Skip to main content
Top
Published in: Environmental Health and Preventive Medicine 1/2019

Open Access 01-12-2019 | Chronic Pancreatitis | Research article

Impact of fatty pancreas and lifestyle on the development of subclinical chronic pancreatitis in healthy people undergoing a medical checkup

Authors: Makoto Fujii, Yuko Ohno, Makoto Yamada, Yoshihiro Kamada, Eiji Miyoshi

Published in: Environmental Health and Preventive Medicine | Issue 1/2019

Login to get access

Abstract

Background

Although fat accumulation in human organs is associated with a variety of diseases, there is little evidence about the effect of a fatty pancreas on the development of subclinical chronic pancreatitis over the clinical course.

Methods

We conducted a prospective cohort study from 2008 to 2014 of patients who underwent a medical checkup consultation for fat accumulated in the pancreas. Patients included in the analysis were divided into a non-fatty pancreas group (n = 9710) and fatty pancreas group (n = 223). The primary end point was the odds ratio (OR) for chronic pancreatitis associated with fatty pancreas, which was diagnosed using ultrasonography. We used a multiple logistic regression model to estimate the OR and the corresponding 95% confidence interval (CI).

Results

Ninety-two people were diagnosed with chronic pancreatitis, including both presumptive and definitive diagnoses. Twelve people were diagnosed with chronic pancreatitis by ultrasonography among the 223 patients with fatty pancreas, and 80 patients among 9710 were diagnosed with non-fatty pancreas. The crude OR was 6.85 (95% CI 3.68, 12.75), and the multiple adjusted OR was 3.96 (95% CI 2.04, 7.66).

Conclusions

Fat accumulation in the pancreas could be a risk factor for developing subclinical chronic pancreatitis.
Literature
1.
go back to reference Coughlin SS, Calle EE, Patel AV, Thun MJ. Predictors of pancreatic cancer mortality among a large cohort of United States adults. Cancer Causes Control. 2000;11(10):915–23.CrossRef Coughlin SS, Calle EE, Patel AV, Thun MJ. Predictors of pancreatic cancer mortality among a large cohort of United States adults. Cancer Causes Control. 2000;11(10):915–23.CrossRef
2.
go back to reference Ammann RW, Akovbiantz A, Largiader F, Schueler G. Course and outcome of chronic pancreatitis. Longitudinal study of a mixed medical-surgical series of 245 patients. Gastroenterology. 1984;86:820–8.PubMed Ammann RW, Akovbiantz A, Largiader F, Schueler G. Course and outcome of chronic pancreatitis. Longitudinal study of a mixed medical-surgical series of 245 patients. Gastroenterology. 1984;86:820–8.PubMed
3.
go back to reference Robles-Diaz G, Vargas F, Uscanga L, Fernandez-del Castillo C. Chronic pancreatitis in Mexico City. Pancreas. 1990;5(4):479–83.CrossRef Robles-Diaz G, Vargas F, Uscanga L, Fernandez-del Castillo C. Chronic pancreatitis in Mexico City. Pancreas. 1990;5(4):479–83.CrossRef
4.
go back to reference Luo AJ, Feng RH, Wang XW, Wang FZ. Older age at first birth is a risk factor for pancreatic cancer: a meta-analysis. Hepatobiliary Pancreat Dis Int. 2016;15(2):125–30.CrossRef Luo AJ, Feng RH, Wang XW, Wang FZ. Older age at first birth is a risk factor for pancreatic cancer: a meta-analysis. Hepatobiliary Pancreat Dis Int. 2016;15(2):125–30.CrossRef
5.
go back to reference Tsirambidis JV, Conwell DL, Zuccaro G. Chronic pancreatitis. MedGenMed : Medscape general medicine. 2003;5(1):17.PubMed Tsirambidis JV, Conwell DL, Zuccaro G. Chronic pancreatitis. MedGenMed : Medscape general medicine. 2003;5(1):17.PubMed
6.
go back to reference Tomita Y, Azuma K, Nonaka Y, Kamada Y, Tomoeda M, Kishida M, et al. Pancreatic fatty degeneration and fibrosis as predisposing factors for the development of pancreatic ductal adenocarcinoma. Pancreas. 2014;43(7):1032–41.CrossRef Tomita Y, Azuma K, Nonaka Y, Kamada Y, Tomoeda M, Kishida M, et al. Pancreatic fatty degeneration and fibrosis as predisposing factors for the development of pancreatic ductal adenocarcinoma. Pancreas. 2014;43(7):1032–41.CrossRef
7.
go back to reference Hata T, Kawamoto K, Eguchi H, Kamada Y, Takamatsu S, Maekawa T, et al. Fatty acid-mediated stromal reprogramming of pancreatic stellate cells induces inflammation and fibrosis that fuels pancreatic cancer. Pancreas. 2017;46(10):1259–66.CrossRef Hata T, Kawamoto K, Eguchi H, Kamada Y, Takamatsu S, Maekawa T, et al. Fatty acid-mediated stromal reprogramming of pancreatic stellate cells induces inflammation and fibrosis that fuels pancreatic cancer. Pancreas. 2017;46(10):1259–66.CrossRef
8.
go back to reference Tariq H, Nayudu S, Akella S, Glandt M, Chilimuri S. Non-alcoholic fatty pancreatic disease: a review of literature. Gastroenterology Res. 2016;9(6):87–91.CrossRef Tariq H, Nayudu S, Akella S, Glandt M, Chilimuri S. Non-alcoholic fatty pancreatic disease: a review of literature. Gastroenterology Res. 2016;9(6):87–91.CrossRef
9.
go back to reference Lesmana CRA, Gani RA, Lesmana LA. Non-alcoholic fatty pancreas disease as a risk factor for pancreatic cancer based on endoscopic ultrasound examination among pancreatic cancer patients: a single-center experience. JGH Open. 2018;2(1):4–7.CrossRef Lesmana CRA, Gani RA, Lesmana LA. Non-alcoholic fatty pancreas disease as a risk factor for pancreatic cancer based on endoscopic ultrasound examination among pancreatic cancer patients: a single-center experience. JGH Open. 2018;2(1):4–7.CrossRef
10.
go back to reference Lesmana CRA, Pakasi LS, Inggriani S, Aidawati ML, Lesmana LA. Prevalence of non-alcoholic fatty pancreas disease (NAFPD) and its risk factors among adult medical check-up patients in a private hospital: a large cross sectional study. BMC Gastroenterol. 2015;15:174.CrossRef Lesmana CRA, Pakasi LS, Inggriani S, Aidawati ML, Lesmana LA. Prevalence of non-alcoholic fatty pancreas disease (NAFPD) and its risk factors among adult medical check-up patients in a private hospital: a large cross sectional study. BMC Gastroenterol. 2015;15:174.CrossRef
11.
go back to reference Fraulob JC, Ogg-Diamantino R, Fernandes-Santos C, Aguila MB, Mandarim-de-Lacerda CA. A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr. 2010;46(3):212–23.CrossRef Fraulob JC, Ogg-Diamantino R, Fernandes-Santos C, Aguila MB, Mandarim-de-Lacerda CA. A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr. 2010;46(3):212–23.CrossRef
12.
go back to reference Etemad B, Whitcomb DC. Chronic pancreatitis: diagnosis, classification, and new genetic developments. Gastroenterology. 2001;120(3):682–707.CrossRef Etemad B, Whitcomb DC. Chronic pancreatitis: diagnosis, classification, and new genetic developments. Gastroenterology. 2001;120(3):682–707.CrossRef
13.
go back to reference Homma T, Harada H, Koizumi M. Diagnostic criteria for chronic pancreatitis by the Japan Pancreas Society. Pancreas. 1997;15(1):14–5.CrossRef Homma T, Harada H, Koizumi M. Diagnostic criteria for chronic pancreatitis by the Japan Pancreas Society. Pancreas. 1997;15(1):14–5.CrossRef
14.
go back to reference Shimosegawa T, Kataoka K, Kamisawa T, Miyakawa H, Ohara H, Ito T, et al. The revised Japanese clinical diagnostic criteria for chronic pancreatitis. J Gastroenterol. 2010;45(6):584–91.CrossRef Shimosegawa T, Kataoka K, Kamisawa T, Miyakawa H, Ohara H, Ito T, et al. The revised Japanese clinical diagnostic criteria for chronic pancreatitis. J Gastroenterol. 2010;45(6):584–91.CrossRef
15.
go back to reference Khoury T, Asombang AW, Berzin TM, Cohen J, Pleskow DK, Mizrahi M. The clinical implications of fatty pancreas: a concise review. Dig Dis Sci. 2017;62(10):2658–67.CrossRef Khoury T, Asombang AW, Berzin TM, Cohen J, Pleskow DK, Mizrahi M. The clinical implications of fatty pancreas: a concise review. Dig Dis Sci. 2017;62(10):2658–67.CrossRef
16.
go back to reference Lee JS, Kim SH, Jun DW, Han JH, Jang EC, Park JY, et al. Clinical implications of fatty pancreas: correlations between fatty pancreas and metabolic syndrome. World J Gastroenterol. 2009;15(15):1869–75.CrossRef Lee JS, Kim SH, Jun DW, Han JH, Jang EC, Park JY, et al. Clinical implications of fatty pancreas: correlations between fatty pancreas and metabolic syndrome. World J Gastroenterol. 2009;15(15):1869–75.CrossRef
17.
go back to reference Al-Haddad M, Khashab M, Zyromski N, Pungpapong S, Wallace MB, Scolapio J, et al. Risk factors for hyperechogenic pancreas on endoscopic ultrasound: a case-control study. Pancreas. 2009;38(6):672–5.CrossRef Al-Haddad M, Khashab M, Zyromski N, Pungpapong S, Wallace MB, Scolapio J, et al. Risk factors for hyperechogenic pancreas on endoscopic ultrasound: a case-control study. Pancreas. 2009;38(6):672–5.CrossRef
18.
go back to reference Hung CS, Tseng PH, Tu CH, Chen CC, Liao WC, Lee YC, et al. Increased pancreatic echogenicity with US: relationship to glycemic progression and incident diabetes. Radiology. 2018;287(3):853–63.CrossRef Hung CS, Tseng PH, Tu CH, Chen CC, Liao WC, Lee YC, et al. Increased pancreatic echogenicity with US: relationship to glycemic progression and incident diabetes. Radiology. 2018;287(3):853–63.CrossRef
19.
go back to reference The Ministry of Health. Labour and welfare in Japan, overview of dietary reference intakes for Japanese; 2015. p. 1995. The Ministry of Health. Labour and welfare in Japan, overview of dietary reference intakes for Japanese; 2015. p. 1995.
20.
go back to reference Durbec JP, Sarles H. Multicenter survey of the etiology of pancreatic diseases. Relationship between the relative risk of developing chronic pancreatitis and alcohol, protein and lipid consumption. Digestion. 1978;18(5–6):337–50.CrossRef Durbec JP, Sarles H. Multicenter survey of the etiology of pancreatic diseases. Relationship between the relative risk of developing chronic pancreatitis and alcohol, protein and lipid consumption. Digestion. 1978;18(5–6):337–50.CrossRef
21.
go back to reference Truett J, Cornfield J, Kannel W. A multivariate analysis of the risk of coronary heart disease in Framingham. J Chronic Dis. 1967;20(7):511–24.CrossRef Truett J, Cornfield J, Kannel W. A multivariate analysis of the risk of coronary heart disease in Framingham. J Chronic Dis. 1967;20(7):511–24.CrossRef
22.
go back to reference McNutt LA, Wu C, Xue X, Hafner JP. Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am J Epidemiol. 2003;157(10):940–3.CrossRef McNutt LA, Wu C, Xue X, Hafner JP. Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am J Epidemiol. 2003;157(10):940–3.CrossRef
23.
go back to reference Belsley DA, Welsch RE, Kuh E. Regression diagnostics. Identifying influential data and sources of collinearity. New York: Wiley; 1980.CrossRef Belsley DA, Welsch RE, Kuh E. Regression diagnostics. Identifying influential data and sources of collinearity. New York: Wiley; 1980.CrossRef
24.
go back to reference Lesaffre E, Marx BD. Collinearity in generalized linear regression. Commun Stat Theory Methods. 1993;22(7):1933.CrossRef Lesaffre E, Marx BD. Collinearity in generalized linear regression. Commun Stat Theory Methods. 1993;22(7):1933.CrossRef
25.
go back to reference Muller KE. Regression and ANOVA: an integrated approach using SAS software / Keith E. Muller, Bethel A. Fetterman. Cary: SAS Institute, John Wiley & Sons; 2012. Muller KE. Regression and ANOVA: an integrated approach using SAS software / Keith E. Muller, Bethel A. Fetterman. Cary: SAS Institute, John Wiley & Sons; 2012.
26.
go back to reference Segerstedt B, Nyquist H. On the conditioning problem in generalized linear models. J Appl Stat. 1992;19(4):513–26.CrossRef Segerstedt B, Nyquist H. On the conditioning problem in generalized linear models. J Appl Stat. 1992;19(4):513–26.CrossRef
27.
go back to reference Blizzard L, Hosmer W. Parameter estimation and goodness-of-fit in log binomial regression. Biom J. 2006;48(1):5–22.CrossRef Blizzard L, Hosmer W. Parameter estimation and goodness-of-fit in log binomial regression. Biom J. 2006;48(1):5–22.CrossRef
28.
go back to reference Localio AR, Margolis DJ, Berlin JA. Relative risks and confidence intervals were easily computed indirectly from multivariable logistic regression. J Clin Epidemiol. 2007;60(9):874–82.CrossRef Localio AR, Margolis DJ, Berlin JA. Relative risks and confidence intervals were easily computed indirectly from multivariable logistic regression. J Clin Epidemiol. 2007;60(9):874–82.CrossRef
29.
go back to reference Robertson O. The islands of Langerhans in 19 cases of obesity. J Pathol Bacteriol. 1933;37(3):473–81.CrossRef Robertson O. The islands of Langerhans in 19 cases of obesity. J Pathol Bacteriol. 1933;37(3):473–81.CrossRef
30.
go back to reference Choi CW, Kim GH, Kang DH, Kim HW, Kim DU, Heo J, et al. Associated factors for a hyperechogenic pancreas on endoscopic ultrasound. World J Gastroenterol. 2010;16(34):4329–34.CrossRef Choi CW, Kim GH, Kang DH, Kim HW, Kim DU, Heo J, et al. Associated factors for a hyperechogenic pancreas on endoscopic ultrasound. World J Gastroenterol. 2010;16(34):4329–34.CrossRef
31.
go back to reference Heni M, Machann J, Staiger H, Schwenzer NF, Peter A, Schick F, et al. Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study. Diabetes Metab Res Rev. 2010;26(3):200–5.CrossRef Heni M, Machann J, Staiger H, Schwenzer NF, Peter A, Schick F, et al. Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study. Diabetes Metab Res Rev. 2010;26(3):200–5.CrossRef
32.
go back to reference Sepe PS, Ohri A, Sanaka S, Berzin TM, Sekhon S, Bennett G, et al. A prospective evaluation of fatty pancreas by using EUS. Gastrointest Endosc. 2011;73(5):987–93.CrossRef Sepe PS, Ohri A, Sanaka S, Berzin TM, Sekhon S, Bennett G, et al. A prospective evaluation of fatty pancreas by using EUS. Gastrointest Endosc. 2011;73(5):987–93.CrossRef
33.
go back to reference Wu WC, Wang CY. Association between non-alcoholic fatty pancreatic disease (nafpd) and the metabolic syndrome: case–control retrospective study. Cardiovasc Diabetol. 2013;12:77.CrossRef Wu WC, Wang CY. Association between non-alcoholic fatty pancreatic disease (nafpd) and the metabolic syndrome: case–control retrospective study. Cardiovasc Diabetol. 2013;12:77.CrossRef
34.
go back to reference Singh RG, Yoon HD, Poppitt SD, Plank LD, Petrov MS. Ectopic fat accumulation in the pancreas and its biomarkers: a systematic review and meta-analysis. Diabetes Metab Res Rev [Internet]. 2017;33(8):e2918.CrossRef Singh RG, Yoon HD, Poppitt SD, Plank LD, Petrov MS. Ectopic fat accumulation in the pancreas and its biomarkers: a systematic review and meta-analysis. Diabetes Metab Res Rev [Internet]. 2017;33(8):e2918.CrossRef
35.
go back to reference Wang CY, Ou HY, Chen MF, Chang TC, Chang CJ. Enigmatic ectopic fat: prevalence of nonalcoholic fatty pancreas disease and its associated factors in a Chinese population. J Am Heart Assoc: Cardiovascular and Cerebrovascular Disease. 2014;3(1):e000297.CrossRef Wang CY, Ou HY, Chen MF, Chang TC, Chang CJ. Enigmatic ectopic fat: prevalence of nonalcoholic fatty pancreas disease and its associated factors in a Chinese population. J Am Heart Assoc: Cardiovascular and Cerebrovascular Disease. 2014;3(1):e000297.CrossRef
36.
go back to reference Lee CMY, Huxley RR, Wildman RP, Woodward M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. J Clin Epidemiol. 2008;61(7):646–53.CrossRef Lee CMY, Huxley RR, Wildman RP, Woodward M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. J Clin Epidemiol. 2008;61(7):646–53.CrossRef
37.
go back to reference Ye X, Lu G, Huai J, Ding J. Impact of smoking on the risk of pancreatitis: a systematic review and meta-analysis. PLoS One. 2015;10(4):e0124075.CrossRef Ye X, Lu G, Huai J, Ding J. Impact of smoking on the risk of pancreatitis: a systematic review and meta-analysis. PLoS One. 2015;10(4):e0124075.CrossRef
38.
go back to reference Tolstrup JS, Kristiansen L, Becker U, Gronbaek M. Smoking and risk of acute and chronic pancreatitis among women and men: a population-based cohort study. Arch Intern Med. 2009;169(6):603–9.CrossRef Tolstrup JS, Kristiansen L, Becker U, Gronbaek M. Smoking and risk of acute and chronic pancreatitis among women and men: a population-based cohort study. Arch Intern Med. 2009;169(6):603–9.CrossRef
39.
go back to reference Bourliere M, Barthet M, Berthezene P, Durbec JP, Sarles H. Is tobacco a risk factor for chronic pancreatitis and alcoholic cirrhosis? Gut. 1991;32(11):1392–5.CrossRef Bourliere M, Barthet M, Berthezene P, Durbec JP, Sarles H. Is tobacco a risk factor for chronic pancreatitis and alcoholic cirrhosis? Gut. 1991;32(11):1392–5.CrossRef
40.
go back to reference Imoto M, DiMagno EP. Cigarette smoking increases the risk of pancreatic calcification in late-onset but not early-onset idiopathic chronic pancreatitis. Pancreas. 2000;21(2):115–9.CrossRef Imoto M, DiMagno EP. Cigarette smoking increases the risk of pancreatic calcification in late-onset but not early-onset idiopathic chronic pancreatitis. Pancreas. 2000;21(2):115–9.CrossRef
41.
go back to reference Nyboe Andersen B, Thorsgaard Pedersen N, Scheel J, Worning H. Incidence of alcoholic chronic pancreatitis in Copenhagen. Scand J Gastroenterol. 1982;17(2):247–52.CrossRef Nyboe Andersen B, Thorsgaard Pedersen N, Scheel J, Worning H. Incidence of alcoholic chronic pancreatitis in Copenhagen. Scand J Gastroenterol. 1982;17(2):247–52.CrossRef
42.
go back to reference Zhou J, Li M-L, Zhang D-D, Lin H-Y, Dai X-H, Sun X-L, et al. The correlation between pancreatic steatosis and metabolic syndrome in a Chinese population. Pancreatology. 2016;16(4):578–83.CrossRef Zhou J, Li M-L, Zhang D-D, Lin H-Y, Dai X-H, Sun X-L, et al. The correlation between pancreatic steatosis and metabolic syndrome in a Chinese population. Pancreatology. 2016;16(4):578–83.CrossRef
43.
go back to reference Hori M, Takahashi M, Hiraoka N, Yamaji T, Mutoh M, Ishigamori R, et al. Association of pancreatic fatty infiltration with pancreatic ductal adenocarcinoma. Clin Transl Gastroenterol. 2014;5(3):e53.CrossRef Hori M, Takahashi M, Hiraoka N, Yamaji T, Mutoh M, Ishigamori R, et al. Association of pancreatic fatty infiltration with pancreatic ductal adenocarcinoma. Clin Transl Gastroenterol. 2014;5(3):e53.CrossRef
44.
go back to reference Zhang X, Cui Y, Fang L, Li F. Chronic high-fat diets induce oxide injuries and fibrogenesis of pancreatic cells in rats. Pancreas. 2008;37(3):e31–8.CrossRef Zhang X, Cui Y, Fang L, Li F. Chronic high-fat diets induce oxide injuries and fibrogenesis of pancreatic cells in rats. Pancreas. 2008;37(3):e31–8.CrossRef
45.
go back to reference Patel AV, Rodriguez C, Bernstein L, Chao A, Thun MJ, Calle EE. Obesity, recreational physical activity, and risk of pancreatic cancer in a large U.S. Cohort. Cancer Epidemiol Biomarkers Prev : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2005;14(2):459–66.CrossRef Patel AV, Rodriguez C, Bernstein L, Chao A, Thun MJ, Calle EE. Obesity, recreational physical activity, and risk of pancreatic cancer in a large U.S. Cohort. Cancer Epidemiol Biomarkers Prev : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2005;14(2):459–66.CrossRef
46.
go back to reference Pinnick KE, Collins SC, Londos C, Gauguier D, Clark A, Fielding BA. Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition. Obesity. 2008;16(3):522–30.CrossRef Pinnick KE, Collins SC, Londos C, Gauguier D, Clark A, Fielding BA. Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition. Obesity. 2008;16(3):522–30.CrossRef
47.
go back to reference Kristiansen L, Gronbaek M, Becker U, Tolstrup JS. Risk of pancreatitis according to alcohol drinking habits: a population-based cohort study. Am J Epidemiol. 2008;168(8):932–7.CrossRef Kristiansen L, Gronbaek M, Becker U, Tolstrup JS. Risk of pancreatitis according to alcohol drinking habits: a population-based cohort study. Am J Epidemiol. 2008;168(8):932–7.CrossRef
48.
go back to reference Finucane MM, Stevens GA, Cowan M, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet (London, England). 2011;377(9765):557–67.CrossRef Finucane MM, Stevens GA, Cowan M, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet (London, England). 2011;377(9765):557–67.CrossRef
49.
go back to reference Hirota M, Shimosegawa T, Masamune A, Kikuta K, Kume K, Hamada S, et al. The sixth nationwide epidemiological survey of chronic pancreatitis in Japan. Pancreatology. 2012;12:79–84.CrossRef Hirota M, Shimosegawa T, Masamune A, Kikuta K, Kume K, Hamada S, et al. The sixth nationwide epidemiological survey of chronic pancreatitis in Japan. Pancreatology. 2012;12:79–84.CrossRef
50.
go back to reference Ministry of Health, Labor and Welfare, National Health and Nutrition Survey, 2017. Ministry of Health, Labor and Welfare, National Health and Nutrition Survey, 2017.
51.
go back to reference Lankisch PG, Assmus C, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic diseases in Lüneburg county. A study in a defined German population. Pancreatology. 2002;2:469–77.CrossRef Lankisch PG, Assmus C, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic diseases in Lüneburg county. A study in a defined German population. Pancreatology. 2002;2:469–77.CrossRef
Metadata
Title
Impact of fatty pancreas and lifestyle on the development of subclinical chronic pancreatitis in healthy people undergoing a medical checkup
Authors
Makoto Fujii
Yuko Ohno
Makoto Yamada
Yoshihiro Kamada
Eiji Miyoshi
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Environmental Health and Preventive Medicine / Issue 1/2019
Print ISSN: 1342-078X
Electronic ISSN: 1347-4715
DOI
https://doi.org/10.1186/s12199-019-0763-2

Other articles of this Issue 1/2019

Environmental Health and Preventive Medicine 1/2019 Go to the issue