Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2015

Open Access 01-12-2015 | Research

Route knowledge and configural knowledge in typical and atypical development: a comparison of sparse and rich environments

Authors: Emily K. Farran, Harry R. M. Purser, Yannick Courbois, Marine Ballé, Pascal Sockeel, Daniel Mellier, Mark Blades

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2015

Login to get access

Abstract

Background

Individuals with Down syndrome (DS) and individuals with Williams syndrome (WS) have poor navigation skills, which impact their potential to become independent. Two aspects of navigation were investigated in these groups, using virtual environments (VE): route knowledge (the ability to learn the way from A to B by following a fixed sequence of turns) and configural knowledge (knowledge of the spatial relationships between places within an environment).

Methods

Typically developing (TD) children aged 5 to 11 years (N = 93), individuals with DS (N = 29) and individuals with WS (N = 20) were presented with a sparse and a rich VE grid maze. Within each maze, participants were asked to learn a route from A to B and a route from A to C before being asked to find a novel shortcut from B to C.

Results

Performance was broadly similar across sparse and rich mazes. The majority of participants were able to learn novel routes, with poorest performance in the DS group, but the ability to find a shortcut, our measure of configural knowledge, was limited for all three groups. That is, 59 % TD participants successfully found a shortcut, compared to 10 % participants with DS and 35 % participants with WS. Differences in the underlying mechanisms associated with route knowledge and configural knowledge and in the developmental trajectories of performance across groups were observed. Only the TD participants walked a shorter distance in the last shortcut trial compared to the first, indicative of increased configural knowledge across trials. The DS group often used an alternative strategy to get from B to C, summing the two taught routes together.

Conclusions

Our findings demonstrate impaired configural knowledge in DS and in WS, with the strongest deficit in DS. This suggests that these groups rely on a rigid route knowledge based method for navigating and as a result are likely to get lost easily. Route knowledge was also impaired in both DS and WS groups and was related to different underlying processes across all three groups. These are discussed with reference to limitations in attention and/or visuo-spatial processing in the atypical groups.
Literature
1.
go back to reference Bellugi U, Sabo H, Vaid J. Spatial deficits in children with Williams syndrome. In Stiles-Davis J , Kritchevshy U, Bellugi U, editors. Spatial cognition: Brain bases and development. Hillsdale, New Jersey: Lawrence Erlbaum. 1988; p. 273–97. Bellugi U, Sabo H, Vaid J. Spatial deficits in children with Williams syndrome. In Stiles-Davis J , Kritchevshy U, Bellugi U, editors. Spatial cognition: Brain bases and development. Hillsdale, New Jersey: Lawrence Erlbaum. 1988; p. 273–97.
2.
go back to reference Bernardino I, Mouga S, Castelo-Branco M, van Asselen M. Egocentric and allocentric spatial representations in Williams syndrome. J Int Neuropsychol Soc. 2013;19:54–62.PubMedCrossRef Bernardino I, Mouga S, Castelo-Branco M, van Asselen M. Egocentric and allocentric spatial representations in Williams syndrome. J Int Neuropsychol Soc. 2013;19:54–62.PubMedCrossRef
3.
go back to reference Breckenridge K, Atkinson J, Braddick O. Attention. In: Farran EK, Karmiloff-Smith A, editors. Neurodevelopmental disorders across the lifespan: a neuroconstructivist approach. Oxford: University Press; 2012. p. 119–34. Breckenridge K, Atkinson J, Braddick O. Attention. In: Farran EK, Karmiloff-Smith A, editors. Neurodevelopmental disorders across the lifespan: a neuroconstructivist approach. Oxford: University Press; 2012. p. 119–34.
4.
go back to reference Broadbent HJ, Farran EK, Tolmie A. Egocentric and allocentric navigation strategies in typical development and Williams syndrome. Developmental Science. 2014a;17:920–34. Broadbent HJ, Farran EK, Tolmie A. Egocentric and allocentric navigation strategies in typical development and Williams syndrome. Developmental Science. 2014a;17:920–34.
5.
go back to reference Broadbent HJ, Farran EK, Tolmie A. Object-based mental rotation and visual perspective-taking in typical development and Williams syndrome. Developmental Neuropsychology 2014b;39:205–25. Broadbent HJ, Farran EK, Tolmie A. Object-based mental rotation and visual perspective-taking in typical development and Williams syndrome. Developmental Neuropsychology 2014b;39:205–25.
6.
go back to reference Bullens J, Igloi K, Berthoz A, Postma A, Rondi-Reig L. Developmental time course of the acquisition of sequential egocentric and allocentric navigation strategies. J Exp Child Psychol. 2010;107:337–50.PubMedCrossRef Bullens J, Igloi K, Berthoz A, Postma A, Rondi-Reig L. Developmental time course of the acquisition of sequential egocentric and allocentric navigation strategies. J Exp Child Psychol. 2010;107:337–50.PubMedCrossRef
7.
go back to reference Cornish K, Munir F, Wilding J. A neuropsychological and behavioural profile of a attention deficits in fragile x syndrome. Revista De Neurologia. 2001;33:S24–9.PubMed Cornish K, Munir F, Wilding J. A neuropsychological and behavioural profile of a attention deficits in fragile x syndrome. Revista De Neurologia. 2001;33:S24–9.PubMed
8.
go back to reference Costanzo F, Varuzza C, Menghini D, Addona F, Gianesini T, Vicari S. Executive functions in intellectual disabilities: a comparison between Williams syndrome and down syndrome. Res Dev Disabil. 2013;34:1770–80.PubMedCrossRef Costanzo F, Varuzza C, Menghini D, Addona F, Gianesini T, Vicari S. Executive functions in intellectual disabilities: a comparison between Williams syndrome and down syndrome. Res Dev Disabil. 2013;34:1770–80.PubMedCrossRef
9.
go back to reference Courbois Y, Farran EK, Lemahieu A, Blades M, Mengue-Topio H, Sockeel P. Wayfinding behaviour in down syndrome: a study with virtual environments. Res Dev Disabil. 2013;34:1825–31.PubMedCrossRef Courbois Y, Farran EK, Lemahieu A, Blades M, Mengue-Topio H, Sockeel P. Wayfinding behaviour in down syndrome: a study with virtual environments. Res Dev Disabil. 2013;34:1825–31.PubMedCrossRef
10.
go back to reference Davis M, Merrill EC, Conners F, Roskos B. Differences in route-learning performance and correlations among abilities between persons with and without Down syndrome. Frontiers in Psychology. 2014;5:1–12. Davis M, Merrill EC, Conners F, Roskos B. Differences in route-learning performance and correlations among abilities between persons with and without Down syndrome. Frontiers in Psychology. 2014;5:1–12.
11.
go back to reference de Graaf G, Vis JC, Haveman M, van Hove G, de Graaf EAB, Tijssen JGP, et al. Assessment of prevalence of persons with down syndrome: a theory-based demographic model. J Appl Res Intellect Disabil. 2011;24:247–62.CrossRef de Graaf G, Vis JC, Haveman M, van Hove G, de Graaf EAB, Tijssen JGP, et al. Assessment of prevalence of persons with down syndrome: a theory-based demographic model. J Appl Res Intellect Disabil. 2011;24:247–62.CrossRef
12.
go back to reference Dunn LM, Dunn DM, Styles B, Sewell J. British picture vocabulary scale III. Windsor: NFER-Nelson; 2009. Dunn LM, Dunn DM, Styles B, Sewell J. British picture vocabulary scale III. Windsor: NFER-Nelson; 2009.
13.
go back to reference Dunn LM, Theriault-Whalen CM, Dunn DM. Echelle de Vocabulaire en Images Peabody. French adaptation of the Peabody Picture Vocabulary test-revised. Belgium: ATM; 1993. Dunn LM, Theriault-Whalen CM, Dunn DM. Echelle de Vocabulaire en Images Peabody. French adaptation of the Peabody Picture Vocabulary test-revised. Belgium: ATM; 1993.
14.
go back to reference Edgin JO, Mason GM, Allman MJ, Capone GT, DeLeon I, Maslen C, et al. Development and validation of the Arizona cognitive test battery for down syndrome. J NeurodevDisord. 2010;2:149–64. Edgin JO, Mason GM, Allman MJ, Capone GT, DeLeon I, Maslen C, et al. Development and validation of the Arizona cognitive test battery for down syndrome. J NeurodevDisord. 2010;2:149–64.
15.
go back to reference Fan J, McCandliss BD, Sommer T, Raz A, Posner MI. Testing the efficiency and independence of attentional networks. J Cogn Neurosci. 2002;14:340–7.PubMedCrossRef Fan J, McCandliss BD, Sommer T, Raz A, Posner MI. Testing the efficiency and independence of attentional networks. J Cogn Neurosci. 2002;14:340–7.PubMedCrossRef
16.
go back to reference Farran EK, Blades M, Boucher J, Tranter LJ. How do individuals with Williams syndrome learn a route in a real-world environment? Dev Sci. 2010;13(3):454–68.PubMedCrossRef Farran EK, Blades M, Boucher J, Tranter LJ. How do individuals with Williams syndrome learn a route in a real-world environment? Dev Sci. 2010;13(3):454–68.PubMedCrossRef
17.
go back to reference Farran EK, Courbois Y, Van Herwegen J, Blades M. How useful are landmarks when learning a route in a virtual environment? Evidence from typical development and Williams syndrome. J Exp Child Psychol. 2012;111:571–86.PubMedCrossRef Farran EK, Courbois Y, Van Herwegen J, Blades M. How useful are landmarks when learning a route in a virtual environment? Evidence from typical development and Williams syndrome. J Exp Child Psychol. 2012;111:571–86.PubMedCrossRef
18.
go back to reference Farran EK, Courbois Y, Van Herwegen J, Cruickshank AG, Blades M. Colour as an environmental cue when learning a route in a virtual environment: typical and atypical development. Res Dev Disabil. 2012;33:900–8.PubMedCrossRef Farran EK, Courbois Y, Van Herwegen J, Cruickshank AG, Blades M. Colour as an environmental cue when learning a route in a virtual environment: typical and atypical development. Res Dev Disabil. 2012;33:900–8.PubMedCrossRef
19.
go back to reference Farran EK, Jarrold C. Visuo-spatial cognition in williams syndrome; reviewing and accounting for the strengths and weaknesses in performance. Dev Neuropsychol. 2003;23:175–202.CrossRef Farran EK, Jarrold C. Visuo-spatial cognition in williams syndrome; reviewing and accounting for the strengths and weaknesses in performance. Dev Neuropsychol. 2003;23:175–202.CrossRef
20.
go back to reference Farran EK, Karmiloff-Smith A, editors. Neurodevelopmental disorders across the lifespan: a neuroconstructivist approach. Oxford: University Press; 2012. Farran EK, Karmiloff-Smith A, editors. Neurodevelopmental disorders across the lifespan: a neuroconstructivist approach. Oxford: University Press; 2012.
21.
go back to reference Foti F, Petrosini L, Cutuli D, Menghini D, Chiarotti F, Vicari S, et al. Explorative function in Williams syndrome analyzed through a large-scale task with multiple rewards. Res Dev Disabil. 2011;32:972–85.PubMedCrossRef Foti F, Petrosini L, Cutuli D, Menghini D, Chiarotti F, Vicari S, et al. Explorative function in Williams syndrome analyzed through a large-scale task with multiple rewards. Res Dev Disabil. 2011;32:972–85.PubMedCrossRef
22.
go back to reference Hartley T, Maguire EA, Spiers HJ, Burgess N. The well-worn route and the path less travelled: distinct neural bases of route following and wayfinding in humans. Neuron. 2003;37:877–88.PubMedCrossRef Hartley T, Maguire EA, Spiers HJ, Burgess N. The well-worn route and the path less travelled: distinct neural bases of route following and wayfinding in humans. Neuron. 2003;37:877–88.PubMedCrossRef
23.
go back to reference Karmiloff-Smith A. Development itself is the key to understanding developmental disorders. Trends Cogn Neuroscience. 1998;2:389–98.CrossRef Karmiloff-Smith A. Development itself is the key to understanding developmental disorders. Trends Cogn Neuroscience. 1998;2:389–98.CrossRef
24.
go back to reference Karmiloff-Smith A, Thomas M, Annaz D, Humphreys K, Ewing S, Brace N, et al. Exploring the Williams syndrome face-processing debate: the importance of building developmental trajectories. J Child Psychol Psychiatry. 2004;45:1258–74.PubMedCrossRef Karmiloff-Smith A, Thomas M, Annaz D, Humphreys K, Ewing S, Brace N, et al. Exploring the Williams syndrome face-processing debate: the importance of building developmental trajectories. J Child Psychol Psychiatry. 2004;45:1258–74.PubMedCrossRef
25.
go back to reference Kopp B, Mattler U, Rist F. Selective attention and response competition in schizophrenic-patients. Psychiatry Res. 1994;53:129–39.PubMedCrossRef Kopp B, Mattler U, Rist F. Selective attention and response competition in schizophrenic-patients. Psychiatry Res. 1994;53:129–39.PubMedCrossRef
27.
go back to reference Mandolesi L, Addona F, Foti F, Menghini D, Petrosini L, Vicari S. Spatial competences in Williams syndrome: a radial arm maze study. Int J Dev Neurosci. 2009;27:205–13.PubMedCrossRef Mandolesi L, Addona F, Foti F, Menghini D, Petrosini L, Vicari S. Spatial competences in Williams syndrome: a radial arm maze study. Int J Dev Neurosci. 2009;27:205–13.PubMedCrossRef
28.
go back to reference Menghini D, Addona F, Costanzo F, Vicari S. Executive functions in individuals with Williams syndrome. J Intellect Disabil Res. 2010;54:418–32.PubMedCrossRef Menghini D, Addona F, Costanzo F, Vicari S. Executive functions in individuals with Williams syndrome. J Intellect Disabil Res. 2010;54:418–32.PubMedCrossRef
29.
go back to reference Meyer-Lindenberg A, Kohn P, Mervis CB, Kippenham JS, Olsen RA, Morris CA, et al. Neural basis of genetically determined visuospatial construction deficit in Williams syndrome. Neuron. 2004;43:623–31.PubMedCrossRef Meyer-Lindenberg A, Kohn P, Mervis CB, Kippenham JS, Olsen RA, Morris CA, et al. Neural basis of genetically determined visuospatial construction deficit in Williams syndrome. Neuron. 2004;43:623–31.PubMedCrossRef
30.
go back to reference Mirsky AF, Anthony BJ, Duncan CC, Ahearn MB, Kellam SG. Analysis of the elements of attention a neuropsychological approach. Neuropsychol Rev. 1991;2:109–46.PubMedCrossRef Mirsky AF, Anthony BJ, Duncan CC, Ahearn MB, Kellam SG. Analysis of the elements of attention a neuropsychological approach. Neuropsychol Rev. 1991;2:109–46.PubMedCrossRef
31.
go back to reference Montello DR. A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In: Egenhofer MJ, Golledge RG, editors. Spatial and temporal reasoning in geographic information systems. New York: University Press; 1998. p. 143–54. Montello DR. A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In: Egenhofer MJ, Golledge RG, editors. Spatial and temporal reasoning in geographic information systems. New York: University Press; 1998. p. 143–54.
32.
go back to reference Morris CA, Demsey SA, Leonard CO, Dilts C, Blackburn BL. Natural history of Williams syndrome: physical characteristics. J Pediatr. 1988;113:318–26.PubMedCrossRef Morris CA, Demsey SA, Leonard CO, Dilts C, Blackburn BL. Natural history of Williams syndrome: physical characteristics. J Pediatr. 1988;113:318–26.PubMedCrossRef
33.
go back to reference Nardini M, Atkinson J, Braddick O, Burgess N. Developmental trajectories for spatial frames of reference in Williams syndrome. Dev Sci. 2008;11:583–95.PubMedCrossRef Nardini M, Atkinson J, Braddick O, Burgess N. Developmental trajectories for spatial frames of reference in Williams syndrome. Dev Sci. 2008;11:583–95.PubMedCrossRef
34.
go back to reference Pennington BF, Moon J, Edgin JO, Stedron J, Nadel L. The neuropsychology of Down syndrome: evidence for hippocampal dysfunction. Child Dev. 2003;74:75–93.PubMedCrossRef Pennington BF, Moon J, Edgin JO, Stedron J, Nadel L. The neuropsychology of Down syndrome: evidence for hippocampal dysfunction. Child Dev. 2003;74:75–93.PubMedCrossRef
35.
go back to reference Pinter JD, Brown WE, Eliez S, Schmitt JE, Capone GT, Reiss AL. Amygdala and hippocampal volumes in children with Down syndrome: a high-resolution MRI study. Neurology. 2001;56:972–4.PubMedCrossRef Pinter JD, Brown WE, Eliez S, Schmitt JE, Capone GT, Reiss AL. Amygdala and hippocampal volumes in children with Down syndrome: a high-resolution MRI study. Neurology. 2001;56:972–4.PubMedCrossRef
36.
go back to reference Purser HRM, Farran EK, Courbois Y, Lemahieu A, Sockeel P, Mellier D, et al. The development of route learning in down syndrome, Williams syndrome and typical development: investigations with virtual environments. Dev Sci. 2015;18:599–613.PubMedCrossRef Purser HRM, Farran EK, Courbois Y, Lemahieu A, Sockeel P, Mellier D, et al. The development of route learning in down syndrome, Williams syndrome and typical development: investigations with virtual environments. Dev Sci. 2015;18:599–613.PubMedCrossRef
37.
go back to reference Quaiser-Pohl C, Lehmann W, Eid M. The relationship between spatial abilities and representations of large-scale space in children—a structural equation modeling analysis. Pers Individ Diff. 2004;2004(36):95–107.CrossRef Quaiser-Pohl C, Lehmann W, Eid M. The relationship between spatial abilities and representations of large-scale space in children—a structural equation modeling analysis. Pers Individ Diff. 2004;2004(36):95–107.CrossRef
38.
go back to reference Raven J, Raven JC, Court JH. Raven’s progressive matrices and vocabulary scales: section 2, coloured progressive matrices. Oxford: Psychologists Press Limited; 1998. Raven J, Raven JC, Court JH. Raven’s progressive matrices and vocabulary scales: section 2, coloured progressive matrices. Oxford: Psychologists Press Limited; 1998.
39.
go back to reference Redick TS, Calvo A, Gay CE, Engle RW. Working memory capacity and go/no-go task performance: selective effects of updating, maintenance, and inhibition. J Exp Psychol Learn Mem Cogn. 2011;37:308–24.PubMedCrossRef Redick TS, Calvo A, Gay CE, Engle RW. Working memory capacity and go/no-go task performance: selective effects of updating, maintenance, and inhibition. J Exp Psychol Learn Mem Cogn. 2011;37:308–24.PubMedCrossRef
40.
go back to reference Richardson AE, Montello R, Hegarty M. Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Mem Cognit. 1999;27:741–50.PubMedCrossRef Richardson AE, Montello R, Hegarty M. Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Mem Cognit. 1999;27:741–50.PubMedCrossRef
41.
go back to reference Rissotto A, Giuliani MV. Learning neighbourhood environments. In: Spencer C, Blades M, editors. Children and their environments: learning, using, and designing spaces. Cambridge: University Press; 2006. p. 75–90.CrossRef Rissotto A, Giuliani MV. Learning neighbourhood environments. In: Spencer C, Blades M, editors. Children and their environments: learning, using, and designing spaces. Cambridge: University Press; 2006. p. 75–90.CrossRef
42.
go back to reference Siegel AW, White SH. The development of spatial representations of large-scale environments. In: Reese H, editor. Advances in child development and behaviour, Volume 10. New York: University Press; 1975. p. 9–55. Siegel AW, White SH. The development of spatial representations of large-scale environments. In: Reese H, editor. Advances in child development and behaviour, Volume 10. New York: University Press; 1975. p. 9–55.
43.
go back to reference Smith AD, Gilchrist ID, Hood B, Tassabehji M, Karmiloff-Smith A. Inefficient search of large-scale space in Williams syndrome: further insights on the role of LIMK1 deletion in deficits of spatial cognition. Perception. 2009;38:694–701.PubMedCrossRef Smith AD, Gilchrist ID, Hood B, Tassabehji M, Karmiloff-Smith A. Inefficient search of large-scale space in Williams syndrome: further insights on the role of LIMK1 deletion in deficits of spatial cognition. Perception. 2009;38:694–701.PubMedCrossRef
44.
go back to reference Strømme P, Bjømstad PG, Ramstad K. Prevalence estimation of Williams syndrome. J Child Neurol. 2002;17:269–71.PubMedCrossRef Strømme P, Bjømstad PG, Ramstad K. Prevalence estimation of Williams syndrome. J Child Neurol. 2002;17:269–71.PubMedCrossRef
Metadata
Title
Route knowledge and configural knowledge in typical and atypical development: a comparison of sparse and rich environments
Authors
Emily K. Farran
Harry R. M. Purser
Yannick Courbois
Marine Ballé
Pascal Sockeel
Daniel Mellier
Mark Blades
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2015
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/s11689-015-9133-6

Other articles of this Issue 1/2015

Journal of Neurodevelopmental Disorders 1/2015 Go to the issue