Skip to main content
Top
Published in: BMC Anesthesiology 1/2015

Open Access 01-12-2015 | Research article

Tromboelastography: variability and relation to conventional coagulation test in non-bleeding intensive care unit patients

Authors: Jørgen Holli Halset, Simon Wøhlert Hanssen, Aurora Espinosa, Pål Klepstad

Published in: BMC Anesthesiology | Issue 1/2015

Login to get access

Abstract

Background

Intensive care unit (ICU) patients usually have abnormal biochemical and hematological laboratory test results as a consequence of organ dysfunction and underlying disease. Thromboelastography (TEG®) is a point-of-care laboratory analysis that gives an overview of several aspects of the coagulation process. In order to be able to perform a clinical interpretation of abnormal TEG® results the expected values from non-bleeding ICU patients should be known. The aim of this study is to report the normal variability observed in non-bleeding, non-transfused ICU patients.

Methods

Adult ICU patients without bleeding in the last 24 hours, who had not received blood products within the last 24 hours, with no hematological diseases and no anticoagulation therapeutic treatment were included. Standard clinical chemistry tests, coagulation tests and TEG® were obtained. All results were reported in relation to standard reference values. TEG® values were compared with routine coagulation measurement using Spearman correlations.

Results

We observed that the normal variability observed in non-bleeding, non-transfused ICU patients in this study included abnormally high TEG® values for maximum amplitude (MA) (73%). None of the patients showed MA results corresponding to hypocoagulability. Other coagulation tests were also changed with elevated D-Dimer, fibrinogen and APTT values, and a low ATIII value.

Conclusion

In unselected ICU patients without bleeding or known factors that influence coagulation, a TEG® value of MA is often elevated suggesting hypercoagulability. This finding should be considered when interpreting TEG® observations obtained in ICU patients.
Literature
1.
go back to reference Borgel D, Bornstain C, Reitsma PH, Lerolle N, Gandrille S, Dali-Ali F, et al. A comparative study of the protein C pathway in septic and nonseptic patients with organ failure. Am J Respir Crit Care Med. 2007;176:878–85.CrossRefPubMed Borgel D, Bornstain C, Reitsma PH, Lerolle N, Gandrille S, Dali-Ali F, et al. A comparative study of the protein C pathway in septic and nonseptic patients with organ failure. Am J Respir Crit Care Med. 2007;176:878–85.CrossRefPubMed
3.
go back to reference Afshari A, Wikkelso A, Brok J, Moller AM, Wetterslev J. Thrombelastography (TEG) or thromboelastometry (ROTEM) to monitor haemotherapy versus usual care in patients with massive transfusion. Cochrane Database Syst Rev. 2011, Issue 3. Art. No.: CD007871. doi:10.1002/14651858.CD007871.pub2. Afshari A, Wikkelso A, Brok J, Moller AM, Wetterslev J. Thrombelastography (TEG) or thromboelastometry (ROTEM) to monitor haemotherapy versus usual care in patients with massive transfusion. Cochrane Database Syst Rev. 2011, Issue 3. Art. No.: CD007871. doi:10.1002/14651858.CD007871.pub2.
4.
go back to reference Shore-Lesserson L, Manspeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg. 1999;88:312–9.PubMed Shore-Lesserson L, Manspeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg. 1999;88:312–9.PubMed
5.
go back to reference Harnett MJ, Bhavani-Shankar K, Datta S, Tsen LC. In vitro fertilization-induced alterations in coagulation and fibrinolysis as measured by thromboelastography. Anesth Analg. 2002;95:1063–6.PubMed Harnett MJ, Bhavani-Shankar K, Datta S, Tsen LC. In vitro fertilization-induced alterations in coagulation and fibrinolysis as measured by thromboelastography. Anesth Analg. 2002;95:1063–6.PubMed
6.
go back to reference Ostrowski SR, Windelov NA, Ibsen M, Haase N, Perner A, Johansson PI. Consecutive thrombelastography clot strength profiles in patients with severe sepsis and their association with 28-day mortality: a prospective study. J Crit Care. 2013;28:317. e311-311.PubMed Ostrowski SR, Windelov NA, Ibsen M, Haase N, Perner A, Johansson PI. Consecutive thrombelastography clot strength profiles in patients with severe sepsis and their association with 28-day mortality: a prospective study. J Crit Care. 2013;28:317. e311-311.PubMed
7.
go back to reference Scarpelini S, Rhind SG, Nascimento B, Tien H, Shek PN, Peng HT, et al. Normal range values for thromboelastography in healthy adult volunteers. Braz J Med Biol Res. 2009;42:1210–7.CrossRefPubMed Scarpelini S, Rhind SG, Nascimento B, Tien H, Shek PN, Peng HT, et al. Normal range values for thromboelastography in healthy adult volunteers. Braz J Med Biol Res. 2009;42:1210–7.CrossRefPubMed
8.
go back to reference Muller MC, Meijers JC, Vroom MB, Juffermans NP. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: a systematic review. Crit Care. 2014;18:R30.CrossRefPubMedPubMedCentral Muller MC, Meijers JC, Vroom MB, Juffermans NP. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: a systematic review. Crit Care. 2014;18:R30.CrossRefPubMedPubMedCentral
9.
go back to reference Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.CrossRefPubMed Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.CrossRefPubMed
10.
go back to reference Vincent JL, de Mendonca A, Cantraine F, Moreno R, Takala J, Suter PM, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter. prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med. 1998;26:1793–800.CrossRefPubMed Vincent JL, de Mendonca A, Cantraine F, Moreno R, Takala J, Suter PM, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter. prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med. 1998;26:1793–800.CrossRefPubMed
11.
go back to reference TEG 5000 User’s Manual 1999–2007. Haemoscope Corporation. Niles. IL. USA. TEG 5000 User’s Manual 1999–2007. Haemoscope Corporation. Niles. IL. USA.
12.
go back to reference Ostrowski SR, Sorensen AM, Larsen CF, Johansson PI. Thrombelastography and biomarker profiles in acute coagulopathy of trauma: a prospective study. Scand J Trauma Resusc Emerg Med. 2011;19:64.CrossRefPubMedPubMedCentral Ostrowski SR, Sorensen AM, Larsen CF, Johansson PI. Thrombelastography and biomarker profiles in acute coagulopathy of trauma: a prospective study. Scand J Trauma Resusc Emerg Med. 2011;19:64.CrossRefPubMedPubMedCentral
13.
go back to reference Massion PB, Peters P, Ledoux D, Zimermann V, Canivet JL, Massion PP, et al. Persistent hypocoagulability in patients with septic shock predicts greater hospital mortality: impact of impaired thrombin generation. Intensive Care Med. 2012;38:1326–35.CrossRefPubMed Massion PB, Peters P, Ledoux D, Zimermann V, Canivet JL, Massion PP, et al. Persistent hypocoagulability in patients with septic shock predicts greater hospital mortality: impact of impaired thrombin generation. Intensive Care Med. 2012;38:1326–35.CrossRefPubMed
14.
go back to reference Ng KF. Changes in thrombelastograph variables associated with aging. Anesth Analg. 2004;99:449–54.CrossRefPubMed Ng KF. Changes in thrombelastograph variables associated with aging. Anesth Analg. 2004;99:449–54.CrossRefPubMed
15.
go back to reference White H, Zollinger C, Jones M, Bird R. Can Thromboelastography performed on kaolin-activated citrated samples from critically ill patients provide stable and consistent parameters? Int J Lab Hematol. 2010;32:167–73.CrossRefPubMed White H, Zollinger C, Jones M, Bird R. Can Thromboelastography performed on kaolin-activated citrated samples from critically ill patients provide stable and consistent parameters? Int J Lab Hematol. 2010;32:167–73.CrossRefPubMed
16.
go back to reference Gorton HJ, Warren ER, Simpson NA, Lyons GR, Columb MO. Thromboelastography identifies sex-related differences in coagulation. Anesth Analg. 2000;91:1279–81.PubMed Gorton HJ, Warren ER, Simpson NA, Lyons GR, Columb MO. Thromboelastography identifies sex-related differences in coagulation. Anesth Analg. 2000;91:1279–81.PubMed
17.
go back to reference Roeloffzen WW, Kluin-Nelemans HC, Bosman L, de Wolf JT. Effects of red blood cells on hemostasis. Transfusion. 2010;50:1536–44.CrossRefPubMed Roeloffzen WW, Kluin-Nelemans HC, Bosman L, de Wolf JT. Effects of red blood cells on hemostasis. Transfusion. 2010;50:1536–44.CrossRefPubMed
18.
go back to reference Bochsen L, Johansson PI, Kristensen AT, Daugaard G, Ostrowski SR. The influence of platelets. plasma and red blood cells on functional haemostatic assays. Blood Coagul Fibrinolysis. 2011;22:167–75.CrossRefPubMed Bochsen L, Johansson PI, Kristensen AT, Daugaard G, Ostrowski SR. The influence of platelets. plasma and red blood cells on functional haemostatic assays. Blood Coagul Fibrinolysis. 2011;22:167–75.CrossRefPubMed
Metadata
Title
Tromboelastography: variability and relation to conventional coagulation test in non-bleeding intensive care unit patients
Authors
Jørgen Holli Halset
Simon Wøhlert Hanssen
Aurora Espinosa
Pål Klepstad
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2015
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-015-0011-2

Other articles of this Issue 1/2015

BMC Anesthesiology 1/2015 Go to the issue