Skip to main content
Top
Published in: BMC Anesthesiology 1/2018

Open Access 01-12-2018 | Research article

Programmed intermittent epidural bolus versus continuous epidural infusion for postoperative analgesia after major abdominal and gynecological cancer surgery: a randomized, triple-blinded clinical trial

Authors: Thomas Wiesmann, Lilli Hoff, Lara Prien, Alexander Torossian, Leopold Eberhart, Hinnerk Wulf, Carsten Feldmann

Published in: BMC Anesthesiology | Issue 1/2018

Login to get access

Abstract

Background

Continuous epidural infusion (CEI) is the standard application setting for epidural infusion. A new mode, the programmed intermittent epidural bolus (PIEB) technique, showed reduced local anesthetic (LA) consumption and improved analgesia in obstetric analgesia. Goal of this trial was to evaluate the effects of PIEB versus CEI [combined with patient-controlled bolus (PCEA)] on LA consumption and pain scorings in major abdominal cancer surgery.

Methods

Following ethical approval, patients scheduled for major abdominal cancer surgery under general anesthesia in combination with epidural analgesia were randomized to receive either a PIEB mode of 6 mL/h or a CEI mode set at 6 mL/h of ropivacaine 0.2%, both combined with a PCEA mode set at a 4 mL bolus. LA consumptions and pain scorings were documented until the second postoperative evening.

Results

Eighty-four datasets were analyzed (CEI: n = 40, PIEB: n = 44). Regarding the primary endpoint, cumulative LA PCEA bolus volumes until day 2 differed significantly between the groups [PIEB 10 mL (2–28 mL) versus CEI, 28 mL (12–64 mL), median (25th–75th percentiles), p = 0.002]. Overall, LA consumption volumes were significantly lower in the PIEB group versus in the CEI group [PIEB: 329 mL (291–341 mL) vs. CEI: 350 mL (327–381 mL), p = 0.003]. Pain scores were comparable at each time point.

Conclusions

This trial demonstrates reduced needs for PCEA bolus in the PIEB group. There were no clinically relevant benefits regarding morphine consumption, pain scorings, or other secondary outcome parameters.

Trial registration

This study has been registered retrospectively in the ClinicalTrials.​gov registry (NCT03378804), date of registration: December, 20th 2017.
Appendix
Available only for authorised users
Literature
1.
go back to reference Feldheiser A, Aziz O, Baldini G, Cox BPBW, Fearon KCH, Feldman LS, et al. Enhanced recovery after surgery (ERAS) for gastrointestinal surgery, part 2: consensus statement for anaesthesia practice. Acta Anaesthesiol Scand. 2016;60:289–334.CrossRef Feldheiser A, Aziz O, Baldini G, Cox BPBW, Fearon KCH, Feldman LS, et al. Enhanced recovery after surgery (ERAS) for gastrointestinal surgery, part 2: consensus statement for anaesthesia practice. Acta Anaesthesiol Scand. 2016;60:289–334.CrossRef
2.
go back to reference Guay J, Nishimori M, Kopp SL. Epidural local anesthetics versus opioid-based analgesic regimens for postoperative gastrointestinal paralysis, vomiting, and pain after abdominal surgery: a Cochrane review. Anesth Analg. 2016;123:1591–602.CrossRef Guay J, Nishimori M, Kopp SL. Epidural local anesthetics versus opioid-based analgesic regimens for postoperative gastrointestinal paralysis, vomiting, and pain after abdominal surgery: a Cochrane review. Anesth Analg. 2016;123:1591–602.CrossRef
3.
go back to reference Pöpping DM, Elia N, Van Aken HK, Marret E, Schug SA, Kranke P, et al. Impact of epidural analgesia on mortality and morbidity after surgery: systematic review and meta-analysis of randomized controlled trials. Ann Surg. 2014;259:1056–67.CrossRef Pöpping DM, Elia N, Van Aken HK, Marret E, Schug SA, Kranke P, et al. Impact of epidural analgesia on mortality and morbidity after surgery: systematic review and meta-analysis of randomized controlled trials. Ann Surg. 2014;259:1056–67.CrossRef
4.
go back to reference George RB, Allen TK, Habib AS. Intermittent epidural bolus compared with continuous epidural infusions for labor analgesia: a systematic review and meta-analysis. Anesth Analg. 2013;116:133–44.CrossRef George RB, Allen TK, Habib AS. Intermittent epidural bolus compared with continuous epidural infusions for labor analgesia: a systematic review and meta-analysis. Anesth Analg. 2013;116:133–44.CrossRef
5.
go back to reference Wiesmann T, Kranke P, Eberhart L. Postoperative nausea and vomiting - a narrative review of pathophysiology, pharmacotherapy and clinical management strategies. Expert Opin Pharmacother. 2015;16(7):1069–770.CrossRef Wiesmann T, Kranke P, Eberhart L. Postoperative nausea and vomiting - a narrative review of pathophysiology, pharmacotherapy and clinical management strategies. Expert Opin Pharmacother. 2015;16(7):1069–770.CrossRef
6.
go back to reference Berdine HJ, Nesbit SA. Equianalgesic dosing of opioids. J Pain Palliat Care Pharmacother. 2006;20:79–84.CrossRef Berdine HJ, Nesbit SA. Equianalgesic dosing of opioids. J Pain Palliat Care Pharmacother. 2006;20:79–84.CrossRef
7.
go back to reference Nunes J, Nunes S, Veiga M, Cortez M, Seifert I. A prospective, randomized, blinded-endpoint, controlled study - continuous epidural infusion versus programmed intermittent epidural bolus in labor analgesia. Braz J Anesthesiol. 2016;66:439–44.CrossRef Nunes J, Nunes S, Veiga M, Cortez M, Seifert I. A prospective, randomized, blinded-endpoint, controlled study - continuous epidural infusion versus programmed intermittent epidural bolus in labor analgesia. Braz J Anesthesiol. 2016;66:439–44.CrossRef
8.
go back to reference Wong CA, Ratliff JT, Sullivan JT, Scavone BM, Toledo P, McCarthy RJ. A randomized comparison of programmed intermittent epidural bolus with continuous epidural infusion for labor analgesia. Anesth Analg. 2006;102:904–9.CrossRef Wong CA, Ratliff JT, Sullivan JT, Scavone BM, Toledo P, McCarthy RJ. A randomized comparison of programmed intermittent epidural bolus with continuous epidural infusion for labor analgesia. Anesth Analg. 2006;102:904–9.CrossRef
9.
go back to reference Capogna G, Camorcia M, Stirparo S, Farcomeni A. Programmed intermittent epidural bolus versus continuous epidural infusion for labor analgesia: the effects on maternal motor function and labor outcome. A randomized double-blind study in nulliparous women. Anesth Analg. 2011;113:826–31.CrossRef Capogna G, Camorcia M, Stirparo S, Farcomeni A. Programmed intermittent epidural bolus versus continuous epidural infusion for labor analgesia: the effects on maternal motor function and labor outcome. A randomized double-blind study in nulliparous women. Anesth Analg. 2011;113:826–31.CrossRef
10.
go back to reference McKenzie CP, Cobb B, Riley ET, Carvalho B. Programmed intermittent epidural boluses for maintenance of labor analgesia: an impact study. Int J Obstet Anesth. 2016;26:32–8.CrossRef McKenzie CP, Cobb B, Riley ET, Carvalho B. Programmed intermittent epidural boluses for maintenance of labor analgesia: an impact study. Int J Obstet Anesth. 2016;26:32–8.CrossRef
11.
go back to reference Myles PS, Myles DB, Galagher W, Boyd D, Chew C, MacDonald N, et al. Measuring acute postoperative pain using the visual analog scale: the minimal clinically important difference and patient acceptable symptom state. Br J Anaesth. 2017;118:424–9.CrossRef Myles PS, Myles DB, Galagher W, Boyd D, Chew C, MacDonald N, et al. Measuring acute postoperative pain using the visual analog scale: the minimal clinically important difference and patient acceptable symptom state. Br J Anaesth. 2017;118:424–9.CrossRef
12.
go back to reference Zakus P, Arzola C, Bittencourt R, Downey K, Ye XY, Carvalho JC. Determination of the optimal programmed intermittent epidural bolus volume of bupivacaine 0.0625% with fentanyl 2 μg.Ml −1at a fixed interval of forty minutes: a biased coin up-and-down sequential allocation trial. Anaesthesia. 2017;116:133–7. Zakus P, Arzola C, Bittencourt R, Downey K, Ye XY, Carvalho JC. Determination of the optimal programmed intermittent epidural bolus volume of bupivacaine 0.0625% with fentanyl 2 μg.Ml −1at a fixed interval of forty minutes: a biased coin up-and-down sequential allocation trial. Anaesthesia. 2017;116:133–7.
13.
go back to reference Carvalho B, George RB, Cobb B, McKenzie C, Riley ET. Implementation of programmed intermittent epidural bolus for the maintenance of labor analgesia. Anesth Analg. 2016;123:965–71.CrossRef Carvalho B, George RB, Cobb B, McKenzie C, Riley ET. Implementation of programmed intermittent epidural bolus for the maintenance of labor analgesia. Anesth Analg. 2016;123:965–71.CrossRef
14.
go back to reference Klumpner TT, Lange EMS, Ahmed HS, Fitzgerald PC, Wong CA, Toledo P. An in vitro evaluation of the pressure generated during programmed intermittent epidural bolus injection at varying infusion delivery speeds. J Clin Anesth. 2016;34:632–7.CrossRef Klumpner TT, Lange EMS, Ahmed HS, Fitzgerald PC, Wong CA, Toledo P. An in vitro evaluation of the pressure generated during programmed intermittent epidural bolus injection at varying infusion delivery speeds. J Clin Anesth. 2016;34:632–7.CrossRef
15.
go back to reference Dinges E, Heier J, Bollag L. It’s not easy being green, or is it? Alkaline battery versus a/C power for programmed intermittent epidural bolus pumps. Int J Obstet Anesth Elsevier. 2018;33:100–1.CrossRef Dinges E, Heier J, Bollag L. It’s not easy being green, or is it? Alkaline battery versus a/C power for programmed intermittent epidural bolus pumps. Int J Obstet Anesth Elsevier. 2018;33:100–1.CrossRef
Metadata
Title
Programmed intermittent epidural bolus versus continuous epidural infusion for postoperative analgesia after major abdominal and gynecological cancer surgery: a randomized, triple-blinded clinical trial
Authors
Thomas Wiesmann
Lilli Hoff
Lara Prien
Alexander Torossian
Leopold Eberhart
Hinnerk Wulf
Carsten Feldmann
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2018
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-018-0613-6

Other articles of this Issue 1/2018

BMC Anesthesiology 1/2018 Go to the issue