Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2015

Open Access 01-12-2015 | Research

Comparative mapping of the 22q11.2 deletion region and the potential of simple model organisms

Authors: Alina Guna, Nancy J. Butcher, Anne S. Bassett

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2015

Login to get access

Abstract

Background

22q11.2 deletion syndrome (22q11.2DS) is the most common micro-deletion syndrome. The associated 22q11.2 deletion conveys the strongest known molecular risk for schizophrenia. Neurodevelopmental phenotypes, including intellectual disability, are also prominent though variable in severity. Other developmental features include congenital cardiac and craniofacial anomalies. Whereas existing mouse models have been helpful in determining the role of some genes overlapped by the hemizygous 22q11.2 deletion in phenotypic expression, much remains unknown. Simple model organisms remain largely unexploited in exploring these genotype-phenotype relationships.

Methods

We first developed a comprehensive map of the human 22q11.2 deletion region, delineating gene content, and brain expression. To identify putative orthologs, standard methods were used to interrogate the proteomes of the zebrafish (D. rerio), fruit fly (D. melanogaster), and worm (C. elegans), in addition to the mouse. Spatial locations of conserved homologues were mapped to examine syntenic relationships. We systematically cataloged available knockout and knockdown models of all conserved genes across these organisms, including a comprehensive review of associated phenotypes.

Results

There are 90 genes overlapped by the typical 2.5 Mb deletion 22q11.2 region. Of the 46 protein-coding genes, 41 (89.1 %) have documented expression in the human brain. Identified homologues in the zebrafish (n = 37, 80.4 %) were comparable to those in the mouse (n = 40, 86.9 %) and included some conserved gene cluster structures. There were 22 (47.8 %) putative homologues in the fruit fly and 17 (37.0 %) in the worm involving multiple chromosomes. Individual gene knockdown mutants were available for the simple model organisms, but not for mouse. Although phenotypic data were relatively limited for knockout and knockdown models of the 17 genes conserved across all species, there was some evidence for roles in neurodevelopmental phenotypes, including four of the six mitochondrial genes in the 22q11.2 deletion region.

Conclusions

Simple model organisms represent a powerful but underutilized means of investigating the molecular mechanisms underlying the elevated risk for neurodevelopmental disorders in 22q11.2DS. This comparative multi-species study provides novel resources and support for the potential utility of non-mouse models in expression studies and high-throughput drug screening. The approach has implications for other recurrent copy number variations associated with neurodevelopmental phenotypes.
Appendix
Available only for authorised users
Literature
2.
go back to reference Bassett AS, McDonald-McGinn DM, Devriendt K, Digilio MC, Goldenberg P, Habel A, et al. Practical guidelines for managing patients with 22q11.2 deletion syndrome. J Pediatr. 2011;159(2):332–9. e1. Bassett AS, McDonald-McGinn DM, Devriendt K, Digilio MC, Goldenberg P, Habel A, et al. Practical guidelines for managing patients with 22q11.2 deletion syndrome. J Pediatr. 2011;159(2):332–9. e1.
3.
go back to reference Bassett AS, Chow EW, Husted J, Weksberg R, Caluseriu O, Webb GD, et al. Clinical features of 78 adults with 22q11 deletion syndrome. Am J Med Genet A. 2005;138(4):307–13.PubMedCentralPubMedCrossRef Bassett AS, Chow EW, Husted J, Weksberg R, Caluseriu O, Webb GD, et al. Clinical features of 78 adults with 22q11 deletion syndrome. Am J Med Genet A. 2005;138(4):307–13.PubMedCentralPubMedCrossRef
4.
go back to reference Fung WL, Chow EW, Webb GD, Gatzoulis MA, Bassett AS. Extracardiac features predicting 22q11.2 deletion syndrome in adult congenital heart disease. Int J Cardiol. 2008;131(1):51–8.PubMedCentralPubMedCrossRef Fung WL, Chow EW, Webb GD, Gatzoulis MA, Bassett AS. Extracardiac features predicting 22q11.2 deletion syndrome in adult congenital heart disease. Int J Cardiol. 2008;131(1):51–8.PubMedCentralPubMedCrossRef
5.
go back to reference Fung WL, Butcher NJ, Costain G, Andrade DM, Boot E, Chow EW, et al. Practical guidelines for managing adults with 22q11.2 deletion syndrome. Genet Med. In press. Fung WL, Butcher NJ, Costain G, Andrade DM, Boot E, Chow EW, et al. Practical guidelines for managing adults with 22q11.2 deletion syndrome. Genet Med. In press.
6.
go back to reference Niklasson L, Gillberg C. The neuropsychology of 22q11 deletion syndrome. A neuropsychiatric study of 100 individuals. Res Dev Disabil. 2010;31(1):185–94.PubMedCrossRef Niklasson L, Gillberg C. The neuropsychology of 22q11 deletion syndrome. A neuropsychiatric study of 100 individuals. Res Dev Disabil. 2010;31(1):185–94.PubMedCrossRef
7.
go back to reference Gothelf D, Presburger G, Levy D, Nahmani A, Burg M, Berant M, et al. Genetic, developmental, and physical factors associated with attention deficit hyperactivity disorder in patients with velocardiofacial syndrome. Am J Med Genet B Neuropsychiatr Genet. 2004;126B(1):116–21.PubMedCrossRef Gothelf D, Presburger G, Levy D, Nahmani A, Burg M, Berant M, et al. Genetic, developmental, and physical factors associated with attention deficit hyperactivity disorder in patients with velocardiofacial syndrome. Am J Med Genet B Neuropsychiatr Genet. 2004;126B(1):116–21.PubMedCrossRef
8.
go back to reference Young AS, Shashi V, Schoch K, Kwapil T, Hooper SR. Discordance in diagnoses and treatment of psychiatric disorders in children and adolescents with 22q11.2 deletion syndrome. Asian J Psychiatr. 2011;4(2):119–24. Young AS, Shashi V, Schoch K, Kwapil T, Hooper SR. Discordance in diagnoses and treatment of psychiatric disorders in children and adolescents with 22q11.2 deletion syndrome. Asian J Psychiatr. 2011;4(2):119–24.
9.
go back to reference Fung WL, McEvilly R, Fong J, Silversides C, Chow EW, Bassett AS. Elevated prevalence of generalized anxiety disorder in adults with 22q11.2 deletion syndrome. Am J Psychiatry. 2010;167(8):998.PubMedCrossRef Fung WL, McEvilly R, Fong J, Silversides C, Chow EW, Bassett AS. Elevated prevalence of generalized anxiety disorder in adults with 22q11.2 deletion syndrome. Am J Psychiatry. 2010;167(8):998.PubMedCrossRef
10.
go back to reference Hidding E, Swaab H, de Sonneville LM, van Engeland H, Sijmens-Morcus ME, Klaassen PW, et al. Intellectual functioning in relation to autism and ADHD symptomatology in children and adolescents with 22q11.2 deletion syndrome. J Intellect Disabil Res. In press. Hidding E, Swaab H, de Sonneville LM, van Engeland H, Sijmens-Morcus ME, Klaassen PW, et al. Intellectual functioning in relation to autism and ADHD symptomatology in children and adolescents with 22q11.2 deletion syndrome. J Intellect Disabil Res. In press.
11.
go back to reference Vorstman JA, Morcus ME, Duijff SN, Klaassen PW, Heineman-de Boer JA, Beemer FA, et al. The 22q11.2 deletion in children: high rate of autistic disorders and early onset of psychotic symptoms. J Am Acad Child Adolesc Psychiatry. 2006;45(9):1104–13.PubMedCrossRef Vorstman JA, Morcus ME, Duijff SN, Klaassen PW, Heineman-de Boer JA, Beemer FA, et al. The 22q11.2 deletion in children: high rate of autistic disorders and early onset of psychotic symptoms. J Am Acad Child Adolesc Psychiatry. 2006;45(9):1104–13.PubMedCrossRef
13.
go back to reference Butcher NJ, Kiehl TR, Hazrati LN, Chow EW, Rogaeva E, Lang AE, et al. Association between early-onset Parkinson disease and 22q11.2 deletion syndrome: identification of a novel genetic form of Parkinson disease and its clinical implications. JAMA Neurol. 2013;70(11):1359–66. Butcher NJ, Kiehl TR, Hazrati LN, Chow EW, Rogaeva E, Lang AE, et al. Association between early-onset Parkinson disease and 22q11.2 deletion syndrome: identification of a novel genetic form of Parkinson disease and its clinical implications. JAMA Neurol. 2013;70(11):1359–66.
14.
go back to reference Booij J, van Amelsvoort T, Boot E. Co-occurrence of early-onset Parkinson disease and 22q11.2 deletion syndrome: potential role for dopamine transporter imaging. Am J Med Genet A. 2010;152A(11):2937–8.PubMedCrossRef Booij J, van Amelsvoort T, Boot E. Co-occurrence of early-onset Parkinson disease and 22q11.2 deletion syndrome: potential role for dopamine transporter imaging. Am J Med Genet A. 2010;152A(11):2937–8.PubMedCrossRef
15.
go back to reference Meechan DW, Maynard TM, Wu Y, Gopalakrishna D, Lieberman JA, LaMantia AS. Gene dosage in the developing and adult brain in a mouse model of 22q11 deletion syndrome. Mol Cell Neurosci. 2006;33(4):412–28.PubMedCrossRef Meechan DW, Maynard TM, Wu Y, Gopalakrishna D, Lieberman JA, LaMantia AS. Gene dosage in the developing and adult brain in a mouse model of 22q11 deletion syndrome. Mol Cell Neurosci. 2006;33(4):412–28.PubMedCrossRef
17.
go back to reference Bassett AS, Marshall CR, Lionel AC, Chow EW, Scherer SW. Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome. Hum Mol Genet. 2008;17(24):4045–53.PubMedCentralPubMedCrossRef Bassett AS, Marshall CR, Lionel AC, Chow EW, Scherer SW. Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome. Hum Mol Genet. 2008;17(24):4045–53.PubMedCentralPubMedCrossRef
18.
go back to reference Edelmann L, Pandita PK, Spiteri E, Funke B, Goldberg R, Palanisamy N, et al. A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet. 1999;8(7):1157–67.PubMedCrossRef Edelmann L, Pandita PK, Spiteri E, Funke B, Goldberg R, Palanisamy N, et al. A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet. 1999;8(7):1157–67.PubMedCrossRef
19.
go back to reference Shaikh TH, Kurahashi H, Saitta SC, O’Hare AM, Hu P, Roe BA, et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet. 2000;9(4):489–501.PubMedCrossRef Shaikh TH, Kurahashi H, Saitta SC, O’Hare AM, Hu P, Roe BA, et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet. 2000;9(4):489–501.PubMedCrossRef
20.
go back to reference Baumer A, Dutly F, Balmer R, Riegel M, Tukel T, Krajewska-Walasek M, et al. High level of unequal meiotic crossovers at the origin of the 22q11. 2 and 7q11.23 deletions. Hum Mol Genet. 1998;7(5):887–94.PubMedCrossRef Baumer A, Dutly F, Balmer R, Riegel M, Tukel T, Krajewska-Walasek M, et al. High level of unequal meiotic crossovers at the origin of the 22q11. 2 and 7q11.23 deletions. Hum Mol Genet. 1998;7(5):887–94.PubMedCrossRef
21.
go back to reference Saitta SC, Harris SE, Gaeth AP, Driscoll DA, McDonald-McGinn DM, Maisenbacher MK, et al. Aberrant interchromosomal exchanges are the predominant cause of the 22q11.2 deletion. Hum Mol Genet. 2004;13(4):417–28.PubMedCentralPubMedCrossRef Saitta SC, Harris SE, Gaeth AP, Driscoll DA, McDonald-McGinn DM, Maisenbacher MK, et al. Aberrant interchromosomal exchanges are the predominant cause of the 22q11.2 deletion. Hum Mol Genet. 2004;13(4):417–28.PubMedCentralPubMedCrossRef
22.
go back to reference Carlson C, Paplos D, Pandita RK, Faedda GL, Veit S, Goldberg R, et al. Molecular analysis of velo-cardio-facial syndrome patients with psychiatric disorders. Am J Hum Genet. 1997;60(4):851–9.PubMedCentralPubMed Carlson C, Paplos D, Pandita RK, Faedda GL, Veit S, Goldberg R, et al. Molecular analysis of velo-cardio-facial syndrome patients with psychiatric disorders. Am J Hum Genet. 1997;60(4):851–9.PubMedCentralPubMed
23.
go back to reference Weksberg R, Stachon AC, Squire JA, Moldovan L, Bayani J, Meyn S, et al. Molecular characterization of deletion breakpoints in adults with 22q11 deletion syndrome. Hum Genet. 2007;120(6):837–45.PubMedCentralPubMedCrossRef Weksberg R, Stachon AC, Squire JA, Moldovan L, Bayani J, Meyn S, et al. Molecular characterization of deletion breakpoints in adults with 22q11 deletion syndrome. Hum Genet. 2007;120(6):837–45.PubMedCentralPubMedCrossRef
24.
go back to reference van Beveren NJ, Krab LC, Swagemakers S, Buitendijk GH, Boot E, van der Spek P, et al. Functional gene-expression analysis shows involvement of schizophrenia-relevant pathways in patients with 22q11 deletion syndrome. PLoS One. 2012;7(3), e33473.PubMedCentralPubMedCrossRef van Beveren NJ, Krab LC, Swagemakers S, Buitendijk GH, Boot E, van der Spek P, et al. Functional gene-expression analysis shows involvement of schizophrenia-relevant pathways in patients with 22q11 deletion syndrome. PLoS One. 2012;7(3), e33473.PubMedCentralPubMedCrossRef
25.
go back to reference de la Morena MT, Eitson JL, Dozmorov IM, Belkaya S, Hoover AR, Anguiano E, et al. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome. Clin Immunol. 2013;147(1):11–22.PubMedCentralPubMedCrossRef de la Morena MT, Eitson JL, Dozmorov IM, Belkaya S, Hoover AR, Anguiano E, et al. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome. Clin Immunol. 2013;147(1):11–22.PubMedCentralPubMedCrossRef
26.
go back to reference Ye T, Lipska BK, Tao R, Hyde TM, Wang L, Li C, et al. Analysis of copy number variations in brain DNA from patients with schizophrenia and other psychiatric disorders. Biol Psychiatry. 2012;72(8):651–4.PubMedCentralPubMedCrossRef Ye T, Lipska BK, Tao R, Hyde TM, Wang L, Li C, et al. Analysis of copy number variations in brain DNA from patients with schizophrenia and other psychiatric disorders. Biol Psychiatry. 2012;72(8):651–4.PubMedCentralPubMedCrossRef
27.
go back to reference Das Chakraborty R, Bernal AJ, Schoch K, Howard TD, Ip EH, Hooper SR, et al. Dysregulation of DGCR6 and DGCR6L: psychopathological outcomes in chromosome 22q11.2 deletion syndrome. Transl Psychiatry. 2012;2, e105.PubMedCrossRef Das Chakraborty R, Bernal AJ, Schoch K, Howard TD, Ip EH, Hooper SR, et al. Dysregulation of DGCR6 and DGCR6L: psychopathological outcomes in chromosome 22q11.2 deletion syndrome. Transl Psychiatry. 2012;2, e105.PubMedCrossRef
28.
go back to reference Ishiguro H, Koga M, Horiuchi Y, Noguchi E, Morikawa M, Suzuki Y, et al. Supportive evidence for reduced expression of GNB1L in schizophrenia. Schizophr Bull. 2010;36(4):756–65.PubMedCentralPubMedCrossRef Ishiguro H, Koga M, Horiuchi Y, Noguchi E, Morikawa M, Suzuki Y, et al. Supportive evidence for reduced expression of GNB1L in schizophrenia. Schizophr Bull. 2010;36(4):756–65.PubMedCentralPubMedCrossRef
29.
go back to reference Edelmann L, Stankiewicz P, Spiteri E, Pandita RK, Shaffer L, Lupski JR, et al. Two functional copies of the DGCR6 gene are present on human chromosome 22q11 due to a duplication of an ancestral locus. Genome Res. 2001;11(2):208–17.PubMedCentralPubMedCrossRef Edelmann L, Stankiewicz P, Spiteri E, Pandita RK, Shaffer L, Lupski JR, et al. Two functional copies of the DGCR6 gene are present on human chromosome 22q11 due to a duplication of an ancestral locus. Genome Res. 2001;11(2):208–17.PubMedCentralPubMedCrossRef
30.
go back to reference Maynard TM, Haskell GT, Peters AZ, Sikich L, Lieberman JA, LaMantia AS. A comprehensive analysis of 22q11 gene expression in the developing and adult brain. Proc Natl Acad Sci U S A. 2003;100(24):14433–8.PubMedCentralPubMedCrossRef Maynard TM, Haskell GT, Peters AZ, Sikich L, Lieberman JA, LaMantia AS. A comprehensive analysis of 22q11 gene expression in the developing and adult brain. Proc Natl Acad Sci U S A. 2003;100(24):14433–8.PubMedCentralPubMedCrossRef
31.
go back to reference Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry. 2010;15(12):1176–89.PubMedCentralPubMedCrossRef Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry. 2010;15(12):1176–89.PubMedCentralPubMedCrossRef
32.
go back to reference Xie Q, Lin T, Zhang Y, Zheng J, Bonanno JA. Molecular cloning and characterization of a human AIF-like gene with ability to induce apoptosis. J Biol Chem. 2005;280(20):19673–81.PubMedCrossRef Xie Q, Lin T, Zhang Y, Zheng J, Bonanno JA. Molecular cloning and characterization of a human AIF-like gene with ability to induce apoptosis. J Biol Chem. 2005;280(20):19673–81.PubMedCrossRef
33.
go back to reference Sellier C, Hwang VJ, Dandekar R, Durbin-Johnson B, Charlet-Berguerand N, Ander BP, et al. Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11.2 deletion syndrome. PLoS One. 2014;9(8), e103884.PubMedCentralPubMedCrossRef Sellier C, Hwang VJ, Dandekar R, Durbin-Johnson B, Charlet-Berguerand N, Ander BP, et al. Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11.2 deletion syndrome. PLoS One. 2014;9(8), e103884.PubMedCentralPubMedCrossRef
34.
go back to reference Hiroi N, Takahashi T, Hishimoto A, Izumi T, Boku S, Hiramoto T. Copy number variation at 22q11.2: from rare variants to common mechanisms of developmental neuropsychiatric disorders. Mol Psychiatry. 2013;18(11):1153–65.PubMedCrossRef Hiroi N, Takahashi T, Hishimoto A, Izumi T, Boku S, Hiramoto T. Copy number variation at 22q11.2: from rare variants to common mechanisms of developmental neuropsychiatric disorders. Mol Psychiatry. 2013;18(11):1153–65.PubMedCrossRef
35.
go back to reference Karayiorgou M, Simon TJ, Gogos JA. 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci. 2010;11(6):402–16.PubMedCentralPubMedCrossRef Karayiorgou M, Simon TJ, Gogos JA. 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci. 2010;11(6):402–16.PubMedCentralPubMedCrossRef
36.
go back to reference Merico D, Costain G, Butcher NJ, Warnica M, Ogura L, Alfred SE et al. MicroRNA dysregulation, gene networks and risk for schizophrenia in 22q11.2 deletion syndrome. Frontiers Neurol. 2014;5(238). Merico D, Costain G, Butcher NJ, Warnica M, Ogura L, Alfred SE et al. MicroRNA dysregulation, gene networks and risk for schizophrenia in 22q11.2 deletion syndrome. Frontiers Neurol. 2014;5(238).
37.
go back to reference Johnson MB, Kawasawa YI, Mason CE, Krsnik Z, Coppola G, Bogdanovic D, et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron. 2009;62(4):494–509.PubMedCentralPubMedCrossRef Johnson MB, Kawasawa YI, Mason CE, Krsnik Z, Coppola G, Bogdanovic D, et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron. 2009;62(4):494–509.PubMedCentralPubMedCrossRef
38.
go back to reference Moreno-Hagelsieb G, Latimer K. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics. 2008;24(3):319–24.PubMedCrossRef Moreno-Hagelsieb G, Latimer K. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics. 2008;24(3):319–24.PubMedCrossRef
39.
go back to reference Ward N, Moreno-Hagelsieb G. Quickly finding orthologs as reciprocal best hits with BLAT, LAST, and UBLAST: how much do we miss? PLoS One. 2014;9(7), e101850.PubMedCentralPubMedCrossRef Ward N, Moreno-Hagelsieb G. Quickly finding orthologs as reciprocal best hits with BLAT, LAST, and UBLAST: how much do we miss? PLoS One. 2014;9(7), e101850.PubMedCentralPubMedCrossRef
40.
go back to reference Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73.
41.
go back to reference Brzustowicz LM, Bassett AS. miRNA-mediated risk for schizophrenia in 22q11.2 deletion syndrome. Front Genet. 2012;3:291. Brzustowicz LM, Bassett AS. miRNA-mediated risk for schizophrenia in 22q11.2 deletion syndrome. Front Genet. 2012;3:291.
42.
go back to reference Forstner AJ, Degenhardt F, Schratt G, Nothen MM. MicroRNAs as the cause of schizophrenia in 22q11.2 deletion carriers, and possible implications for idiopathic disease: a mini-review. Front Mol Neurosci. 2013;6:47. Forstner AJ, Degenhardt F, Schratt G, Nothen MM. MicroRNAs as the cause of schizophrenia in 22q11.2 deletion carriers, and possible implications for idiopathic disease: a mini-review. Front Mol Neurosci. 2013;6:47.
43.
go back to reference Warnica W, Merico D, Costain G, Alfred SE, Wei J, Marshall CR, et al. Copy number variable MicroRNAs in schizophrenia and their neurodevelopmental gene targets. Biol Psychiatry. 2014;77(2):158–66.PubMedCentralPubMedCrossRef Warnica W, Merico D, Costain G, Alfred SE, Wei J, Marshall CR, et al. Copy number variable MicroRNAs in schizophrenia and their neurodevelopmental gene targets. Biol Psychiatry. 2014;77(2):158–66.PubMedCentralPubMedCrossRef
44.
go back to reference Hu HY, Guo S, Xi J, Yan Z, Fu N, Zhang X, et al. MicroRNA expression and regulation in human, chimpanzee, and macaque brains. PLoS Genet. 2011;7(10), e1002327.PubMedCentralPubMedCrossRef Hu HY, Guo S, Xi J, Yan Z, Fu N, Zhang X, et al. MicroRNA expression and regulation in human, chimpanzee, and macaque brains. PLoS Genet. 2011;7(10), e1002327.PubMedCentralPubMedCrossRef
45.
46.
go back to reference Bhutkar A, Russo S, Smith TF, Gelbart WM. Techniques for multi-genome synteny analysis to overcome assembly limitations. Genome Inform. 2006;17(2):152–61.PubMed Bhutkar A, Russo S, Smith TF, Gelbart WM. Techniques for multi-genome synteny analysis to overcome assembly limitations. Genome Inform. 2006;17(2):152–61.PubMed
47.
go back to reference St JD. The art and design of genetic screens: drosophila melanogaster. Nat Rev Genet. 2002;3(3):176–88.CrossRef St JD. The art and design of genetic screens: drosophila melanogaster. Nat Rev Genet. 2002;3(3):176–88.CrossRef
49.
go back to reference Schub T. Pathology of mutant animal models 2001. Lab Anim (NY). 2001;30(5):30. Schub T. Pathology of mutant animal models 2001. Lab Anim (NY). 2001;30(5):30.
50.
go back to reference Sanders LH, Whitlock KE. Phenotype of the zebrafish masterblind (mbl) mutant is dependent on genetic background. Dev Dyn. 2003;227(2):291–300.PubMedCrossRef Sanders LH, Whitlock KE. Phenotype of the zebrafish masterblind (mbl) mutant is dependent on genetic background. Dev Dyn. 2003;227(2):291–300.PubMedCrossRef
51.
go back to reference Chandler CH, Chari S, Tack DI. Causes and consequences of genetic background effects illuminated by integrative genomic analysis. Genetics. 2014;196(4):1321–36.PubMedCentralPubMedCrossRef Chandler CH, Chari S, Tack DI. Causes and consequences of genetic background effects illuminated by integrative genomic analysis. Genetics. 2014;196(4):1321–36.PubMedCentralPubMedCrossRef
52.
go back to reference Barriere A, Felix MA. Natural variation and population genetics of Caenorhabditis elegans. WormBook; 2005: p. 1–19. Barriere A, Felix MA. Natural variation and population genetics of Caenorhabditis elegans. WormBook; 2005: p. 1–19.
53.
go back to reference Gogos JA, Santha M, Takacs Z, Beck KD, Luine V, Lucas LR, et al. The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet. 1999;21(4):434–9.PubMedCrossRef Gogos JA, Santha M, Takacs Z, Beck KD, Luine V, Lucas LR, et al. The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet. 1999;21(4):434–9.PubMedCrossRef
54.
go back to reference Paterlini M, Zakharenko SS, Lai WS, Qin J, Zhang H, Mukai J, et al. Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat Neurosci. 2005;8(11):1586–94.PubMedCrossRef Paterlini M, Zakharenko SS, Lai WS, Qin J, Zhang H, Mukai J, et al. Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat Neurosci. 2005;8(11):1586–94.PubMedCrossRef
55.
go back to reference Luhur A, Chawla G, Wu YC, Li J, Sokol NS. Drosha-independent DGCR8/Pasha pathway regulates neuronal morphogenesis. Proc Natl Acad Sci U S A. 2014;111(4):1421–6.PubMedCentralPubMedCrossRef Luhur A, Chawla G, Wu YC, Li J, Sokol NS. Drosha-independent DGCR8/Pasha pathway regulates neuronal morphogenesis. Proc Natl Acad Sci U S A. 2014;111(4):1421–6.PubMedCentralPubMedCrossRef
56.
go back to reference Hall B, Limaye A, Kulkarni AB. Overview: generation of gene knockout mice. Curr Protoc Cell Biol. 2009;Chapter 19:Unit 19 12 19 12 1–17. Hall B, Limaye A, Kulkarni AB. Overview: generation of gene knockout mice. Curr Protoc Cell Biol. 2009;Chapter 19:Unit 19 12 19 12 1–17.
57.
58.
go back to reference Buckingham SD, Esmaeili B, Wood M, Sattelle DB. RNA interference: from model organisms towards therapy for neural and neuromuscular disorders. Hum Mol Genet. 2004;13 Spec No 2:R275–88. Buckingham SD, Esmaeili B, Wood M, Sattelle DB. RNA interference: from model organisms towards therapy for neural and neuromuscular disorders. Hum Mol Genet. 2004;13 Spec No 2:R275–88.
59.
go back to reference Wang Y, Wu L, Wang P, Lv C, Yang Z, Tang X. Manipulation of gene expression in zebrafish using caged circular morpholino oligomers. Nucleic Acids Res. 2012;40(21):11155–62.PubMedCentralPubMedCrossRef Wang Y, Wu L, Wang P, Lv C, Yang Z, Tang X. Manipulation of gene expression in zebrafish using caged circular morpholino oligomers. Nucleic Acids Res. 2012;40(21):11155–62.PubMedCentralPubMedCrossRef
60.
go back to reference Nasevicius A, Ekker SC. Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet. 2000;26(2):216–20.PubMedCrossRef Nasevicius A, Ekker SC. Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet. 2000;26(2):216–20.PubMedCrossRef
61.
go back to reference Tischler J, Lehner B, Chen N, Fraser AG. Combinatorial RNA interference in Caenorhabditis elegans reveals that redundancy between gene duplicates can be maintained for more than 80 million years of evolution. Genome Biol. 2006;7(8):R69.PubMedCentralPubMedCrossRef Tischler J, Lehner B, Chen N, Fraser AG. Combinatorial RNA interference in Caenorhabditis elegans reveals that redundancy between gene duplicates can be maintained for more than 80 million years of evolution. Genome Biol. 2006;7(8):R69.PubMedCentralPubMedCrossRef
62.
go back to reference Schmid A, Schindelholz B, Zinn K. Combinatorial RNAi: a method for evaluating the functions of gene families in Drosophila. Trends Neurosci. 2002;25(2):71–4.PubMedCrossRef Schmid A, Schindelholz B, Zinn K. Combinatorial RNAi: a method for evaluating the functions of gene families in Drosophila. Trends Neurosci. 2002;25(2):71–4.PubMedCrossRef
63.
go back to reference Hayward DC, Delaney SJ, Campbell HD, Ghysen A, Benzer S, Kasprzak AB, et al. The sluggish-A gene of Drosophila melanogaster is expressed in the nervous system and encodes proline oxidase, a mitochondrial enzyme involved in glutamate biosynthesis. Proc Natl Acad Sci U S A. 1993;90(7):2979–83.PubMedCentralPubMedCrossRef Hayward DC, Delaney SJ, Campbell HD, Ghysen A, Benzer S, Kasprzak AB, et al. The sluggish-A gene of Drosophila melanogaster is expressed in the nervous system and encodes proline oxidase, a mitochondrial enzyme involved in glutamate biosynthesis. Proc Natl Acad Sci U S A. 1993;90(7):2979–83.PubMedCentralPubMedCrossRef
64.
go back to reference Goodman BK, Rutberg J, Lin WW, Pulver AE, Thomas GH. Hyperprolinaemia in patients with deletion (22)(q11.2) syndrome. J Inherit Metab Dis. 2000;23(8):847–8.PubMedCrossRef Goodman BK, Rutberg J, Lin WW, Pulver AE, Thomas GH. Hyperprolinaemia in patients with deletion (22)(q11.2) syndrome. J Inherit Metab Dis. 2000;23(8):847–8.PubMedCrossRef
65.
go back to reference Jacquet H, Berthelot J, Bonnemains C, Simard G, Saugier-Veber P, Raux G, et al. The severe form of type I hyperprolinaemia results from homozygous inactivation of the PRODH gene. J Med Genet. 2003;40(1), e7.PubMedCentralPubMedCrossRef Jacquet H, Berthelot J, Bonnemains C, Simard G, Saugier-Veber P, Raux G, et al. The severe form of type I hyperprolinaemia results from homozygous inactivation of the PRODH gene. J Med Genet. 2003;40(1), e7.PubMedCentralPubMedCrossRef
66.
go back to reference Swillen A, Devriendt K, Legius E, Prinzie P, Vogels A, Ghesquiere P, et al. The behavioural phenotype in velo-cardio-facial syndrome (VCFS): from infancy to adolescence. Genet Couns. 1999;10(1):79–88.PubMed Swillen A, Devriendt K, Legius E, Prinzie P, Vogels A, Ghesquiere P, et al. The behavioural phenotype in velo-cardio-facial syndrome (VCFS): from infancy to adolescence. Genet Couns. 1999;10(1):79–88.PubMed
67.
go back to reference Boot E, Butcher NJ, van Amelsvoort TA, Lang AE, Marras C, Pondal M, et al. Movement disorders and other motor abnormalities in adults with 22q11.2 deletion syndrome. Am J Med Genet A. 2015;167A(3):639–45.PubMedCrossRef Boot E, Butcher NJ, van Amelsvoort TA, Lang AE, Marras C, Pondal M, et al. Movement disorders and other motor abnormalities in adults with 22q11.2 deletion syndrome. Am J Med Genet A. 2015;167A(3):639–45.PubMedCrossRef
68.
go back to reference Catalina-Rodriguez O, Kolukula VK, Tomita Y, Preet A, Palmieri F, Wellstein A, et al. The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget. 2012;3(10):1220–35.PubMedCentralPubMed Catalina-Rodriguez O, Kolukula VK, Tomita Y, Preet A, Palmieri F, Wellstein A, et al. The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget. 2012;3(10):1220–35.PubMedCentralPubMed
69.
go back to reference Poling JS, Frye RE, Shoffner J, Zimmerman AW. Developmental regression and mitochondrial dysfunction in a child with autism. J Child Neurol. 2006;21(2):170–2.PubMedCentralPubMedCrossRef Poling JS, Frye RE, Shoffner J, Zimmerman AW. Developmental regression and mitochondrial dysfunction in a child with autism. J Child Neurol. 2006;21(2):170–2.PubMedCentralPubMedCrossRef
70.
go back to reference Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 2004;9(7):684–97.PubMedCrossRef Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 2004;9(7):684–97.PubMedCrossRef
71.
go back to reference Ramsey CP, Giasson BI. Role of mitochondrial dysfunction in Parkinson’s disease: Implications for treatment. Drugs Aging. 2007;24(2):95–105.PubMedCrossRef Ramsey CP, Giasson BI. Role of mitochondrial dysfunction in Parkinson’s disease: Implications for treatment. Drugs Aging. 2007;24(2):95–105.PubMedCrossRef
72.
go back to reference Scorrano L. Keeping mitochondria in shape: a matter of life and death. Eur J Clin Invest. 2013;43(8):886–93.PubMedCrossRef Scorrano L. Keeping mitochondria in shape: a matter of life and death. Eur J Clin Invest. 2013;43(8):886–93.PubMedCrossRef
73.
go back to reference Maynard TM, Meechan DW, Dudevoir ML, Gopalakrishna D, Peters AZ, Heindel CC, et al. Mitochondrial localization and function of a subset of 22q11 deletion syndrome candidate genes. Mol Cell Neurosci. 2008;39(3):439–51.PubMedCentralPubMedCrossRef Maynard TM, Meechan DW, Dudevoir ML, Gopalakrishna D, Peters AZ, Heindel CC, et al. Mitochondrial localization and function of a subset of 22q11 deletion syndrome candidate genes. Mol Cell Neurosci. 2008;39(3):439–51.PubMedCentralPubMedCrossRef
74.
go back to reference Cacho-Valadez B, Munoz-Lubato F, Pedrajas JR, Cabello J, Fierro-Gonzalez JC, Navas P, et al. The characterization of the Caenorhabditis elegans mitochondrial thioredoxin system uncovers an unexpected protective role of thioredoxin reductase 2 in beta-amyloid peptide toxicity. Antioxid Redox Signal. 2012;16(12):1384–400.PubMedCentralPubMedCrossRef Cacho-Valadez B, Munoz-Lubato F, Pedrajas JR, Cabello J, Fierro-Gonzalez JC, Navas P, et al. The characterization of the Caenorhabditis elegans mitochondrial thioredoxin system uncovers an unexpected protective role of thioredoxin reductase 2 in beta-amyloid peptide toxicity. Antioxid Redox Signal. 2012;16(12):1384–400.PubMedCentralPubMedCrossRef
75.
go back to reference Miller RR, Okkema PG. The Caenorhabditis elegans T-box factor MLS-1 requires Groucho co-repressor interaction for uterine muscle specification. PLoS Genet. 2011;7(8), e1002210.PubMedCentralPubMedCrossRef Miller RR, Okkema PG. The Caenorhabditis elegans T-box factor MLS-1 requires Groucho co-repressor interaction for uterine muscle specification. PLoS Genet. 2011;7(8), e1002210.PubMedCentralPubMedCrossRef
76.
go back to reference Friedel RH, Wurst W, Wefers B, Kuhn R. Generating conditional knockout mice. Methods Mol Biol. 2011;693:205–31.PubMed Friedel RH, Wurst W, Wefers B, Kuhn R. Generating conditional knockout mice. Methods Mol Biol. 2011;693:205–31.PubMed
77.
go back to reference Doetschman T, Azhar M. Cardiac-specific inducible and conditional gene targeting in mice. Circ Res. 2012;110(11):1498–512.PubMedCrossRef Doetschman T, Azhar M. Cardiac-specific inducible and conditional gene targeting in mice. Circ Res. 2012;110(11):1498–512.PubMedCrossRef
81.
go back to reference Packham EA, Brook JD. T-box genes in human disorders. Hum Mol Genet. 2003;12 Spec No 1:R37–44. Packham EA, Brook JD. T-box genes in human disorders. Hum Mol Genet. 2003;12 Spec No 1:R37–44.
82.
go back to reference Yamagishi H, Srivastava D. Unraveling the genetic and developmental mysteries of 22q11 deletion syndrome. Trends Mol Med. 2003;9(9):383–9.PubMedCrossRef Yamagishi H, Srivastava D. Unraveling the genetic and developmental mysteries of 22q11 deletion syndrome. Trends Mol Med. 2003;9(9):383–9.PubMedCrossRef
83.
go back to reference Zhang J, Piontek J, Wolburg H, Piehl C, Liss M, Otten C, et al. Establishment of a neuroepithelial barrier by Claudin5a is essential for zebrafish brain ventricular lumen expansion. Proc Natl Acad Sci U S A. 2010;107(4):1425–30.PubMedCentralPubMedCrossRef Zhang J, Piontek J, Wolburg H, Piehl C, Liss M, Otten C, et al. Establishment of a neuroepithelial barrier by Claudin5a is essential for zebrafish brain ventricular lumen expansion. Proc Natl Acad Sci U S A. 2010;107(4):1425–30.PubMedCentralPubMedCrossRef
84.
go back to reference Green T, Gothelf D, Glaser B, Debbane M, Frisch A, Kotler M, et al. Psychiatric disorders and intellectual functioning throughout development in velocardiofacial (22q11.2 deletion) syndrome. J Am Acad Child Adolesc Psychiatry. 2009;48(11):1060–8.PubMedCrossRef Green T, Gothelf D, Glaser B, Debbane M, Frisch A, Kotler M, et al. Psychiatric disorders and intellectual functioning throughout development in velocardiofacial (22q11.2 deletion) syndrome. J Am Acad Child Adolesc Psychiatry. 2009;48(11):1060–8.PubMedCrossRef
85.
go back to reference van Alphen B, van Swinderen B. Drosophila strategies to study psychiatric disorders. Brain Res Bull. 2013;92:1–11.PubMedCrossRef van Alphen B, van Swinderen B. Drosophila strategies to study psychiatric disorders. Brain Res Bull. 2013;92:1–11.PubMedCrossRef
87.
go back to reference Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 2011;63(2):411–36.PubMedCentralPubMedCrossRef Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 2011;63(2):411–36.PubMedCentralPubMedCrossRef
89.
go back to reference Silverman GA, Luke CJ, Bhatia SR, Long OS, Vetica AC, Perlmutter DH, et al. Modeling molecular and cellular aspects of human disease using the nematode Caenorhabditis elegans. Pediatr Res. 2009;65(1):10–8.PubMedCentralPubMedCrossRef Silverman GA, Luke CJ, Bhatia SR, Long OS, Vetica AC, Perlmutter DH, et al. Modeling molecular and cellular aspects of human disease using the nematode Caenorhabditis elegans. Pediatr Res. 2009;65(1):10–8.PubMedCentralPubMedCrossRef
90.
go back to reference Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov. 2006;5(5):387–98.PubMedCrossRef Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov. 2006;5(5):387–98.PubMedCrossRef
91.
go back to reference Tomari Y, Zamore PD. MicroRNA biogenesis: drosha can’t cut it without a partner. Curr Biol. 2005;15(2):R61–4.PubMedCrossRef Tomari Y, Zamore PD. MicroRNA biogenesis: drosha can’t cut it without a partner. Curr Biol. 2005;15(2):R61–4.PubMedCrossRef
92.
go back to reference Stark KL, Xu B, Bagachi A, Lai WS, Liu H, Hsu R, et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet. 2008;40(6):751–60.PubMedCrossRef Stark KL, Xu B, Bagachi A, Lai WS, Liu H, Hsu R, et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet. 2008;40(6):751–60.PubMedCrossRef
93.
go back to reference Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62.
94.
go back to reference Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.
95.
go back to reference Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408(6808):86–9.PubMedCrossRef Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408(6808):86–9.PubMedCrossRef
97.
go back to reference Mishima Y. Widespread roles of microRNAs during zebrafish development and beyond. Dev Growth Differ. 2012;54(1):55–65.PubMedCrossRef Mishima Y. Widespread roles of microRNAs during zebrafish development and beyond. Dev Growth Differ. 2012;54(1):55–65.PubMedCrossRef
98.
go back to reference Dai Q, Smibert P, Lai EC. Exploiting Drosophila genetics to understand microRNA function and regulation. Curr Top Dev Biol. 2012;99:201–35.PubMed Dai Q, Smibert P, Lai EC. Exploiting Drosophila genetics to understand microRNA function and regulation. Curr Top Dev Biol. 2012;99:201–35.PubMed
99.
go back to reference Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, et al. A protein interaction map of Drosophila melanogaster. Science. 2003;302(5651):1727–36.PubMedCrossRef Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, et al. A protein interaction map of Drosophila melanogaster. Science. 2003;302(5651):1727–36.PubMedCrossRef
100.
go back to reference Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432(7014):231–5.PubMedCrossRef Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432(7014):231–5.PubMedCrossRef
101.
go back to reference Lehrbach NJ, Castro C, Murfitt KJ, Abreu-Goodger C, Griffin JL, Miska EA. Post-developmental microRNA expression is required for normal physiology, and regulates aging in parallel to insulin/IGF-1 signaling in C. elegans. RNA. 2012;18(12):2220–35. Lehrbach NJ, Castro C, Murfitt KJ, Abreu-Goodger C, Griffin JL, Miska EA. Post-developmental microRNA expression is required for normal physiology, and regulates aging in parallel to insulin/IGF-1 signaling in C. elegans. RNA. 2012;18(12):2220–35.
102.
go back to reference Bassett AS, Chow EW, Husted J, Hodgkinson KA, Oechslin E, Harris L, et al. Premature death in adults with 22q11.2 deletion syndrome. J Med Genet. 2009;46(5):324–30.PubMedCentralPubMedCrossRef Bassett AS, Chow EW, Husted J, Hodgkinson KA, Oechslin E, Harris L, et al. Premature death in adults with 22q11.2 deletion syndrome. J Med Genet. 2009;46(5):324–30.PubMedCentralPubMedCrossRef
103.
go back to reference Kraemer BC, Burgess JK, Chen JH, Thomas JH, Schellenberg GD, et al. Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans. Hum Mol Genet. 2006;15(9):1483–96.PubMedCrossRef Kraemer BC, Burgess JK, Chen JH, Thomas JH, Schellenberg GD, et al. Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans. Hum Mol Genet. 2006;15(9):1483–96.PubMedCrossRef
104.
go back to reference Roizen NJ, Higgins AM, Antshel KM. Fremont, Shprintzen R, Kates WR. 22q11.2 deletion syndrome: are motor deficits more than expected for IQ level? J Pediatr. 2010;157(4):658–61.PubMedCentralPubMedCrossRef Roizen NJ, Higgins AM, Antshel KM. Fremont, Shprintzen R, Kates WR. 22q11.2 deletion syndrome: are motor deficits more than expected for IQ level? J Pediatr. 2010;157(4):658–61.PubMedCentralPubMedCrossRef
105.
go back to reference Van Aken K, Caeyenberghs K, Smits-Engelsman B, Swillen A. The motor profile of primary school-age children with a 22q11.2 deletion syndrome (22q11.2DS) and an age- and IQ-matched control group. Child Neuropsychol. 2009;15(6):532–42.PubMedCrossRef Van Aken K, Caeyenberghs K, Smits-Engelsman B, Swillen A. The motor profile of primary school-age children with a 22q11.2 deletion syndrome (22q11.2DS) and an age- and IQ-matched control group. Child Neuropsychol. 2009;15(6):532–42.PubMedCrossRef
106.
go back to reference Noma K, Goncharov A, Jin Y. Systematic analyses of rpm-1 suppressors reveal roles for ESS-2 in mRNA splicing in Caenorhabditis elegans. Genetics. 2014;198(3):1101–15.PubMedCrossRef Noma K, Goncharov A, Jin Y. Systematic analyses of rpm-1 suppressors reveal roles for ESS-2 in mRNA splicing in Caenorhabditis elegans. Genetics. 2014;198(3):1101–15.PubMedCrossRef
107.
go back to reference Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RK, et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015;347(6218):1254806.PubMedCrossRef Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RK, et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015;347(6218):1254806.PubMedCrossRef
109.
go back to reference Whisstock JC, Lesk AM. Prediction of protein function from protein sequence and structure. Q Rev Biophys. 2003;36(3):307–40.PubMedCrossRef Whisstock JC, Lesk AM. Prediction of protein function from protein sequence and structure. Q Rev Biophys. 2003;36(3):307–40.PubMedCrossRef
110.
go back to reference Punta M, Ofran Y. The rough guide to in silico function prediction, or how to use sequence and structure information to predict protein function. PLoS Comput Biol. 2008;4(10), e1000160.PubMedCentralPubMedCrossRef Punta M, Ofran Y. The rough guide to in silico function prediction, or how to use sequence and structure information to predict protein function. PLoS Comput Biol. 2008;4(10), e1000160.PubMedCentralPubMedCrossRef
111.
go back to reference Bender HU, Almashanu S, Steel G, Hu CA, Lin WW, Willis A, et al. Functional consequences of PRODH missense mutations. Am J Hum Genet. 2005;76(3):409–20.PubMedCentralPubMedCrossRef Bender HU, Almashanu S, Steel G, Hu CA, Lin WW, Willis A, et al. Functional consequences of PRODH missense mutations. Am J Hum Genet. 2005;76(3):409–20.PubMedCentralPubMedCrossRef
112.
go back to reference Ratti A, Amati F, Bozzali M, Conti E, Sangiuolo F, Bercolo M, et al. Cloning and molecular characterization of three ubiquitin fusion degradation 1 (Ufd1) ortholog genes from Xenopus laevis, Gallus gallus and Drosophila melanogaster. Cytogenet Cell Genet. 2001;92(3–4):279–82.PubMedCrossRef Ratti A, Amati F, Bozzali M, Conti E, Sangiuolo F, Bercolo M, et al. Cloning and molecular characterization of three ubiquitin fusion degradation 1 (Ufd1) ortholog genes from Xenopus laevis, Gallus gallus and Drosophila melanogaster. Cytogenet Cell Genet. 2001;92(3–4):279–82.PubMedCrossRef
113.
go back to reference Hierck BP, Molin DG, Boot MJ, Poelmann RE, Gittenberger-de Groot AC. A chicken model for DGCR6 as a modifier gene in the DiGeorge critical region. Pediatr Res. 2004;56(3):440–8.PubMedCrossRef Hierck BP, Molin DG, Boot MJ, Poelmann RE, Gittenberger-de Groot AC. A chicken model for DGCR6 as a modifier gene in the DiGeorge critical region. Pediatr Res. 2004;56(3):440–8.PubMedCrossRef
114.
go back to reference Pukkila-Worley R, Feinbaum RL, McEwan DL, Conery AL, Ausubel FM. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification. PLoS Pathog. 2014;10(5), e1004143.PubMedCentralPubMedCrossRef Pukkila-Worley R, Feinbaum RL, McEwan DL, Conery AL, Ausubel FM. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification. PLoS Pathog. 2014;10(5), e1004143.PubMedCentralPubMedCrossRef
115.
go back to reference Shang P, Hoogerbrugge J, Baarends WM, Grootegoed JA. Evolution of testis-specific kinases TSSK1B and TSSK2 in primates. Andrology. 2013;1(1):160–8.PubMedCrossRef Shang P, Hoogerbrugge J, Baarends WM, Grootegoed JA. Evolution of testis-specific kinases TSSK1B and TSSK2 in primates. Andrology. 2013;1(1):160–8.PubMedCrossRef
116.
go back to reference Sibbing D, Pfeufer A, Perisic A, Mannes AM, Fritz-Wolf K, Unwin S, et al. Mutations in the mitochondrial thioredoxin reductase gene TXNRD2 cause dilated cardiomyopathy. Eur Heart J. 2011;32(9):1121–33.PubMedCrossRef Sibbing D, Pfeufer A, Perisic A, Mannes AM, Fritz-Wolf K, Unwin S, et al. Mutations in the mitochondrial thioredoxin reductase gene TXNRD2 cause dilated cardiomyopathy. Eur Heart J. 2011;32(9):1121–33.PubMedCrossRef
Metadata
Title
Comparative mapping of the 22q11.2 deletion region and the potential of simple model organisms
Authors
Alina Guna
Nancy J. Butcher
Anne S. Bassett
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2015
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/s11689-015-9113-x

Other articles of this Issue 1/2015

Journal of Neurodevelopmental Disorders 1/2015 Go to the issue