Skip to main content
Top
Published in: BMC Anesthesiology 1/2019

Open Access 01-12-2019 | Research article

Lack of impact of nil-per-os (NPO) time on goal-directed fluid delivery in first case versus afternoon case starts: a retrospective cohort study

Authors: R. Ryan Field, Tuan Mai, Samouel Hanna, Brian Harrington, Michael-David Calderon, Joseph Rinehart

Published in: BMC Anesthesiology | Issue 1/2019

Login to get access

Abstract

Background

Goal Directed Fluid Therapy (GDFT) represents an objective fluid replacement algorithm. The effect of provider variability remains a confounder. Overhydration worsens perioperative morbidity and mortality; therefore, the impact of the calculated NPO deficit prior to the operating room may reach harm.

Methods

A retrospective single-institution study analyzed patients at UC Irvine Medical Center main operating rooms from September 1, 2013 through September 1, 2015 receiving GDFT. The primary study question asked if GDFT suggested different fluid delivery after different NPO periods, while reducing inter-provider variability. We created two patient groups distinguished by 0715 surgical start time or start time after 1200. We analyzed fluid administration totals with either a 1:1 crystalloid to colloid ratio or a 3:1 ratio. We performed direct group-wise testing on total administered volume expressed as total ml, total ml/hr., and total ml/kg/hr. between the first case start (AM) and afternoon case (PM) groups. A linear regression model included all baseline covariates that differed between groups as well as plausible confounding factors for differing fluid needs. Finally, we combined all patients from both groups, and created NPO time to total administered fluid scatterplots to assess the effect of patient-reported NPO time on fluid administration.

Results

Whether reported by total administered volume or net fluid volume, and whether we expressed the sum as ml, ml/hr., or ml/kg/hr., the AM group received more fluid on average than the PM group in all cases. In the general linear models, for all significant independent variables evaluated, AM vs PM case start did not reach significance in both cases at p = 0.64 and p = 0.19, respectively. In scatterplots of NPO time to fluid volumes, absolute adjusted and unadjusted R2 values are < 0.01 for each plot, indicating virtually non-existent correlations between uncorrected NPO time and fluid volumes measured.

Conclusions

This study showed NPO periods do not influence a patient’s volume status just prior to presentation to the operating room for surgical intervention. We hope this data will influence the practice of providers routinely replacing calculated NPO period volume deficit; particularly with those presenting with later surgical case start times.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bundgaard-Nielsen M, Jorgensen CC, Secher NH, Kehlet H. Functional intravascular volume deficit in patients before surgery. Acta Anaesthesiol Scand. 2010;54:464–9.CrossRef Bundgaard-Nielsen M, Jorgensen CC, Secher NH, Kehlet H. Functional intravascular volume deficit in patients before surgery. Acta Anaesthesiol Scand. 2010;54:464–9.CrossRef
2.
go back to reference Hahn RG, Bahlmann H, Nilsson L. Dehydration and fluid volume kinetics before major open abdominal surgery. Acta Anaesthesiol Scand. 2014;58:1258–66.CrossRef Hahn RG, Bahlmann H, Nilsson L. Dehydration and fluid volume kinetics before major open abdominal surgery. Acta Anaesthesiol Scand. 2014;58:1258–66.CrossRef
3.
go back to reference Jacob M, Chappell D, Conzen P, Finsterer U, Rehm M. Blood volume is normal after pre-operative overnight fasting. Acta Anaesthesiol Scand. 2008;52:522–9.CrossRef Jacob M, Chappell D, Conzen P, Finsterer U, Rehm M. Blood volume is normal after pre-operative overnight fasting. Acta Anaesthesiol Scand. 2008;52:522–9.CrossRef
4.
go back to reference Navarro LH, Bloomstone JA, Auler JO Jr, et al. Perioperative fluid therapy: a statement from the international Fluid Optimization Group. Perioper Med (Lond). 2015;4:3.CrossRef Navarro LH, Bloomstone JA, Auler JO Jr, et al. Perioperative fluid therapy: a statement from the international Fluid Optimization Group. Perioper Med (Lond). 2015;4:3.CrossRef
5.
go back to reference Hahn RG. Fluid therapy might be more difficult than you think. Anesth Analg. 2007;105:304–5.CrossRef Hahn RG. Fluid therapy might be more difficult than you think. Anesth Analg. 2007;105:304–5.CrossRef
6.
go back to reference Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med. 1988;16:1117–20.CrossRef Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med. 1988;16:1117–20.CrossRef
7.
go back to reference Bland RD, Shoemaker WC, Abraham E, Cobo JC. Hemodynamic and oxygen transport patterns in surviving and nonsurviving postoperative patients. Crit Care Med. 1985;13:85–90.CrossRef Bland RD, Shoemaker WC, Abraham E, Cobo JC. Hemodynamic and oxygen transport patterns in surviving and nonsurviving postoperative patients. Crit Care Med. 1985;13:85–90.CrossRef
8.
go back to reference Lobo DN, Macafee DA, Allison SP. How perioperative fluid balance influences postoperative outcomes. Best Pract Res Clin Anaesthesiol. 2006;20:439–55.CrossRef Lobo DN, Macafee DA, Allison SP. How perioperative fluid balance influences postoperative outcomes. Best Pract Res Clin Anaesthesiol. 2006;20:439–55.CrossRef
9.
go back to reference Prowle JR, Echeverri JE, Ligabo EV, Ronco C, Bellomo R. Fluid balance and acute kidney injury. Nat Rev Nephrol. 2010;6:107–15.CrossRef Prowle JR, Echeverri JE, Ligabo EV, Ronco C, Bellomo R. Fluid balance and acute kidney injury. Nat Rev Nephrol. 2010;6:107–15.CrossRef
10.
go back to reference Da Costa HC, Santos RL, de Aguilar-Nascimento JE. Clinical outcome before and after the implementation of the ACERTO protocol. Rev Col Bras Cir. 2013;40:174–9.CrossRef Da Costa HC, Santos RL, de Aguilar-Nascimento JE. Clinical outcome before and after the implementation of the ACERTO protocol. Rev Col Bras Cir. 2013;40:174–9.CrossRef
11.
go back to reference Gustafsson UO, Scott MJ, Schwenk W, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS((R))) Society recommendations. World J Surg. 2013;37:259–84.CrossRef Gustafsson UO, Scott MJ, Schwenk W, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS((R))) Society recommendations. World J Surg. 2013;37:259–84.CrossRef
12.
go back to reference Rinehart J, Lilot M, Lee C, et al. Closed-loop assisted versus manual goal-directed fluid therapy during high-risk abdominal surgery: a case-control study with propensity matching. Crit Care. 2015;19:94.CrossRef Rinehart J, Lilot M, Lee C, et al. Closed-loop assisted versus manual goal-directed fluid therapy during high-risk abdominal surgery: a case-control study with propensity matching. Crit Care. 2015;19:94.CrossRef
13.
go back to reference Joosten A, Raj Lawrence S, Colesnicenco A, Coeckelenbergh S, Vincent JL, Van der Linden P, Cannesson M, Rinehart J. Personalized Versus Protocolized Fluid Management Using Noninvasive Hemodynamic Monitoring (Clearsight System) in Patients Undergoing Moderate-Risk Abdominal Surgery. Anesth Analg 2019 Jul;129(1):e8-e12. doi: https://doi.org/10.1213/ANE.0000000000003553. PubMed PMID: 29878939.CrossRef Joosten A, Raj Lawrence S, Colesnicenco A, Coeckelenbergh S, Vincent JL, Van der Linden P, Cannesson M, Rinehart J. Personalized Versus Protocolized Fluid Management Using Noninvasive Hemodynamic Monitoring (Clearsight System) in Patients Undergoing Moderate-Risk Abdominal Surgery. Anesth Analg 2019 Jul;129(1):e8-e12. doi: https://​doi.​org/​10.​1213/​ANE.​0000000000003553​. PubMed PMID: 29878939.CrossRef
14.
go back to reference Osugi T, Tatara T, Yada S, Tashiro C. Hydration status after overnight fasting as measured by urine osmolality does not alter the magnitude of hypotension during general anesthesia in low risk patients. Anesth Analg. 2011;112:1307–13.CrossRef Osugi T, Tatara T, Yada S, Tashiro C. Hydration status after overnight fasting as measured by urine osmolality does not alter the magnitude of hypotension during general anesthesia in low risk patients. Anesth Analg. 2011;112:1307–13.CrossRef
15.
go back to reference Hamilton MA, Cecconi M. Rhodes A. Anesth Analg: A Systematic Review and Meta-Analysis on the Use of Preemptive Hemodynamic Intervention to Improve Postoperative Outcomes in Moderate and High-Risk Surgical Patients; 2010. Hamilton MA, Cecconi M. Rhodes A. Anesth Analg: A Systematic Review and Meta-Analysis on the Use of Preemptive Hemodynamic Intervention to Improve Postoperative Outcomes in Moderate and High-Risk Surgical Patients; 2010.
16.
go back to reference Benes J, Chytra I, Altmann P, et al. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care. 2010;14(3).CrossRef Benes J, Chytra I, Altmann P, et al. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care. 2010;14(3).CrossRef
17.
go back to reference Gan TJ, Soppitt A, Maroof M, El-Moalem H, Robertson KM, Moretti E, Dwane P, Glass PSA. Goal-directed Intraoperative Fluid Administration Reduces Length of Hospital Stay after Major Surgery. Anesthesiology. 2002;97(4):820–6.CrossRef Gan TJ, Soppitt A, Maroof M, El-Moalem H, Robertson KM, Moretti E, Dwane P, Glass PSA. Goal-directed Intraoperative Fluid Administration Reduces Length of Hospital Stay after Major Surgery. Anesthesiology. 2002;97(4):820–6.CrossRef
18.
go back to reference Sulzer JK, Sastry AV, Meyer LM, et al. The impact of intraoperative goal-directed fluid therapy on complications after pancreaticoduodenectomy. Ann Med Surg (Lond). 2018;36:23–8.CrossRef Sulzer JK, Sastry AV, Meyer LM, et al. The impact of intraoperative goal-directed fluid therapy on complications after pancreaticoduodenectomy. Ann Med Surg (Lond). 2018;36:23–8.CrossRef
19.
go back to reference Veelo DP, van Berge Henegouwen MI, Ouwehand KS, Geerts BF, Anderegg MCJ, van Dieren S, et al. Effect of goal-directed therapy on outcome after esophageal surgery: A quality improvement study. PLoS One. 2017;12(3):e0172806.CrossRef Veelo DP, van Berge Henegouwen MI, Ouwehand KS, Geerts BF, Anderegg MCJ, van Dieren S, et al. Effect of goal-directed therapy on outcome after esophageal surgery: A quality improvement study. PLoS One. 2017;12(3):e0172806.CrossRef
20.
go back to reference Jin J, Min S, Liu D, Liu L, Lv B. Clinical and economic impact of goal-directed fluid therapy during elective gastrointestinal surgery. Perioper Med (Lond). 2018;7:22.CrossRef Jin J, Min S, Liu D, Liu L, Lv B. Clinical and economic impact of goal-directed fluid therapy during elective gastrointestinal surgery. Perioper Med (Lond). 2018;7:22.CrossRef
21.
go back to reference Gutierrez MC, Moore PG, Liu H. Goal-directed therapy in intraoperative fluid and hemodynamic management. J Biomed Res. 2013;27(5):357–65.PubMedPubMedCentral Gutierrez MC, Moore PG, Liu H. Goal-directed therapy in intraoperative fluid and hemodynamic management. J Biomed Res. 2013;27(5):357–65.PubMedPubMedCentral
22.
go back to reference Holte K, Kristensen BB, Valentiner L, Foss NB, Husted H, Kehlet H. Liberal versus restrictive fluid management in knee arthroplasty: A randomized, double-blind study. Anesth Analg. 2007;105:465–74.CrossRef Holte K, Kristensen BB, Valentiner L, Foss NB, Husted H, Kehlet H. Liberal versus restrictive fluid management in knee arthroplasty: A randomized, double-blind study. Anesth Analg. 2007;105:465–74.CrossRef
23.
go back to reference Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P. Markus Rehm; A Rational Approach to Perioperative Fluid Management. Anesthesiology. 2008;109(4):723–40.CrossRef Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P. Markus Rehm; A Rational Approach to Perioperative Fluid Management. Anesthesiology. 2008;109(4):723–40.CrossRef
24.
go back to reference Bundgaard-Nielsen M, Jans Ø, Müller RG, Korshin A, Ruhnau B, Bie P, Secher NH. Henrik Kehlet; Does Goal-directed Fluid Therapy Affect Postoperative Orthostatic Intolerance: A Randomized Trial. Anesthesiology. 2013;119(4):813–23.CrossRef Bundgaard-Nielsen M, Jans Ø, Müller RG, Korshin A, Ruhnau B, Bie P, Secher NH. Henrik Kehlet; Does Goal-directed Fluid Therapy Affect Postoperative Orthostatic Intolerance: A Randomized Trial. Anesthesiology. 2013;119(4):813–23.CrossRef
25.
go back to reference Makaryus R, et al. Current concepts of fluid management in enhanced recovery pathways. British Journal of Anaesthesia. 120(2):376–83.CrossRef Makaryus R, et al. Current concepts of fluid management in enhanced recovery pathways. British Journal of Anaesthesia. 120(2):376–83.CrossRef
26.
go back to reference Zhao G, Peng P, Zhou Y, Li J, Jiang H, Shao J. The accuracy and effectiveness of goal directed fluid therapy in plateau-elderly gastrointestinal cancer patients: a prospective randomized controlled trial. Int J Clin Exp Med. 2018;11(8):8516–22. Zhao G, Peng P, Zhou Y, Li J, Jiang H, Shao J. The accuracy and effectiveness of goal directed fluid therapy in plateau-elderly gastrointestinal cancer patients: a prospective randomized controlled trial. Int J Clin Exp Med. 2018;11(8):8516–22.
28.
go back to reference Liang M, Li Y, Lin L, Lin X, Wu X, Gao Y, Cai H, Zeng K, Lin C. Effect of goal-directed fluid therapy on the prognosis of elderly patients with hypertension receiving plasmakinetic energy transurethral resection of prostate; 2016. Liang M, Li Y, Lin L, Lin X, Wu X, Gao Y, Cai H, Zeng K, Lin C. Effect of goal-directed fluid therapy on the prognosis of elderly patients with hypertension receiving plasmakinetic energy transurethral resection of prostate; 2016.
29.
go back to reference Aya HD, Cecconi M, Hamilton M, Rhodes A. Goal-directed therapy in cardiac surgery: a systematic review and meta-analysis. BJA: British Journal of Anaesthesia. April 2013;110(4):510–7.CrossRef Aya HD, Cecconi M, Hamilton M, Rhodes A. Goal-directed therapy in cardiac surgery: a systematic review and meta-analysis. BJA: British Journal of Anaesthesia. April 2013;110(4):510–7.CrossRef
30.
go back to reference Pearse, R., Dawson, D., Fawcett, J., Rhodes, A., Grounds, R. M., & Bennett, E. D. (2005). Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomized, controlled trial. Critical care, 9(6), R687. Pearse, R., Dawson, D., Fawcett, J., Rhodes, A., Grounds, R. M., & Bennett, E. D. (2005). Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomized, controlled trial. Critical care, 9(6), R687.
31.
go back to reference Donati A, Loggi S, Preiser JC, Orsetti G, Münch C, Gabbanelli V, Pietropaoli P. Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest. 2007;132(6):1817–24.CrossRef Donati A, Loggi S, Preiser JC, Orsetti G, Münch C, Gabbanelli V, Pietropaoli P. Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest. 2007;132(6):1817–24.CrossRef
32.
go back to reference Cvetkovic, A., Kalezic, N., Milicic, B., Nikolic, S., Zegarac, M., Stojiljkovic, D., & Stojanovic, M. (2018). Hemodynamic stability achievement by application of goal directed fluid therapy with different infusion solutions in colorectal surgery challenge, 9, 10. Cvetkovic, A., Kalezic, N., Milicic, B., Nikolic, S., Zegarac, M., Stojiljkovic, D., & Stojanovic, M. (2018). Hemodynamic stability achievement by application of goal directed fluid therapy with different infusion solutions in colorectal surgery challenge, 9, 10.
33.
go back to reference Kapoor PM, Magoon R, Rawat RS, et al. Goal-directed therapy improves the outcome of high-risk cardiac patients undergoing off-pump coronary artery bypass. Ann Card Anaesth. 2017;20(1):83–9.CrossRef Kapoor PM, Magoon R, Rawat RS, et al. Goal-directed therapy improves the outcome of high-risk cardiac patients undergoing off-pump coronary artery bypass. Ann Card Anaesth. 2017;20(1):83–9.CrossRef
Metadata
Title
Lack of impact of nil-per-os (NPO) time on goal-directed fluid delivery in first case versus afternoon case starts: a retrospective cohort study
Authors
R. Ryan Field
Tuan Mai
Samouel Hanna
Brian Harrington
Michael-David Calderon
Joseph Rinehart
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2019
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-019-0864-x

Other articles of this Issue 1/2019

BMC Anesthesiology 1/2019 Go to the issue