Skip to main content
Top
Published in: The Journal of Headache and Pain 1/2017

Open Access 01-12-2017 | Research article

Differential inhibitory response to telcagepant on αCGRP induced vasorelaxation and intracellular Ca2+ levels in the perfused and non-perfused isolated rat middle cerebral artery

Authors: André Erdling, Majid Sheykhzade, Lars Edvinsson

Published in: The Journal of Headache and Pain | Issue 1/2017

Login to get access

Abstract

Background

Calcitonin gene-related peptide (CGRP) is one of the most potent endogenous vasodilators identified to date. The present study elucidates the differential interaction of CGRP, its receptor and the effect of the CGRP-receptor antagonist telcagepant on intracellular Ca2+ -levels and tension in rat middle cerebral arteries (MCA) by pressurized arteriography, FURA-2/wire myography and immunohistochemistry.

Methods

A pressurized arteriograph system was used to evaluate changes in MCA tension when subjected to CGRP and/or telcagepant. Intracellular calcium levels were evaluated using a FURA-2/wire myograph system. Localization of the CGRP-receptor components was verified using immunohistochemistry.

Results

Abluminal but not luminal αCGRP (10-12-10-6 M) caused concentration-dependent vasorelaxation in rat MCA. Luminal telcagepant (10-6 M) failed to inhibit this relaxation, while abluminal telcagepant inhibited the relaxation (10-6 M). Using the FURA-2 method in combination with wire myography we observed that αCGRP reduced intracellular calcium levels and in parallel the vascular tone. Telcagepant (10-6 M) inhibited both vasorelaxation and drop in intracellular calcium levels. Both functional components of the CGRP receptor, CLR (calcitonin receptor-like receptor) and RAMP1 (receptor activity modifying peptide 1) were found in the smooth muscle cells but not in the endothelial cells of the cerebral vasculature.

Conclusions

This study thus demonstrates the relaxant effect of αCGRP on rat MCA. The vasorelaxation is associated with a simultaneous decrease in intracellular calcium levels. Telcagepant reduced relaxation and thwarted the reduction in intracellular calcium levels localized in the vascular smooth muscle cells. In addition, telcagepant may act as a non-competitive antagonist at concentrations greater than 10-8 M.
Literature
1.
go back to reference Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244CrossRefPubMed Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244CrossRefPubMed
2.
go back to reference Mulderry PK, Ghatei MA, Spokes RA, Jones PM, Pierson AM, Hamid QA et al (1998) Differential expression of alpha-CGRP and beta-CGRP by primary sensory neurons and enteric autonomic neurons of the rat. Neuroscience 25:195–205 Mulderry PK, Ghatei MA, Spokes RA, Jones PM, Pierson AM, Hamid QA et al (1998) Differential expression of alpha-CGRP and beta-CGRP by primary sensory neurons and enteric autonomic neurons of the rat. Neuroscience 25:195–205
3.
go back to reference Fernandes ES, Schmidhuber SM, Brain SD (2009) Sensory-nerve-derived neuropeptides: possible therapeutic targets. Handb Exp Pharmacol 194:393–416CrossRef Fernandes ES, Schmidhuber SM, Brain SD (2009) Sensory-nerve-derived neuropeptides: possible therapeutic targets. Handb Exp Pharmacol 194:393–416CrossRef
4.
go back to reference Sternini C (1992) Enteric and visceral afferent CGRP neurons. Targets of innervation and differential expression patterns. Ann N Y Acad Sci. 30:170–186CrossRef Sternini C (1992) Enteric and visceral afferent CGRP neurons. Targets of innervation and differential expression patterns. Ann N Y Acad Sci. 30:170–186CrossRef
5.
go back to reference Uddman R, Edvinsson L, Ekblad E, Håkanson R, Sundler F (1986) Calcitonin gene-related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul Pept 15:1–23CrossRefPubMed Uddman R, Edvinsson L, Ekblad E, Håkanson R, Sundler F (1986) Calcitonin gene-related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul Pept 15:1–23CrossRefPubMed
6.
go back to reference Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature 313:54–56CrossRefPubMed Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature 313:54–56CrossRefPubMed
7.
go back to reference Edvinsson L, Chan KY, Eftekhari S, Nilsson E, de Vries R, Säveland H et al (2010) Effect of the calcitonin gene-related peptide (CGRP) receptor antagonist telcagepant in human cranial arteries. Cephalalgia 30:1233–1240CrossRefPubMed Edvinsson L, Chan KY, Eftekhari S, Nilsson E, de Vries R, Säveland H et al (2010) Effect of the calcitonin gene-related peptide (CGRP) receptor antagonist telcagepant in human cranial arteries. Cephalalgia 30:1233–1240CrossRefPubMed
8.
go back to reference Edvinsson L, Ekman R, Jansen I, McCulloch J, Uddman R (1987) Calcitonin gene-related peptide and certebral blood vessels: distribution and vasomotor effects. J Cereb Blood Flow Metab 7:720–728CrossRefPubMed Edvinsson L, Ekman R, Jansen I, McCulloch J, Uddman R (1987) Calcitonin gene-related peptide and certebral blood vessels: distribution and vasomotor effects. J Cereb Blood Flow Metab 7:720–728CrossRefPubMed
9.
go back to reference Gibbins IL, Furness JB, Costa M, MacIntyre I, Hillyard CJ, Girgis S (1985) Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs. Neurosci Lett 57:125–130CrossRefPubMed Gibbins IL, Furness JB, Costa M, MacIntyre I, Hillyard CJ, Girgis S (1985) Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs. Neurosci Lett 57:125–130CrossRefPubMed
10.
go back to reference Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S (2017) Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 97:553–622CrossRefPubMed Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S (2017) Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 97:553–622CrossRefPubMed
11.
go back to reference Schebesch KM, Herbst A, Bele S, Schödel P, Brawanski A, Stoerr EM et al (2013) Calcitonin-gene related peptide and cerebral vasospasm. J Clin Neurosci 20:584–586CrossRefPubMed Schebesch KM, Herbst A, Bele S, Schödel P, Brawanski A, Stoerr EM et al (2013) Calcitonin-gene related peptide and cerebral vasospasm. J Clin Neurosci 20:584–586CrossRefPubMed
12.
go back to reference McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N et al (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393:333–339CrossRefPubMed McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N et al (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393:333–339CrossRefPubMed
13.
14.
go back to reference Hay DL, Pioszak AA (2016) Receptor Activity-Modifying Proteins (RAMPs): New insights and roles. Annu Rev Pharmacol Toxicol 56:469–487CrossRefPubMed Hay DL, Pioszak AA (2016) Receptor Activity-Modifying Proteins (RAMPs): New insights and roles. Annu Rev Pharmacol Toxicol 56:469–487CrossRefPubMed
15.
go back to reference Egea SC, Dickerson IM (2012) Direct interactions between calcitonin-like receptor (CLR) and CGRP-receptor component protein (RCP) regulate CGRP receptor signaling. Endocrinology 153:1850–1860CrossRefPubMedPubMedCentral Egea SC, Dickerson IM (2012) Direct interactions between calcitonin-like receptor (CLR) and CGRP-receptor component protein (RCP) regulate CGRP receptor signaling. Endocrinology 153:1850–1860CrossRefPubMedPubMedCentral
16.
go back to reference Evans BN, Rosenblatt MI, Mnayer LO, Oliver KR, Dickerson IM (2000) CGRP-RCP, a novel protein required for signal transduction at calcitonin gene-related peptide and adrenomedullin receptors. J Biol Chem 275:31438–31443CrossRefPubMed Evans BN, Rosenblatt MI, Mnayer LO, Oliver KR, Dickerson IM (2000) CGRP-RCP, a novel protein required for signal transduction at calcitonin gene-related peptide and adrenomedullin receptors. J Biol Chem 275:31438–31443CrossRefPubMed
17.
go back to reference Nelson MT, Huang Y, Brayden JE, Hescheler J, Standen NB (1990) Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels. Nature 344:770–773CrossRefPubMed Nelson MT, Huang Y, Brayden JE, Hescheler J, Standen NB (1990) Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels. Nature 344:770–773CrossRefPubMed
18.
19.
go back to reference Chadha PS, Jepps TA, Carr G, Stott JB, Zhu HL, Cole WC et al (2014) Contribution of kv7.4/kv7.5 heteromers to intrinsic and calcitonin gene-related peptide-induced cerebral reactivity. Arterioscler Thromb Vasc Biol 34:887–893CrossRefPubMed Chadha PS, Jepps TA, Carr G, Stott JB, Zhu HL, Cole WC et al (2014) Contribution of kv7.4/kv7.5 heteromers to intrinsic and calcitonin gene-related peptide-induced cerebral reactivity. Arterioscler Thromb Vasc Biol 34:887–893CrossRefPubMed
20.
go back to reference Edvinsson L, Fredholm BB, Hamel E, Jansen I, Verrecchia C (1985) Perivascular peptides relax cerebral arteries concomitant with stimulation of cyclic adenosine monophosphate accumulation or release of an endothelium-derived relaxing factor in the cat. Neurosci Lett 58:213–217CrossRefPubMed Edvinsson L, Fredholm BB, Hamel E, Jansen I, Verrecchia C (1985) Perivascular peptides relax cerebral arteries concomitant with stimulation of cyclic adenosine monophosphate accumulation or release of an endothelium-derived relaxing factor in the cat. Neurosci Lett 58:213–217CrossRefPubMed
21.
go back to reference Olesen IJ, Gulbenkian S, Valença A, Antunes JL, Wharton J, Polak JM et al (1995) The peptidergic innervation of the human superficial temporal artery: immunohistochemistry, ultrastructure, and vasomotility. Peptides 16:275–287CrossRefPubMed Olesen IJ, Gulbenkian S, Valença A, Antunes JL, Wharton J, Polak JM et al (1995) The peptidergic innervation of the human superficial temporal artery: immunohistochemistry, ultrastructure, and vasomotility. Peptides 16:275–287CrossRefPubMed
22.
go back to reference Jansen-Olesen I, Mortensen A, Edvinsson L (1996) Calcitonin gene-related peptide is released from capsaicin-sensitive nerve fibres and induces vasodilatation of human cerebral arteries concomitant with activation of adenylyl cyclase. Cephalgia 16:310–316CrossRef Jansen-Olesen I, Mortensen A, Edvinsson L (1996) Calcitonin gene-related peptide is released from capsaicin-sensitive nerve fibres and induces vasodilatation of human cerebral arteries concomitant with activation of adenylyl cyclase. Cephalgia 16:310–316CrossRef
23.
go back to reference Jansen-Olesen I, Jørgensen L, Engel U, Edvinsson L (2003) In-depth characterization of CGRP receptors in human intracranial arteries. Eur J Pharmacol 481:207–216CrossRefPubMed Jansen-Olesen I, Jørgensen L, Engel U, Edvinsson L (2003) In-depth characterization of CGRP receptors in human intracranial arteries. Eur J Pharmacol 481:207–216CrossRefPubMed
24.
go back to reference Bryan RM, Eichler MY, Swafford MW, Johnson TD, Suresh MS, Childres WF (1996) Stimulation of alpha 2 adrenoreceptors dilates the rat middle cerebral artery. Anesthesiology 85:82–90CrossRefPubMed Bryan RM, Eichler MY, Swafford MW, Johnson TD, Suresh MS, Childres WF (1996) Stimulation of alpha 2 adrenoreceptors dilates the rat middle cerebral artery. Anesthesiology 85:82–90CrossRefPubMed
25.
go back to reference You J, Johnson TD, Marrelli SP, Bryan RM (1999) Functional heterogeneity of endothelial P2 purinoceptors in the cerebrovascular tree of the rat. Am J Physiol 277:H893–H900PubMed You J, Johnson TD, Marrelli SP, Bryan RM (1999) Functional heterogeneity of endothelial P2 purinoceptors in the cerebrovascular tree of the rat. Am J Physiol 277:H893–H900PubMed
26.
go back to reference You J, Johnson TD, Childres WF, Bryan RM (1997) Endothelial-mediated dilations of rat middle cerebral arteries by ATP and ADP. Am J Physiol 273:H1472–H1477PubMed You J, Johnson TD, Childres WF, Bryan RM (1997) Endothelial-mediated dilations of rat middle cerebral arteries by ATP and ADP. Am J Physiol 273:H1472–H1477PubMed
27.
go back to reference Roe MW, Lemasters JJ, Herman B (1990) Assessment of Fura-2 for measurements of cytosolic free calcium. Cell Calcium 11:63–73CrossRefPubMed Roe MW, Lemasters JJ, Herman B (1990) Assessment of Fura-2 for measurements of cytosolic free calcium. Cell Calcium 11:63–73CrossRefPubMed
28.
go back to reference Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMed Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMed
29.
go back to reference Jensen PE, Mulvany MJ, Aalkjaer C (1992) Endogenous and exogenous agonist-induced changes in the coupling between [Ca2+]i and force in rat resistance arteries. Pflugers Arch 420:536–543CrossRefPubMed Jensen PE, Mulvany MJ, Aalkjaer C (1992) Endogenous and exogenous agonist-induced changes in the coupling between [Ca2+]i and force in rat resistance arteries. Pflugers Arch 420:536–543CrossRefPubMed
30.
go back to reference Kenakin T (1997) Analysis of Drug-Receptor Interaction, 3rd edn. Lippincott-Raven Publishers, New York Kenakin T (1997) Analysis of Drug-Receptor Interaction, 3rd edn. Lippincott-Raven Publishers, New York
31.
go back to reference Buus NH, VanBavel E, Mulvany MJ (1994) Differences in sensitivity of rat mesenteric small arteries to agonists when studied as ring preparations or as cannulated preparations. Br J Pharmacol 112:579–587CrossRefPubMedPubMedCentral Buus NH, VanBavel E, Mulvany MJ (1994) Differences in sensitivity of rat mesenteric small arteries to agonists when studied as ring preparations or as cannulated preparations. Br J Pharmacol 112:579–587CrossRefPubMedPubMedCentral
32.
go back to reference Dunn WR, Wellman GC, Bevan JA (1994) Enhanced resistance artery sensitivity to agonists under isobaric compared with isometric conditions. Am J Physiol 266:H147–H155PubMed Dunn WR, Wellman GC, Bevan JA (1994) Enhanced resistance artery sensitivity to agonists under isobaric compared with isometric conditions. Am J Physiol 266:H147–H155PubMed
33.
go back to reference Edvinsson L, Ahnstedt H, Larsen R, Sheykhzade M (2014) Differential localization and characterization of functional calcitonin gene-related peptide receptors in human subcutaneous arteries. Acta Physiol Scand 210:811–822CrossRef Edvinsson L, Ahnstedt H, Larsen R, Sheykhzade M (2014) Differential localization and characterization of functional calcitonin gene-related peptide receptors in human subcutaneous arteries. Acta Physiol Scand 210:811–822CrossRef
34.
go back to reference Sheykhzade M, Lind H, Edvinsson L (2004) Noncompetetive antagonism of BIBN4096BS on CGRP-induced responses in human subcutaneous arteries. Br J Pharmacol 143:1066–1073CrossRefPubMedPubMedCentral Sheykhzade M, Lind H, Edvinsson L (2004) Noncompetetive antagonism of BIBN4096BS on CGRP-induced responses in human subcutaneous arteries. Br J Pharmacol 143:1066–1073CrossRefPubMedPubMedCentral
35.
go back to reference Russel FA, King R, Smillie S-J, Kodji X, Brain SD (2014) Calcitonin Gene-Related Peptide: Physiology and Pathophysiology. Physiol Rev 94:1099–1142CrossRef Russel FA, King R, Smillie S-J, Kodji X, Brain SD (2014) Calcitonin Gene-Related Peptide: Physiology and Pathophysiology. Physiol Rev 94:1099–1142CrossRef
36.
go back to reference Ho TW, Edvinsson L, Goadsby PJ (2010) CGRP and its receptors provide new insights into migraine pathophysiology. Nat Neurol Rev 6:573–582CrossRef Ho TW, Edvinsson L, Goadsby PJ (2010) CGRP and its receptors provide new insights into migraine pathophysiology. Nat Neurol Rev 6:573–582CrossRef
37.
go back to reference Juul R, Hara H, Gisvold SE, Brubakk AO, Fredriksen TA, Waldemar G et al (1995) Alterations in perivascular dilatory neuropeptides (CGRP, SP, VIP) in the external jugular vein and in the cerebrospinal fluid following subarachnoid haemorrhage in man. Acta Neurochir (Wien) 132:32–41CrossRef Juul R, Hara H, Gisvold SE, Brubakk AO, Fredriksen TA, Waldemar G et al (1995) Alterations in perivascular dilatory neuropeptides (CGRP, SP, VIP) in the external jugular vein and in the cerebrospinal fluid following subarachnoid haemorrhage in man. Acta Neurochir (Wien) 132:32–41CrossRef
38.
go back to reference Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28:183–187CrossRefPubMed Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28:183–187CrossRefPubMed
39.
go back to reference Salvatore CA, Hershey JC, Corcoran HA, Fay JF, Johnston VK, Moore EL et al (2008) Pharmacological characterization of MK-0974 [N-[(3R,6S)-6-(2,3-difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide], a potent and orally active calcitonin gene-related peptide receptor antagonist for the treatment of migraine. J Pharmacol Exp Ther 324:416–421CrossRefPubMed Salvatore CA, Hershey JC, Corcoran HA, Fay JF, Johnston VK, Moore EL et al (2008) Pharmacological characterization of MK-0974 [N-[(3R,6S)-6-(2,3-difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide], a potent and orally active calcitonin gene-related peptide receptor antagonist for the treatment of migraine. J Pharmacol Exp Ther 324:416–421CrossRefPubMed
40.
go back to reference Tfelt-Hansen P, Olesen J (2010) Possible site of action of CGRP antagonists in migraine. Cephalalgia 31:748–750CrossRef Tfelt-Hansen P, Olesen J (2010) Possible site of action of CGRP antagonists in migraine. Cephalalgia 31:748–750CrossRef
41.
go back to reference Hay DL, Christopoulos G, Christopoulos A, Poyner DR, Sexton PM (2005) Pharmacological discrimination of calcitonin receptor: receptor activity-modifying protein complexes. Mol Pharmacol 67:1655–1665CrossRefPubMed Hay DL, Christopoulos G, Christopoulos A, Poyner DR, Sexton PM (2005) Pharmacological discrimination of calcitonin receptor: receptor activity-modifying protein complexes. Mol Pharmacol 67:1655–1665CrossRefPubMed
42.
go back to reference Edvinsson L, Nilsson E, Jansen-Olesen I (2007) Inhibitory effect of BIBN4096BS, CGRP8–37, a CGRP antibody and an RNA-Spiegelmer on CGRP induced vasodilatation in the perfused and non-perfused rat middle cerebral artery. Br J Pharmacol 150:633–640CrossRefPubMedPubMedCentral Edvinsson L, Nilsson E, Jansen-Olesen I (2007) Inhibitory effect of BIBN4096BS, CGRP8–37, a CGRP antibody and an RNA-Spiegelmer on CGRP induced vasodilatation in the perfused and non-perfused rat middle cerebral artery. Br J Pharmacol 150:633–640CrossRefPubMedPubMedCentral
Metadata
Title
Differential inhibitory response to telcagepant on αCGRP induced vasorelaxation and intracellular Ca2+ levels in the perfused and non-perfused isolated rat middle cerebral artery
Authors
André Erdling
Majid Sheykhzade
Lars Edvinsson
Publication date
01-12-2017
Publisher
Springer Milan
Published in
The Journal of Headache and Pain / Issue 1/2017
Print ISSN: 1129-2369
Electronic ISSN: 1129-2377
DOI
https://doi.org/10.1186/s10194-017-0768-4

Other articles of this Issue 1/2017

The Journal of Headache and Pain 1/2017 Go to the issue