Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2017

Open Access 01-12-2017 | Research

Combined genome-wide linkage and targeted association analysis of head circumference in autism spectrum disorder families

Authors: M. Woodbury-Smith, D. A. Bilder, J. Morgan, L. Jerominski, T. Darlington, T. Dyer, A. D. Paterson, H. Coon

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2017

Login to get access

Abstract

Background

It has long been recognized that there is an association between enlarged head circumference (HC) and autism spectrum disorder (ASD), but the genetics of HC in ASD is not well understood. In order to investigate the genetic underpinning of HC in ASD, we undertook a genome-wide linkage study of HC followed by linkage signal targeted association among a sample of 67 extended pedigrees with ASD.

Methods

HC measurements on members of 67 multiplex ASD extended pedigrees were used as a quantitative trait in a genome-wide linkage analysis. The Illumina 6K SNP linkage panel was used, and analyses were carried out using the SOLAR implemented variance components model. Loci identified in this way formed the target for subsequent association analysis using the Illumina OmniExpress chip and imputed genotypes. A modification of the qTDT was used as implemented in SOLAR.

Results

We identified a linkage signal spanning 6p21.31 to 6p22.2 (maximum LOD = 3.4). Although targeted association did not find evidence of association with any SNP overall, in one family with the strongest evidence of linkage, there was evidence for association (rs17586672, p = 1.72E−07).

Conclusions

Although this region does not overlap with ASD linkage signals in these same samples, it has been associated with other psychiatric risk, including ADHD, developmental dyslexia, schizophrenia, specific language impairment, and juvenile bipolar disorder. The genome-wide significant linkage signal represents the first reported observation of a potential quantitative trait locus for HC in ASD and may be relevant in the context of complex multivariate risk likely leading to ASD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shinawi M, Liu P, Kang SH, et al. Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. J Med Genet. 2010;47:332–41.CrossRefPubMed Shinawi M, Liu P, Kang SH, et al. Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. J Med Genet. 2010;47:332–41.CrossRefPubMed
2.
go back to reference McBride KL, Varga EA, Pastore MT, et al. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res. 2010;3:137–41.CrossRefPubMed McBride KL, Varga EA, Pastore MT, et al. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res. 2010;3:137–41.CrossRefPubMed
3.
go back to reference Lainhart JE, Bigler ED, Bocian M, et al. Head circumference and height in autism: a study by the Collaborative Program of Excellence in Autism. Am J Med Genet A. 2006;140:2257–74.CrossRefPubMedPubMedCentral Lainhart JE, Bigler ED, Bocian M, et al. Head circumference and height in autism: a study by the Collaborative Program of Excellence in Autism. Am J Med Genet A. 2006;140:2257–74.CrossRefPubMedPubMedCentral
4.
go back to reference Dementieva YA, Vance DD, Donnelly SL, et al. Accelerated head growth in early development of individuals with autism. Pediatr Neurol. 2005;32:102–8.CrossRefPubMed Dementieva YA, Vance DD, Donnelly SL, et al. Accelerated head growth in early development of individuals with autism. Pediatr Neurol. 2005;32:102–8.CrossRefPubMed
5.
go back to reference Miles JH, Hadden LL, Takahashi TN, Hillman RE. Head circumference is an independent clinical finding associated with autism.[comment]. Am J Med Genet. 2000;95:339–50.CrossRefPubMed Miles JH, Hadden LL, Takahashi TN, Hillman RE. Head circumference is an independent clinical finding associated with autism.[comment]. Am J Med Genet. 2000;95:339–50.CrossRefPubMed
6.
go back to reference Chaste P, Klei L, Sanders SJ, et al. Adjusting head circumference for covariates in autism: clinical correlates of a highly heritable continuous trait. Biol Psychiatry. 2013;74:576–84.CrossRefPubMedPubMedCentral Chaste P, Klei L, Sanders SJ, et al. Adjusting head circumference for covariates in autism: clinical correlates of a highly heritable continuous trait. Biol Psychiatry. 2013;74:576–84.CrossRefPubMedPubMedCentral
7.
go back to reference Taal HR, St Pourcain B, Thiering E, et al. Common variants at 12q15 and 12q24 are associated with infant head circumference. Nat Genet. 2012;44:532–8.CrossRefPubMedPubMedCentral Taal HR, St Pourcain B, Thiering E, et al. Common variants at 12q15 and 12q24 are associated with infant head circumference. Nat Genet. 2012;44:532–8.CrossRefPubMedPubMedCentral
9.
10.
go back to reference Szatmari P, Paterson AD, Zwaigenbaum L, et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet. 2007;39:319–28.CrossRefPubMedPubMedCentral Szatmari P, Paterson AD, Zwaigenbaum L, et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet. 2007;39:319–28.CrossRefPubMedPubMedCentral
11.
go back to reference Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.CrossRefPubMedPubMedCentral Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.CrossRefPubMedPubMedCentral
12.
13.
15.
go back to reference Kong A, Gudbjartsson DF, Sainz J, et al. High-resolution recombination map of the human genome. Nat Genet. 2002;31:241–7.PubMed Kong A, Gudbjartsson DF, Sainz J, et al. High-resolution recombination map of the human genome. Nat Genet. 2002;31:241–7.PubMed
17.
go back to reference Mukhopadhyay N, Almasy L, Schroeder M, Mulvihill WP, Weeks DE. Mega2: data-handling for facilitating genetic linkage and association analyses. Bioinformatics. 2005;21:2556–7.CrossRefPubMed Mukhopadhyay N, Almasy L, Schroeder M, Mulvihill WP, Weeks DE. Mega2: data-handling for facilitating genetic linkage and association analyses. Bioinformatics. 2005;21:2556–7.CrossRefPubMed
19.
go back to reference Havill LM, Dyer TD, Richardson DK, Mahaney MC, Blangero J. The quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification. BMC Genet. 2005;6 Suppl 1:S91.CrossRefPubMedPubMedCentral Havill LM, Dyer TD, Richardson DK, Mahaney MC, Blangero J. The quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification. BMC Genet. 2005;6 Suppl 1:S91.CrossRefPubMedPubMedCentral
20.
go back to reference Paila U, Chapman B, Kirchner R, Quinlan AR. GEMINI: integrative exploration of genetic variation and genome annotations. PLoS Comp Biol. 2013;9(7):e1003153.CrossRef Paila U, Chapman B, Kirchner R, Quinlan AR. GEMINI: integrative exploration of genetic variation and genome annotations. PLoS Comp Biol. 2013;9(7):e1003153.CrossRef
21.
go back to reference Allen-Brady K, Robison R, Cannon D, et al. Genome-wide linkage in Utah autism pedigrees. Mol Psychiatry. 2010;15:1006–15.CrossRefPubMed Allen-Brady K, Robison R, Cannon D, et al. Genome-wide linkage in Utah autism pedigrees. Mol Psychiatry. 2010;15:1006–15.CrossRefPubMed
22.
go back to reference Cannon DS, Miller JS, Robison RJ, et al. Genome-wide linkage analyses of two repetitive behavior phenotypes in Utah pedigrees with autism spectrum disorders. Mol Autism. 2010;1:3.CrossRefPubMedPubMedCentral Cannon DS, Miller JS, Robison RJ, et al. Genome-wide linkage analyses of two repetitive behavior phenotypes in Utah pedigrees with autism spectrum disorders. Mol Autism. 2010;1:3.CrossRefPubMedPubMedCentral
23.
go back to reference Suzuki H, Tohyama K, Nagata K, Taketani S, Araki M. Regulatory expression of Neurensin-1 in the spinal motor neurons after mouse sciatic nerve injury. Neurosci Lett. 2007;421:152–7.CrossRefPubMed Suzuki H, Tohyama K, Nagata K, Taketani S, Araki M. Regulatory expression of Neurensin-1 in the spinal motor neurons after mouse sciatic nerve injury. Neurosci Lett. 2007;421:152–7.CrossRefPubMed
24.
go back to reference Couto JM, Gomez L, Wigg K, et al. Association of attention-deficit/hyperactivity disorder with a candidate region for reading disabilities on chromosome 6p. Biol Psychiatry. 2009;66:368–75.CrossRefPubMed Couto JM, Gomez L, Wigg K, et al. Association of attention-deficit/hyperactivity disorder with a candidate region for reading disabilities on chromosome 6p. Biol Psychiatry. 2009;66:368–75.CrossRefPubMed
25.
go back to reference Meng H, Smith SD, Hager K, et al. DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proc Natl Acad Sci U S A. 2005;102:17053–8.CrossRefPubMedPubMedCentral Meng H, Smith SD, Hager K, et al. DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proc Natl Acad Sci U S A. 2005;102:17053–8.CrossRefPubMedPubMedCentral
26.
go back to reference Kong R, Shao S, Wang J, et al. Genetic variant in DIP2A gene is associated with developmental dyslexia in Chinese population. Am. J Med. Genet. Part B: Neuropsychiatric Genetics 2015; e-pub ahead of print 9 October 2015;.doi:10.1002/ajmg.b.32392. Kong R, Shao S, Wang J, et al. Genetic variant in DIP2A gene is associated with developmental dyslexia in Chinese population. Am. J Med. Genet. Part B: Neuropsychiatric Genetics 2015; e-pub ahead of print 9 October 2015;.doi:10.​1002/​ajmg.​b.​32392.
27.
go back to reference Torres AR, Maciulis A, Stubbs EG, Cutler A, Odell D. The transmission disequilibrium test suggests that HLA-DR4 and DR13 are linked to autism spectrum disorder. Hum Immunol. 2002;63:311–6.CrossRefPubMed Torres AR, Maciulis A, Stubbs EG, Cutler A, Odell D. The transmission disequilibrium test suggests that HLA-DR4 and DR13 are linked to autism spectrum disorder. Hum Immunol. 2002;63:311–6.CrossRefPubMed
28.
go back to reference Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.CrossRefPubMedCentral Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.CrossRefPubMedCentral
30.
go back to reference Doyle AE, Biederman J, Ferreira MAR, et al. Suggestive linkage of the CBCL juvenile bipolar disorder phenotype to 1p21, 6p21 and 8q21. J Am Acad Child Adolesc Psychiatry. 2010;49(4):378–87.PubMedPubMedCentral Doyle AE, Biederman J, Ferreira MAR, et al. Suggestive linkage of the CBCL juvenile bipolar disorder phenotype to 1p21, 6p21 and 8q21. J Am Acad Child Adolesc Psychiatry. 2010;49(4):378–87.PubMedPubMedCentral
Metadata
Title
Combined genome-wide linkage and targeted association analysis of head circumference in autism spectrum disorder families
Authors
M. Woodbury-Smith
D. A. Bilder
J. Morgan
L. Jerominski
T. Darlington
T. Dyer
A. D. Paterson
H. Coon
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2017
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/s11689-017-9187-8

Other articles of this Issue 1/2017

Journal of Neurodevelopmental Disorders 1/2017 Go to the issue