatitis intervention study. Cancer Res. 1987;47:5782–7.
9.
go back to reference Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. Contemp Clin Trials. 2007;28:182–91.CrossRefPubMed Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. Contemp Clin Trials. 2007;28:182–91.CrossRefPubMed
10.
go back to reference Ukoumunne O, Gulliford M, Chinn S, Sterne J, Burney P. Methods for evaluating area-wide and organisation-based interventions in health and health care: a systematic review. Health Technol Assess. 1999;3:98. Ukoumunne O, Gulliford M, Chinn S, Sterne J, Burney P. Methods for evaluating area-wide and organisation-based interventions in health and health care: a systematic review. Health Technol Assess. 1999;3:98.
11.
go back to reference Brown C, Hofer T, Johal A, Thomson R, Nicholl J, Franklin BD, et al. An epistemology of patient safety research: a framework for study design and interpretation. Part 2. Study design. Qual Saf Health Care. 2008;17:163–9. Brown C, Hofer T, Johal A, Thomson R, Nicholl J, Franklin BD, et al. An epistemology of patient safety research: a framework for study design and interpretation. Part 2. Study design. Qual Saf Health Care. 2008;17:163–9.
12.
go back to reference Mdege ND, Man MS, Brown CA T n, Torgerson DJ. Systematic review of stepped wedge cluster randomized trials shows that design is particularly used to evaluate interventions during routine implementation. J Clin Epidemiol. 2011;64:936–48.CrossRefPubMed Mdege ND, Man MS, Brown CA T n, Torgerson DJ. Systematic review of stepped wedge cluster randomized trials shows that design is particularly used to evaluate interventions during routine implementation. J Clin Epidemiol. 2011;64:936–48.CrossRefPubMed
13.
go back to reference Zhan Z, van den Heuvel ER, Doornbos PM, Burger H, Verberne CJ, Wiggers T, et al. Strengths and weaknesses of a stepped wedge cluster randomized design: its application in a colorectal cancer follow-up study. J Clin Epidemiol. 2014;67:454–61. Zhan Z, van den Heuvel ER, Doornbos PM, Burger H, Verberne CJ, Wiggers T, et al. Strengths and weaknesses of a stepped wedge cluster randomized design: its application in a colorectal cancer follow-up study. J Clin Epidemiol. 2014;67:454–61.
14.
go back to reference Mdege ND, Man MS, Taylor nee Brown CA, Torgerson DJ. There are some circumstances where the stepped-wedge cluster randomized trial is preferable to the alternative: no randomized trial at all. Response to the commentary by Kotz and colleagues. J Clin Epidemiol. 2012;65:1253–4.CrossRefPubMed Mdege ND, Man MS, Taylor nee Brown CA, Torgerson DJ. There are some circumstances where the stepped-wedge cluster randomized trial is preferable to the alternative: no randomized trial at all. Response to the commentary by Kotz and colleagues. J Clin Epidemiol. 2012;65:1253–4.CrossRefPubMed
15.
go back to reference Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M. Developing and evaluating complex interventions: the new Medical Research Council guidance. Br Med J. 2008;337:a1655.CrossRef Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M. Developing and evaluating complex interventions: the new Medical Research Council guidance. Br Med J. 2008;337:a1655.CrossRef
16.
go back to reference Keriel-Gascou M, Buchet-Poyau K, Rabilloud M, Duclos A, Colin C. A stepped wedge cluster randomized trial is preferable for assessing complex health interventions. J Clin Epidemiol. 2014;67:831–3.CrossRefPubMed Keriel-Gascou M, Buchet-Poyau K, Rabilloud M, Duclos A, Colin C. A stepped wedge cluster randomized trial is preferable for assessing complex health interventions. J Clin Epidemiol. 2014;67:831–3.CrossRefPubMed
17.
go back to reference Mdege ND, Kanaan M. Response to Keriel-Gascou et al. Addressing assumptions on the stepped wedge randomized trial design. J Clin Epidemiol. 2014;67:833–4.CrossRefPubMed Mdege ND, Kanaan M. Response to Keriel-Gascou et al. Addressing assumptions on the stepped wedge randomized trial design. J Clin Epidemiol. 2014;67:833–4.CrossRefPubMed
18.
go back to reference Kotz D, Spigt M, Arts IC, Crutzen R, Viechtbauer W. Use of the stepped wedge design cannot be recommended: a critical appraisal and comparison with the classic cluster randomized controlled trial design. J Clin Epidemiol. 2012;65:1249–52.CrossRefPubMed Kotz D, Spigt M, Arts IC, Crutzen R, Viechtbauer W. Use of the stepped wedge design cannot be recommended: a critical appraisal and comparison with the classic cluster randomized controlled trial design. J Clin Epidemiol. 2012;65:1249–52.CrossRefPubMed
19.
go back to reference Hemming K, Girling A, Martin J, Bond SJ. Stepped wedge cluster randomized trials are efficient and provide a method of evaluation without which some interventions would not be evaluated. J Clin Epidemiol. 2013;66:1058–9.CrossRefPubMed Hemming K, Girling A, Martin J, Bond SJ. Stepped wedge cluster randomized trials are efficient and provide a method of evaluation without which some interventions would not be evaluated. J Clin Epidemiol. 2013;66:1058–9.CrossRefPubMed
20.
go back to reference Kotz D, Spigt M, Arts IC, Crutzen R, Viechtbauer W. The stepped wedge design does not inherently have more power than a cluster randomized controlled trial. J Clin Epidemiol. 2013;66:1059–60.CrossRefPubMed Kotz D, Spigt M, Arts IC, Crutzen R, Viechtbauer W. The stepped wedge design does not inherently have more power than a cluster randomized controlled trial. J Clin Epidemiol. 2013;66:1059–60.CrossRefPubMed
21.
go back to reference Viechtbauer W, Kotz D, Spigt M, Arts IC, Crutzen R. Response to Keriel-Gascou et al.: Higher efficiency and other alleged advantages are not inherent to the stepped wedge design. J Clin Epidemiol. 2014;67:834–6.CrossRefPubMed Viechtbauer W, Kotz D, Spigt M, Arts IC, Crutzen R. Response to Keriel-Gascou et al.: Higher efficiency and other alleged advantages are not inherent to the stepped wedge design. J Clin Epidemiol. 2014;67:834–6.CrossRefPubMed
22.
go back to reference Kotz D, Spigt M, Arts IC, Crutzen R, Viechtbauer W. Researchers should convince policy makers to perform a classic cluster randomized controlled trial instead of a stepped wedge design when an intervention is rolled out. J Clin Epidemiol. 2012;65:1255–6.CrossRefPubMed Kotz D, Spigt M, Arts IC, Crutzen R, Viechtbauer W. Researchers should convince policy makers to perform a classic cluster randomized controlled trial instead of a stepped wedge design when an intervention is rolled out. J Clin Epidemiol. 2012;65:1255–6.CrossRefPubMed
23.
go back to reference Hutson AD, Reid ME. The utility of partial cross-over designs in early phase randomized prevention trials. Control Clin Trials. 2004;25:493–501.CrossRefPubMed Hutson AD, Reid ME. The utility of partial cross-over designs in early phase randomized prevention trials. Control Clin Trials. 2004;25:493–501.CrossRefPubMed
24.
25.
go back to reference Macklin R, Shepherd L. Informed consent and standard of care: what must be disclosed. Am J Bioeth. 2013;13:9–13.CrossRefPubMed Macklin R, Shepherd L. Informed consent and standard of care: what must be disclosed. Am J Bioeth. 2013;13:9–13.CrossRefPubMed
26.
27.
go back to reference Drummond MF, Sculpher MJ, Torrance GW, O’Brien BJ, Stoddart GL. Methods for the economic evaluation of health care programmes. Oxford: Oxford University Press; 2005. Drummond MF, Sculpher MJ, Torrance GW, O’Brien BJ, Stoddart GL. Methods for the economic evaluation of health care programmes. Oxford: Oxford University Press; 2005.
28.
go back to reference Claxton K, Palmer S, Longworth L, Bojke L, Griffin S, McKenna C, et al. Informing a decision framework for when NICE should recommend the use of health technologies only in the context of an appropriately designed programme of evidence development. Health Technol Assess. 2012;16:1–323. Claxton K, Palmer S, Longworth L, Bojke L, Griffin S, McKenna C, et al. Informing a decision framework for when NICE should recommend the use of health technologies only in the context of an appropriately designed programme of evidence development. Health Technol Assess. 2012;16:1–323.
29.
go back to reference Eckermann S, Willan AR. Expected value of information and decision making in HTA. Health Econ. 2007;16:195–209.CrossRefPubMed Eckermann S, Willan AR. Expected value of information and decision making in HTA. Health Econ. 2007;16:195–209.CrossRefPubMed
30.
go back to reference Claxton KP, Sculpher MJ. Using value of information analysis to prioritise health research: some lessons from recent UK experience. Pharmacoeconomics. 2006;24:1055–68.CrossRefPubMed Claxton KP, Sculpher MJ. Using value of information analysis to prioritise health research: some lessons from recent UK experience. Pharmacoeconomics. 2006;24:1055–68.CrossRefPubMed
31.
go back to reference Claxton K, Griffin S, Koffijberg H, McKenna C. Expected health benefits of additional evidence: principles, methods and applications. York: Center for Health Economics, University of York; 2013. Claxton K, Griffin S, Koffijberg H, McKenna C. Expected health benefits of additional evidence: principles, methods and applications. York: Center for Health Economics, University of York; 2013.
32.
go back to reference de Smet AM, Kluytmans JA, Cooper BS, Mascini EM, Benus RF, van der Werf TS, et al. Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med. 2009;360:20–31.CrossRefPubMed de Smet AM, Kluytmans JA, Cooper BS, Mascini EM, Benus RF, van der Werf TS, et al. Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med. 2009;360:20–31.CrossRefPubMed
33.
go back to reference Huis A, Schoonhoven L, Grol R, Borm G, Adang E, Hulscher M, et al. Helping hands: a cluster randomised trial to evaluate the effectiveness of two different strategies for promoting hand hygiene in hospital nurses. Implement Sci. 2011;6:101. Huis A, Schoonhoven L, Grol R, Borm G, Adang E, Hulscher M, et al. Helping hands: a cluster randomised trial to evaluate the effectiveness of two different strategies for promoting hand hygiene in hospital nurses. Implement Sci. 2011;6:101.
34.
go back to reference de Hoop E, Woertman W, Teerenstra S. The stepped wedge cluster randomized trial always requires fewer clusters but not always fewer measurements, that is, participants than a parallel cluster randomized trial in a cross-sectional design. J Clin Epidemiol. 2013;66:1428.CrossRefPubMed de Hoop E, Woertman W, Teerenstra S. The stepped wedge cluster randomized trial always requires fewer clusters but not always fewer measurements, that is, participants than a parallel cluster randomized trial in a cross-sectional design. J Clin Epidemiol. 2013;66:1428.CrossRefPubMed
35.
go back to reference Woertman W, de Hoop E, Moerbeek M, Zuidema SU, Gerritsen DL, Teerenstra S. Stepped wedge designs could reduce the required sample size in cluster randomized trials. J Clin Epidemiol. 2013;66:752–8.CrossRefPubMed Woertman W, de Hoop E, Moerbeek M, Zuidema SU, Gerritsen DL, Teerenstra S. Stepped wedge designs could reduce the required sample size in cluster randomized trials. J Clin Epidemiol. 2013;66:752–8.CrossRefPubMed
36.
go back to reference Hemming K, Girling A. The efficiency of stepped wedge vs. cluster randomized trials: Stepped wedge studies do not always require a smaller sample size. J Clin Epidemiol. 2013;66:1427–8.CrossRefPubMed Hemming K, Girling A. The efficiency of stepped wedge vs. cluster randomized trials: Stepped wedge studies do not always require a smaller sample size. J Clin Epidemiol. 2013;66:1427–8.CrossRefPubMed
37.
go back to reference Hemming K, Haines TP, Chilton PJ, Girling AJ, Lilford RJ. The stepped wedge cluster randomised trial: rationale, design, analysis, and reporting. Br Med J. 2015;350:h391.CrossRef Hemming K, Haines TP, Chilton PJ, Girling AJ, Lilford RJ. The stepped wedge cluster randomised trial: rationale, design, analysis, and reporting. Br Med J. 2015;350:h391.CrossRef
38.
go back to reference Weijer C, Grimshaw JM, Eccles MP, McRae AD, White A, Brehaut JC, et al. The Ottawa statement on the ethical design and conduct of cluster randomized trials. PLoS Med. 2012;9:e1001346.CrossRefPubMedPubMedCentral Weijer C, Grimshaw JM, Eccles MP, McRae AD, White A, Brehaut JC, et al. The Ottawa statement on the ethical design and conduct of cluster randomized trials. PLoS Med. 2012;9:e1001346.CrossRefPubMedPubMedCentral
39.
go back to reference Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, et al. GRADE guidelines: 7. Rating the quality of evidence-inconsistency. J Clin Epidemiol. 2011;64:1294–302.CrossRefPubMed Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, et al. GRADE guidelines: 7. Rating the quality of evidence-inconsistency. J Clin Epidemiol. 2011;64:1294–302.CrossRefPubMed
40.
go back to reference Zou GY, Donner A, Klar N. Group sequential methods for cluster randomization trials with binary outcomes. Clin Trials. 2005;2:479–87.CrossRefPubMed Zou GY, Donner A, Klar N. Group sequential methods for cluster randomization trials with binary outcomes. Clin Trials. 2005;2:479–87.CrossRefPubMed
41.
go back to reference Hayes RJ, Moulton LH. Cluster randomised trials. Boca Raton: CRC Press; 2009.CrossRef Hayes RJ, Moulton LH. Cluster randomised trials. Boca Raton: CRC Press; 2009.CrossRef
42.
go back to reference Poldervaart JM, Reitsma JB, Koffijberg H, Backus BE, Six AJ, Doevendans PA, et al. The impact of the HEART risk score in the early assessment of patients with acute chest pain: design of a stepped wedge, cluster randomised trial. BMC Cardiovasc Disord. 2013;13:77. Poldervaart JM, Reitsma JB, Koffijberg H, Backus BE, Six AJ, Doevendans PA, et al. The impact of the HEART risk score in the early assessment of patients with acute chest pain: design of a stepped wedge, cluster randomised trial. BMC Cardiovasc Disord. 2013;13:77.
43.
go back to reference Six AJ, Cullen L, Backus BE, Greenslade J, Parsonage W, Aldous S, et al. The HEART score for the assessment of patients with chest pain in the emergency department: a multinational validation study. Crit Pathw Cardiol. 2013;12:121–6. Six AJ, Cullen L, Backus BE, Greenslade J, Parsonage W, Aldous S, et al. The HEART score for the assessment of patients with chest pain in the emergency department: a multinational validation study. Crit Pathw Cardiol. 2013;12:121–6.
44.
go back to reference Backus BE, Six AJ, Kelder JC, Mast TP, van den Akker F, Mast EG, et al. Chest pain in the emergency room: a multicenter validation of the HEART Score. Crit Pathw Cardiol. 2010;9:164–9. Backus BE, Six AJ, Kelder JC, Mast TP, van den Akker F, Mast EG, et al. Chest pain in the emergency room: a multicenter validation of the HEART Score. Crit Pathw Cardiol. 2010;9:164–9.
45.
go back to reference de Araujo GP, Ferreira J, Aguiar C, Seabra-Gomes R. TIMI, PURSUIT, and GRACE risk scores: sustained prognostic value and interaction with revascularization in NSTE-ACS. Eur Heart J. 2005;26:865–72.CrossRef de Araujo GP, Ferreira J, Aguiar C, Seabra-Gomes R. TIMI, PURSUIT, and GRACE risk scores: sustained prognostic value and interaction with revascularization in NSTE-ACS. Eur Heart J. 2005;26:865–72.CrossRef
46.
go back to reference Antman EM, Cohen M, Bernink PJ, McCabe CH, Horacek T, Papuchis G, et al. The TIMI risk score for unstable angina/non-ST elevation MI: a method for prognostication and therapeutic decision making. JAMA. 2000;284:835–42. Antman EM, Cohen M, Bernink PJ, McCabe CH, Horacek T, Papuchis G, et al. The TIMI risk score for unstable angina/non-ST elevation MI: a method for prognostication and therapeutic decision making. JAMA. 2000;284:835–42.
47.
go back to reference Fox KA, Dabbous OH, Goldberg RJ, Pieper KS, Eagle KA, Van de WF, et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: prospective multinational observational study (GRACE). Br Med J. 2006;333:1091.CrossRef Fox KA, Dabbous OH, Goldberg RJ, Pieper KS, Eagle KA, Van de WF, et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: prospective multinational observational study (GRACE). Br Med J. 2006;333:1091.CrossRef
48.
go back to reference Hemming K, Lilford R, Girling AJ. Stepped-wedge cluster randomised controlled trials: a generic framework including parallel and multiple-level designs. Stat Med. 2015;34:181–96.CrossRefPubMed Hemming K, Lilford R, Girling AJ. Stepped-wedge cluster randomised controlled trials: a generic framework including parallel and multiple-level designs. Stat Med. 2015;34:181–96.CrossRefPubMed
49.
go back to reference Hemming K, Girling A. A menu-driven facility for power and detectable-difference calculations in stepped-wedge cluster-randomized trials. Stata J. 2014;14:363–80. Hemming K, Girling A. A menu-driven facility for power and detectable-difference calculations in stepped-wedge cluster-randomized trials. Stata J. 2014;14:363–80.
50.
go back to reference Duncan GJ, Kalton G. Issues of design and analysis of surveys across time. Int Stat Rev. 1987;55:97–117.CrossRef Duncan GJ, Kalton G. Issues of design and analysis of surveys across time. Int Stat Rev. 1987;55:97–117.CrossRef
51.
go back to reference Feldman HA, Mckinlay SM. Cohort versus cross-sectional design in large field trials - precision, sample-size, and a unifying model. Stat Med. 1994;13:61–78.CrossRefPubMed Feldman HA, Mckinlay SM. Cohort versus cross-sectional design in large field trials - precision, sample-size, and a unifying model. Stat Med. 1994;13:61–78.CrossRefPubMed
52.
go back to reference Frison L, Pocock SJ. Repeated measures in clinical-trials - analysis using mean summary statistics and its implications for design. Stat Med. 1992;11:1685–704.CrossRefPubMed Frison L, Pocock SJ. Repeated measures in clinical-trials - analysis using mean summary statistics and its implications for design. Stat Med. 1992;11:1685–704.CrossRefPubMed
53.
go back to reference van der Tweel I, van der Graaf R. Issues in the use of stepped wedge cluster and alternative designs in the case of pandemics. Am J Bioeth. 2013;13:23–4.CrossRefPubMed van der Tweel I, van der Graaf R. Issues in the use of stepped wedge cluster and alternative designs in the case of pandemics. Am J Bioeth. 2013;13:23–4.CrossRefPubMed
54.
go back to reference Handley MA, Schillinger D, Shiboski S. Quasi-experimental designs in practice-based research settings: design and implementation considerations. J Am Board Fam Med. 2011;24:589–96.CrossRefPubMed Handley MA, Schillinger D, Shiboski S. Quasi-experimental designs in practice-based research settings: design and implementation considerations. J Am Board Fam Med. 2011;24:589–96.CrossRefPubMed
55.
go back to reference Fatemi Y, Jacobson RM. The stepped wedge cluster randomized trial and its potential for child health services research: a narrative review. Acad Pediatr. 2015;15:128–33.CrossRefPubMed Fatemi Y, Jacobson RM. The stepped wedge cluster randomized trial and its potential for child health services research: a narrative review. Acad Pediatr. 2015;15:128–33.CrossRefPubMed
56.
go back to reference Pearson D, Torgerson D, McDougall C, Bowles R. Parable of two agencies, one of which randomizes. An Am Acad Polit Soc Sci. 2010;628:11–29.CrossRef Pearson D, Torgerson D, McDougall C, Bowles R. Parable of two agencies, one of which randomizes. An Am Acad Polit Soc Sci. 2010;628:11–29.CrossRef
57.
go back to reference van der Graaf R, Koffijberg H, Grobbee DE, de Hoop E, Moons KGM, van Thiel GJMW, et al. Rethinking the ethics of cluster randomized trials: a refinement of the Ottawa statement. J Clin Epidemiol. 2015;68:1108–14. van der Graaf R, Koffijberg H, Grobbee DE, de Hoop E, Moons KGM, van Thiel GJMW, et al. Rethinking the ethics of cluster randomized trials: a refinement of the Ottawa statement. J Clin Epidemiol. 2015;68:1108–14.
Metadata
Title
The need to balance merits and limitations from different disciplines when considering the stepped wedge cluster randomized trial design
Authors
Esther de Hoop
Ingeborg van der Tweel
Rieke van der Graaf
Karel G. M. Moons
Johannes J. M. van Delden
Johannes B. Reitsma
Hendrik Koffijberg
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2015
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-015-0090-2

Other articles of this Issue 1/2015

BMC Medical Research Methodology 1/2015 Go to the issue