Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2017

Open Access 01-12-2017 | Research

Saccade adaptation deficits in developmental dyslexia suggest disruption of cerebellar-dependent learning

Authors: Edward G. Freedman, Sophie Molholm, Michael J. Gray, Daniel Belyusar, John J. Foxe

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2017

Login to get access

Abstract

Background

Estimates of the prevalence of developmental dyslexia in the general population range from 5% to as many as 10%. Symptoms include reading, writing, and language deficits, but the severity and mix of symptoms can vary widely across individuals. In at least some people with dyslexia, the structure and function of the cerebellum may be disordered. Saccadic adaptation requires proper function of the cerebellum and brainstem circuitry and might provide a simple, noninvasive assay for early identification and sub-phenotyping in populations of children who may have dyslexia.

Methods

Children between the ages of 7 and 15 served as participants in this experiment. Fifteen had been diagnosed with developmental dyslexia and an additional 15 were typically developing children. Five of the participants diagnosed with dyslexia were also diagnosed with an attention deficit hyperactivity disroder and were excluded from further analyses. Participants performed in a saccadic adaptation task in which visual errors were introduced at the end of saccadic eye movements. The amplitudes of primary saccades were measured and plotted as a function of the order in which they occurred. Lines of best fit were calculated. Significant changes in the amplitude of primary saccades were identified.

Results

12/15 typically developing children had significant adaptation of saccade amplitude in this experiment. 1/10 participants with dyslexia appropriately altered saccade amplitudes to reduce the visual error introduced in the saccade adaptation paradigm.

Conclusions

Proper cerebellar function is required for saccadic adaptation, but in at least some children with dyslexia, cerebellar structure and function may be disordered. Consistent with this hypothesis, the data presented in this report clearly illustrate a difference in the ability of children with dyslexia to adapt saccade amplitudes in response to imposed visual errors. Saccadic adaptation might provide a noninvasive assay for early identification of dyslexia. Future work will determine whether reduced saccadic adaptation is pervasive in dyslexia or whether this identifies a sub-phenotype within the larger population of people identified with reading and language deficits.
Literature
2.
go back to reference Nicolson RI, Fawcett AJ, Berry EL, Jenkins IH, Dean P, Brooks DJ. Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet. 1999;353(9165):1662–7.PubMedCrossRef Nicolson RI, Fawcett AJ, Berry EL, Jenkins IH, Dean P, Brooks DJ. Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet. 1999;353(9165):1662–7.PubMedCrossRef
3.
go back to reference Nicolson RI, Fawcett AJ, Dean P. A TINS debate—hindbrain versus the forebrain: a case for cerebellar deficit in developmental dyslexia. Trends Neurosci. 2001;24(9):508–11.PubMedCrossRef Nicolson RI, Fawcett AJ, Dean P. A TINS debate—hindbrain versus the forebrain: a case for cerebellar deficit in developmental dyslexia. Trends Neurosci. 2001;24(9):508–11.PubMedCrossRef
4.
go back to reference Hahn N, Foxe JJ, Molholm S. Impairments of multisensory integration and cross-sensory learning as pathways to dyslexia. Neurosci Biobehav Rev. 2014;47:384–92.PubMedCrossRef Hahn N, Foxe JJ, Molholm S. Impairments of multisensory integration and cross-sensory learning as pathways to dyslexia. Neurosci Biobehav Rev. 2014;47:384–92.PubMedCrossRef
5.
6.
go back to reference Nicolson RI, Fawcett AJ. Comparison of deficits in cognitive and motor skills among children with dyslexia. Ann Dyslexia. 1994;44(1):147–64.PubMedCrossRef Nicolson RI, Fawcett AJ. Comparison of deficits in cognitive and motor skills among children with dyslexia. Ann Dyslexia. 1994;44(1):147–64.PubMedCrossRef
7.
go back to reference Nicolson RI, Fawcett AJ. Dyslexia, dysgraphia, procedural learning and the cerebellum. Cortex. 2011;47(1):117–27.PubMedCrossRef Nicolson RI, Fawcett AJ. Dyslexia, dysgraphia, procedural learning and the cerebellum. Cortex. 2011;47(1):117–27.PubMedCrossRef
8.
go back to reference Biscaldi M, Fischer B, Hartnegg K. Voluntary saccadic control in dyslexia. Perception. 2000;29(5):509–21.PubMedCrossRef Biscaldi M, Fischer B, Hartnegg K. Voluntary saccadic control in dyslexia. Perception. 2000;29(5):509–21.PubMedCrossRef
9.
go back to reference Biscaldi M, Gezeck S, Stuhr V. Poor saccadic control correlates with dyslexia. Neuropsychologia. 1998;36(11):1189–202.PubMedCrossRef Biscaldi M, Gezeck S, Stuhr V. Poor saccadic control correlates with dyslexia. Neuropsychologia. 1998;36(11):1189–202.PubMedCrossRef
10.
go back to reference Fischer B, Weber H, Biscaldi M. The time of secondary saccades to primary targets. Exp Brain Res. 1993;97:356–60.PubMedCrossRef Fischer B, Weber H, Biscaldi M. The time of secondary saccades to primary targets. Exp Brain Res. 1993;97:356–60.PubMedCrossRef
11.
go back to reference Bucci MP, Bremond-Gignac D, Kapoula Z. Latency of saccades and vergence eye movements in dyslexic children. Exp Brain Res. 2008;188(1):1–12.PubMedCrossRef Bucci MP, Bremond-Gignac D, Kapoula Z. Latency of saccades and vergence eye movements in dyslexic children. Exp Brain Res. 2008;188(1):1–12.PubMedCrossRef
12.
13.
go back to reference Ram-Tsur R, Faust M, Caspi A, Gordon C, Zivotofsky A. Evidence for ocular motor deficits in developmental dyslexia: application of the double-step paradigm. Invest Ophthalmol Vis Sci. 2006;47(10):4401–9.PubMedCrossRef Ram-Tsur R, Faust M, Caspi A, Gordon C, Zivotofsky A. Evidence for ocular motor deficits in developmental dyslexia: application of the double-step paradigm. Invest Ophthalmol Vis Sci. 2006;47(10):4401–9.PubMedCrossRef
14.
go back to reference McConkie GW, Kerr PW, Reddix MD, Zola D. Eye movement control during reading: I. The location of initial eye fixations on words. Vis Res. 1988;28(10):1107–18.PubMedCrossRef McConkie GW, Kerr PW, Reddix MD, Zola D. Eye movement control during reading: I. The location of initial eye fixations on words. Vis Res. 1988;28(10):1107–18.PubMedCrossRef
15.
16.
go back to reference Wallman J, Fuchs AF. Saccadic gain modification: visual error drives motor adaptation. J Neurophysiol. 1998;80(5):2405–16.PubMed Wallman J, Fuchs AF. Saccadic gain modification: visual error drives motor adaptation. J Neurophysiol. 1998;80(5):2405–16.PubMed
17.
go back to reference Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.PubMedCrossRef Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.PubMedCrossRef
18.
go back to reference Optican LM, Robinson DA. Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol. 1980;44(6):1058–76.PubMed Optican LM, Robinson DA. Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol. 1980;44(6):1058–76.PubMed
19.
go back to reference Optican LM, Zee DS, Chu FC. Adaptive response to ocular muscle weakness in human pursuit and saccadic eye movements. J Neurophysiol. 1985;54:110–22.PubMed Optican LM, Zee DS, Chu FC. Adaptive response to ocular muscle weakness in human pursuit and saccadic eye movements. J Neurophysiol. 1985;54:110–22.PubMed
20.
go back to reference McLaughlin SC. Parametric adjustment in saccadic eye movements. Percept Psychophys. 1967;2:359–62.CrossRef McLaughlin SC. Parametric adjustment in saccadic eye movements. Percept Psychophys. 1967;2:359–62.CrossRef
21.
go back to reference Miller J, Anstis T, Templeton W. Saccadic plasticity: parametric adaptive control of retinal feedback. J Exp Psychol Hum Percept Perform. 1981;7:356–66.PubMedCrossRef Miller J, Anstis T, Templeton W. Saccadic plasticity: parametric adaptive control of retinal feedback. J Exp Psychol Hum Percept Perform. 1981;7:356–66.PubMedCrossRef
22.
go back to reference Deubel H, Wolf W, Hauske G. Adaptive gain control of saccadic eye movements. Hum Neurobiol. 1986;5(4):245–53.PubMed Deubel H, Wolf W, Hauske G. Adaptive gain control of saccadic eye movements. Hum Neurobiol. 1986;5(4):245–53.PubMed
23.
go back to reference Frens MA, Van Opstal AJ. Monkey superior colliculus activity during short-term saccadic adaptation. Brain Res Bull. 1997;43(5):473–83.PubMedCrossRef Frens MA, Van Opstal AJ. Monkey superior colliculus activity during short-term saccadic adaptation. Brain Res Bull. 1997;43(5):473–83.PubMedCrossRef
24.
go back to reference Phillips JO, Fuchs AF, Ling L, Iwamoto Y, Votaw S. Gain adaptation of eye and head movement components of simian gaze shifts. J Neurophysiol. 1997;78(5):2817–21.PubMed Phillips JO, Fuchs AF, Ling L, Iwamoto Y, Votaw S. Gain adaptation of eye and head movement components of simian gaze shifts. J Neurophysiol. 1997;78(5):2817–21.PubMed
25.
go back to reference Alahyane N, Pelisson D. Eye position specificity of saccadic adaptation. Invest Ophthalmol Vis Sci. 2004;45(1):123–30.PubMedCrossRef Alahyane N, Pelisson D. Eye position specificity of saccadic adaptation. Invest Ophthalmol Vis Sci. 2004;45(1):123–30.PubMedCrossRef
26.
go back to reference Alahyane N, Pelisson D. Long-lasting modifications of saccadic eye movements following adaptation induced in the double-step target paradigm. Learn Mem. 2005;12(4):433–43.PubMedPubMedCentralCrossRef Alahyane N, Pelisson D. Long-lasting modifications of saccadic eye movements following adaptation induced in the double-step target paradigm. Learn Mem. 2005;12(4):433–43.PubMedPubMedCentralCrossRef
27.
go back to reference Cecala AL, Freedman EG. Amplitude changes in response to target displacements during human eye-head movements. Vis Res. 2008;48(2):149–66.PubMedCrossRef Cecala AL, Freedman EG. Amplitude changes in response to target displacements during human eye-head movements. Vis Res. 2008;48(2):149–66.PubMedCrossRef
28.
go back to reference Ethier V, Zee DS, Shadmehr R. Changes in control of saccades during gain adaptation. J Neurosci %R 101523/JNEUROSCI3470–082008. 2008;28(51):13929–37.CrossRef Ethier V, Zee DS, Shadmehr R. Changes in control of saccades during gain adaptation. J Neurosci %R 101523/JNEUROSCI3470–082008. 2008;28(51):13929–37.CrossRef
29.
go back to reference Cecala AL, Freedman EG. Head-unrestrained gaze adaptation in the rhesus macaque. J Neurophysiol. 2009;101(1):164–83.PubMedCrossRef Cecala AL, Freedman EG. Head-unrestrained gaze adaptation in the rhesus macaque. J Neurophysiol. 2009;101(1):164–83.PubMedCrossRef
30.
go back to reference Hopp JJ, Fuchs AF. Amplitude adaptation occurs where a saccade is represented as a vector and not as its components. Vis Res. 2006;46(19):3121–8.PubMedCrossRef Hopp JJ, Fuchs AF. Amplitude adaptation occurs where a saccade is represented as a vector and not as its components. Vis Res. 2006;46(19):3121–8.PubMedCrossRef
31.
go back to reference Straube A, Deubel H. Rapid gain adaptation affects the dynamics of saccadic eye movements in humans. Vis Res. 1995;35(23–24):3451–8.PubMedCrossRef Straube A, Deubel H. Rapid gain adaptation affects the dynamics of saccadic eye movements in humans. Vis Res. 1995;35(23–24):3451–8.PubMedCrossRef
32.
go back to reference Noto CT, Watanabe S, Fuchs AF. Characteristics of simian adaptation fields produced by behavioral changes in saccade size and direction. J Neurophysiol. 1999;81:2798–813.PubMed Noto CT, Watanabe S, Fuchs AF. Characteristics of simian adaptation fields produced by behavioral changes in saccade size and direction. J Neurophysiol. 1999;81:2798–813.PubMed
33.
go back to reference Straube A, Fuchs AF, Usher S, Robinson FR. Characteristics of saccadic gain adaptation in rhesus macaques. J Neurophysiol. 1997;77(2):874–95.PubMed Straube A, Fuchs AF, Usher S, Robinson FR. Characteristics of saccadic gain adaptation in rhesus macaques. J Neurophysiol. 1997;77(2):874–95.PubMed
34.
go back to reference Hopp JJ, Fuchs AF. The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog Neurobiol. 2004;72(1):27–53.PubMedCrossRef Hopp JJ, Fuchs AF. The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog Neurobiol. 2004;72(1):27–53.PubMedCrossRef
35.
go back to reference Golla H, Tziridis K, Haarmeier T, Catz N, Barash S, Thier P. Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. Eur J Neurosci. 2008;27(1):132–44.PubMedCrossRef Golla H, Tziridis K, Haarmeier T, Catz N, Barash S, Thier P. Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. Eur J Neurosci. 2008;27(1):132–44.PubMedCrossRef
36.
go back to reference Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19:10931–9.PubMed Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19:10931–9.PubMed
37.
go back to reference Panouilleres MT, Miall RC, Jenkinson N. The role of the posterior cerebellum in saccadic adaptation: a transcranial direct current stimulation study. J Neurosci. 2015;35(14):5471–9.PubMedPubMedCentralCrossRef Panouilleres MT, Miall RC, Jenkinson N. The role of the posterior cerebellum in saccadic adaptation: a transcranial direct current stimulation study. J Neurosci. 2015;35(14):5471–9.PubMedPubMedCentralCrossRef
38.
39.
go back to reference Bernard JA, Seidler RD. Cerebellar contributions to visuomotor adaptation and motor sequence learning: an ALE meta-analysis. Front Hum Neurosci. 2013;7:27.PubMedPubMedCentralCrossRef Bernard JA, Seidler RD. Cerebellar contributions to visuomotor adaptation and motor sequence learning: an ALE meta-analysis. Front Hum Neurosci. 2013;7:27.PubMedPubMedCentralCrossRef
40.
go back to reference Straube A, Deubel H, Ditterich J, Eggert T. Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology. 2001;57(11):2105–8.PubMedCrossRef Straube A, Deubel H, Ditterich J, Eggert T. Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology. 2001;57(11):2105–8.PubMedCrossRef
41.
go back to reference Avila E, van der Geest JN, Kengne Kamga S, Verhage MC, Donchin O, Frens MA. Cerebellar transcranial direct current stimulation effects on saccade adaptation. Neural Plast. 2015;2015:968970.PubMedPubMedCentralCrossRef Avila E, van der Geest JN, Kengne Kamga S, Verhage MC, Donchin O, Frens MA. Cerebellar transcranial direct current stimulation effects on saccade adaptation. Neural Plast. 2015;2015:968970.PubMedPubMedCentralCrossRef
42.
go back to reference Eckert M. Neuroanatomical markers for dyslexia: a review of dyslexia structural imaging studies. Neuroscientist. 2004;10(4):362–71.PubMedCrossRef Eckert M. Neuroanatomical markers for dyslexia: a review of dyslexia structural imaging studies. Neuroscientist. 2004;10(4):362–71.PubMedCrossRef
43.
go back to reference Brambati SM, Termine C, Ruffino M, Stella G, Fazio F, Cappa SF, Perani D. Regional reductions of gray matter volume in familial dyslexia. Neurology. 2004;63(4):742–5.PubMedCrossRef Brambati SM, Termine C, Ruffino M, Stella G, Fazio F, Cappa SF, Perani D. Regional reductions of gray matter volume in familial dyslexia. Neurology. 2004;63(4):742–5.PubMedCrossRef
44.
45.
go back to reference Biotteau M, Peran P, Vayssiere N, Tallet J, Albaret JM, Chaix Y. Neural changes associated to procedural learning and automatization process in developmental coordination disorder and/or developmental dyslexia. Eur J Paediatr Neurol. 2017;21(2):286–99.PubMedCrossRef Biotteau M, Peran P, Vayssiere N, Tallet J, Albaret JM, Chaix Y. Neural changes associated to procedural learning and automatization process in developmental coordination disorder and/or developmental dyslexia. Eur J Paediatr Neurol. 2017;21(2):286–99.PubMedCrossRef
46.
go back to reference Richlan F, Kronbichler M, Wimmer H. Functional abnormalities in the dyslexic brain: a quantitative meta-analysis of neuroimaging studies. Hum Brain Mapp. 2009;30(10):3299–308.PubMedPubMedCentralCrossRef Richlan F, Kronbichler M, Wimmer H. Functional abnormalities in the dyslexic brain: a quantitative meta-analysis of neuroimaging studies. Hum Brain Mapp. 2009;30(10):3299–308.PubMedPubMedCentralCrossRef
47.
go back to reference Brown WE, Eliez S, Menon V, Rumsey JM, White CD, Reiss AL. Preliminary evidence of widespread morphological variations of the brain in dyslexia. Neurology. 2001;56(6):781–3.PubMedCrossRef Brown WE, Eliez S, Menon V, Rumsey JM, White CD, Reiss AL. Preliminary evidence of widespread morphological variations of the brain in dyslexia. Neurology. 2001;56(6):781–3.PubMedCrossRef
48.
go back to reference Rae C, Harasty JA, Dzendrowskyj TE, Talcott JB, Simpson JM, Blamire AM, Dixon RM, Lee MA, Thompson CH, Styles P, et al. Cerebellar morphology in developmental dyslexia. Neuropsychologia. 2002;40(8):1285–92.PubMedCrossRef Rae C, Harasty JA, Dzendrowskyj TE, Talcott JB, Simpson JM, Blamire AM, Dixon RM, Lee MA, Thompson CH, Styles P, et al. Cerebellar morphology in developmental dyslexia. Neuropsychologia. 2002;40(8):1285–92.PubMedCrossRef
49.
go back to reference Finch AJ, Nicolson RI, Fawcett AJ. Evidence for a neuroanatomical difference within the olivo-cerebellar pathway of adults with dyslexia. Cortex. 2002;38(4):529–39.PubMedCrossRef Finch AJ, Nicolson RI, Fawcett AJ. Evidence for a neuroanatomical difference within the olivo-cerebellar pathway of adults with dyslexia. Cortex. 2002;38(4):529–39.PubMedCrossRef
50.
go back to reference Eckert MA, Leonard CM, Richards TL, Aylward EH, Thomson J, Berninger VW. Anatomical correlates of dyslexia: frontal and cerebellar findings. Brain. 2003;126(Pt 2):482–94.PubMedCrossRef Eckert MA, Leonard CM, Richards TL, Aylward EH, Thomson J, Berninger VW. Anatomical correlates of dyslexia: frontal and cerebellar findings. Brain. 2003;126(Pt 2):482–94.PubMedCrossRef
51.
go back to reference Menghini D, Hagberg GE, Caltagirone C, Petrosini L, Vicari S. Implicit learning deficits in dyslexic adults: an fMRI study. NeuroImage. 2006;33(4):1218–26.PubMedCrossRef Menghini D, Hagberg GE, Caltagirone C, Petrosini L, Vicari S. Implicit learning deficits in dyslexic adults: an fMRI study. NeuroImage. 2006;33(4):1218–26.PubMedCrossRef
52.
go back to reference Nicolson RI, Daum I, Schugens MM, Fawcett AJ, Schulz A. Eyeblink conditioning indicates cerebellar abnormality in dyslexia. Exp Brain Res. 2002;143(1):42–50.PubMedCrossRef Nicolson RI, Daum I, Schugens MM, Fawcett AJ, Schulz A. Eyeblink conditioning indicates cerebellar abnormality in dyslexia. Exp Brain Res. 2002;143(1):42–50.PubMedCrossRef
53.
go back to reference Nicolson RI, Fawcett AJ. Developmental dyslexia: the role of the cerebellum. Dyslexia Int J Res Pract. 1999;5:155–77. Nicolson RI, Fawcett AJ. Developmental dyslexia: the role of the cerebellum. Dyslexia Int J Res Pract. 1999;5:155–77.
54.
go back to reference Hopp JJ, Fuchs AF. Investigating the site of human saccadic adaptation with express and targeting saccades. Exp Brain Res. 2002;144:538–48.PubMedCrossRef Hopp JJ, Fuchs AF. Investigating the site of human saccadic adaptation with express and targeting saccades. Exp Brain Res. 2002;144:538–48.PubMedCrossRef
55.
go back to reference Gaymard B, Rivaud-Pechoux S, Yelnik J, Pidoux B, Ploner CJ. Involvement of the cerebellar thalamus in human saccade adaptation. Eur J Neurosci. 2001;14(3):554–60.PubMedCrossRef Gaymard B, Rivaud-Pechoux S, Yelnik J, Pidoux B, Ploner CJ. Involvement of the cerebellar thalamus in human saccade adaptation. Eur J Neurosci. 2001;14(3):554–60.PubMedCrossRef
56.
go back to reference Miall RC, Weir DJ, Stein JF. Visuo-motor tracking during reversible inactivation of the cerebellum. Exp Brain Res. 1987;65(2):455–64.PubMedCrossRef Miall RC, Weir DJ, Stein JF. Visuo-motor tracking during reversible inactivation of the cerebellum. Exp Brain Res. 1987;65(2):455–64.PubMedCrossRef
57.
go back to reference Salman MS, Sharpe JA, Eizenman M, Lillakas L, To T, Westall C, Dennis M, Steinbach MJ. Saccadic adaptation in children. J Child Neurol. 2006;21(12):1025–31.PubMedCrossRef Salman MS, Sharpe JA, Eizenman M, Lillakas L, To T, Westall C, Dennis M, Steinbach MJ. Saccadic adaptation in children. J Child Neurol. 2006;21(12):1025–31.PubMedCrossRef
58.
go back to reference Robinson FR, Noto CT, Bevans SE. Effect of visual error size on saccade adaptation in monkey. J Neurophysiol. 2003;90(2):1235–44.PubMedCrossRef Robinson FR, Noto CT, Bevans SE. Effect of visual error size on saccade adaptation in monkey. J Neurophysiol. 2003;90(2):1235–44.PubMedCrossRef
59.
go back to reference Scudder CA, Batourina EY, Tunder GS. Comparison of two methods of producing adaptation of saccade size and implications for the site of plasticity. J Neurophysiol. 1998;79(2):704–15.PubMed Scudder CA, Batourina EY, Tunder GS. Comparison of two methods of producing adaptation of saccade size and implications for the site of plasticity. J Neurophysiol. 1998;79(2):704–15.PubMed
60.
go back to reference Straube A, Fuchs AF, Usher S, Robinson FR. Characteristics of saccadic gain adaptation in rhesus macaques. J Neurophysiol. 1997;77:874–95.PubMed Straube A, Fuchs AF, Usher S, Robinson FR. Characteristics of saccadic gain adaptation in rhesus macaques. J Neurophysiol. 1997;77:874–95.PubMed
61.
go back to reference Frens MA, Opstal AJ. Monkey superior colliculus activity during short-term saccadic adaptation. Brain Res Bull. 1997;43(5):473–83.PubMedCrossRef Frens MA, Opstal AJ. Monkey superior colliculus activity during short-term saccadic adaptation. Brain Res Bull. 1997;43(5):473–83.PubMedCrossRef
62.
go back to reference Takeichi N, Kaneko CR, Fuchs AF. Discharge of monkey nucleus reticularis tegmenti pontis neurons changes during saccade adaptation. J Neurophysiol. 2005;94(3):1938–51.PubMedPubMedCentralCrossRef Takeichi N, Kaneko CR, Fuchs AF. Discharge of monkey nucleus reticularis tegmenti pontis neurons changes during saccade adaptation. J Neurophysiol. 2005;94(3):1938–51.PubMedPubMedCentralCrossRef
63.
go back to reference Takeichi N, Kaneko CR, Fuchs AF. Activity changes in monkey superior colliculus during saccade adaptation. J Neurophysiol. 2007;97(6):4096–107.PubMedCrossRef Takeichi N, Kaneko CR, Fuchs AF. Activity changes in monkey superior colliculus during saccade adaptation. J Neurophysiol. 2007;97(6):4096–107.PubMedCrossRef
65.
66.
67.
go back to reference Soetedjo R, Kojima Y, Fuchs AF. Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning? J Neurophysiol. 2008;100(4):1949–66.PubMedPubMedCentralCrossRef Soetedjo R, Kojima Y, Fuchs AF. Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning? J Neurophysiol. 2008;100(4):1949–66.PubMedPubMedCentralCrossRef
68.
go back to reference Pernet C, Poline J, Demonet J, Rousselet G. Brain classification reveals the right cerebellum as the best biomarker of dyslexia. BMC Neurosci. 2009;10:67.PubMedPubMedCentralCrossRef Pernet C, Poline J, Demonet J, Rousselet G. Brain classification reveals the right cerebellum as the best biomarker of dyslexia. BMC Neurosci. 2009;10:67.PubMedPubMedCentralCrossRef
70.
go back to reference Lovett MW, Steinbach KA, Frijters JC. Remediating the core deficits of developmental reading disability: a double-deficit perspective. J Learn Disabil. 2000;33(4):334–58.PubMedCrossRef Lovett MW, Steinbach KA, Frijters JC. Remediating the core deficits of developmental reading disability: a double-deficit perspective. J Learn Disabil. 2000;33(4):334–58.PubMedCrossRef
71.
go back to reference Torgesen JK, Alexander AW, Wagner RK, Rashotte CA, Voeller KK, Conway T. Intensive remedial instruction for children with severe reading disabilities: immediate and long-term outcomes from two instructional approaches. J Learn Disabil. 2001;34(1):33–58. 78PubMedCrossRef Torgesen JK, Alexander AW, Wagner RK, Rashotte CA, Voeller KK, Conway T. Intensive remedial instruction for children with severe reading disabilities: immediate and long-term outcomes from two instructional approaches. J Learn Disabil. 2001;34(1):33–58. 78PubMedCrossRef
72.
go back to reference van der Leij A. Dyslexia and early intervention: what did we learn from the Dutch Dyslexia Programme? Dyslexia. 2013;19(4):241–55.PubMedCrossRef van der Leij A. Dyslexia and early intervention: what did we learn from the Dutch Dyslexia Programme? Dyslexia. 2013;19(4):241–55.PubMedCrossRef
73.
Metadata
Title
Saccade adaptation deficits in developmental dyslexia suggest disruption of cerebellar-dependent learning
Authors
Edward G. Freedman
Sophie Molholm
Michael J. Gray
Daniel Belyusar
John J. Foxe
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2017
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/s11689-017-9218-5

Other articles of this Issue 1/2017

Journal of Neurodevelopmental Disorders 1/2017 Go to the issue