Skip to main content
Top
Published in: The Journal of Headache and Pain 1/2017

Open Access 01-12-2017 | Research article

Hyperbaric oxygen attenuates neuropathic pain and reverses inflammatory signaling likely via the Kindlin-1/Wnt-10a signaling pathway in the chronic pain injury model in rats

Authors: Baisong Zhao, Yongying Pan, Haiping Xu, Xingrong Song

Published in: The Journal of Headache and Pain | Issue 1/2017

Login to get access

Abstract

Background

Hyperbaric oxygen (HBO) therapy is proven to attenuate neuropathic pain in rodents. The goal of the present study was to determine the potential involvement of the Kindlin-1/Wnt-10a signaling pathway during astrocyte activation and inflammation in a rodent model of neuropathic pain.

Methods

Rats were assigned into sham operation, chronic constriction injury (CCI), and CCI + HBO treatment groups. Neuropathic pain developed in rats following CCI of the sciatic nerve. Rats in the CCI + HBO group received HBO treatment for five consecutive days beginning on postoperative day 1. The mechanical withdrawal threshold (MWT) and the thermal withdrawal latency (TWL) tests were performed to determine mechanical and heat hypersensitivity of animals, respectively. Kindlin-1, Wnt-10a and β-catenin protein expression was examined by immunohistochemistry and Western blot analysis. Expression of tumor necrosis factor (TNF)-α was also determined by ELISA.

Results

Our findings demonstrated that HBO treatment significantly suppressed mechanical and thermal hypersensitivity in the CCI neuropathic pain model in rats. HBO therapy significantly reversed the up-regulation of Kindlin-1 in dorsal root ganglia (DRG), spinal cord, and hippocampus of CCI rats. CCI-induced astrocyte activation and increased levels of TNF-α were efficiently reversed by HBO (P < 0.05 vs. CCI). HBO also reversed Wnt-10a up-regulation induced by CCI in the DRG, spinal cord, and hippocampus (P < 0.05 vs. CCI).

Conclusions

Our findings demonstrate that HBO attenuated CCI-induced rat neuropathic pain and inflammatory responses, possibly through regulation of the Kindlin-1/Wnt-10a signaling pathway.
Literature
2.
go back to reference Doth AH, Hansson PT, Jensen MP, Taylor RS (2010) The burden of neuropathic pain: a systematic review and meta-analysis of health utilities. Pain 149:338–344CrossRefPubMed Doth AH, Hansson PT, Jensen MP, Taylor RS (2010) The burden of neuropathic pain: a systematic review and meta-analysis of health utilities. Pain 149:338–344CrossRefPubMed
3.
go back to reference Smith BH, Torrance N, Bennett MI, Lee AJ (2007) Health and quality of life associated with chronic pain of predominantly neuropathic origin in the community. Clin J Pain 23:143–149CrossRefPubMed Smith BH, Torrance N, Bennett MI, Lee AJ (2007) Health and quality of life associated with chronic pain of predominantly neuropathic origin in the community. Clin J Pain 23:143–149CrossRefPubMed
4.
go back to reference Gilron I, Jensen TS, Dickenson AH (2013) Combination pharmacotherapy for management of chronic pain: from bench to bedside. Lancet Neurol 12:1084–1095CrossRefPubMed Gilron I, Jensen TS, Dickenson AH (2013) Combination pharmacotherapy for management of chronic pain: from bench to bedside. Lancet Neurol 12:1084–1095CrossRefPubMed
5.
go back to reference Matsuo H, Uchida K, Nakajima H, Guerrero AR, Watanabe S, Takeura N, Sugita D, Shimada S, Nakatsuka T, Baba H (2014) Early transcutaneous electrical nerve stimulation reduces hyperalgesia and decreases activation of spinal glial cells in mice with neuropathic pain. Pain 155:1888–1901CrossRefPubMed Matsuo H, Uchida K, Nakajima H, Guerrero AR, Watanabe S, Takeura N, Sugita D, Shimada S, Nakatsuka T, Baba H (2014) Early transcutaneous electrical nerve stimulation reduces hyperalgesia and decreases activation of spinal glial cells in mice with neuropathic pain. Pain 155:1888–1901CrossRefPubMed
6.
go back to reference Young NA, Sharma M, Deogaonkar M (2014) Transcranial magnetic stimulation for chronic pain. Neurosurg Clin N Am 25:819–832CrossRefPubMed Young NA, Sharma M, Deogaonkar M (2014) Transcranial magnetic stimulation for chronic pain. Neurosurg Clin N Am 25:819–832CrossRefPubMed
7.
go back to reference Liang Y, Qiu Y, Du J, Liu J, Fang J, Zhu J (2016) Inhibition of spinal microglia and astrocytes contributes to the anti-allodynic effect of electroacupuncture in neuropathic pain induced by spinal nerve ligation. Acupunct Med 34:40–47CrossRefPubMed Liang Y, Qiu Y, Du J, Liu J, Fang J, Zhu J (2016) Inhibition of spinal microglia and astrocytes contributes to the anti-allodynic effect of electroacupuncture in neuropathic pain induced by spinal nerve ligation. Acupunct Med 34:40–47CrossRefPubMed
8.
go back to reference McMonnies CW (2015) Hyperbaric oxygen therapy and the possibility of ocular complications or contraindications. Clin Exp Optom 98:122–125CrossRefPubMed McMonnies CW (2015) Hyperbaric oxygen therapy and the possibility of ocular complications or contraindications. Clin Exp Optom 98:122–125CrossRefPubMed
9.
go back to reference Sutherland AM, Clarke HA, Katz J, Katznelson R (2016) Hyperbaric oxygen therapy: a new treatment for chronic pain? Pain Pract 16(5):620–628CrossRefPubMed Sutherland AM, Clarke HA, Katz J, Katznelson R (2016) Hyperbaric oxygen therapy: a new treatment for chronic pain? Pain Pract 16(5):620–628CrossRefPubMed
10.
go back to reference Zhao BS, Meng LX, Ding YY, Cao YY (2014) Hyperbaric oxygen treatment produces an antinociceptive response phase and inhibits astrocyte activation and inflammatory response in a rat model of neuropathic pain. J Mol Neurosci 53:251–261CrossRefPubMed Zhao BS, Meng LX, Ding YY, Cao YY (2014) Hyperbaric oxygen treatment produces an antinociceptive response phase and inhibits astrocyte activation and inflammatory response in a rat model of neuropathic pain. J Mol Neurosci 53:251–261CrossRefPubMed
11.
go back to reference Zhao BS, Song XR, Hu PY, Meng LX, Tan YH, She YJ, Ding YY (2015) Hyperbaric oxygen treatment at various stages following chronic constriction injury produces different antinociceptive effects via regulation of p2x4r expression and apoptosis. PLoS One 10:e0120122CrossRefPubMedPubMedCentral Zhao BS, Song XR, Hu PY, Meng LX, Tan YH, She YJ, Ding YY (2015) Hyperbaric oxygen treatment at various stages following chronic constriction injury produces different antinociceptive effects via regulation of p2x4r expression and apoptosis. PLoS One 10:e0120122CrossRefPubMedPubMedCentral
12.
go back to reference Di Sabato F, Rocco M, Martelletti P, Giacovazzo M (1997) Hyperbaric oxygen in chronic cluster headaches: Influence on serotonergic pathways. Undersea Hyperb Med 24:117–122PubMed Di Sabato F, Rocco M, Martelletti P, Giacovazzo M (1997) Hyperbaric oxygen in chronic cluster headaches: Influence on serotonergic pathways. Undersea Hyperb Med 24:117–122PubMed
13.
go back to reference Guimei M, Baddour N, Elkaffash D, Abdou L, Taher Y (2012) Gremlin in the pathogenesis of hepatocellular carcinoma complicating chronic hepatitis c: An immunohistochemical and pcr study of human liver biopsies. BMC Res Notes 5:390CrossRefPubMedPubMedCentral Guimei M, Baddour N, Elkaffash D, Abdou L, Taher Y (2012) Gremlin in the pathogenesis of hepatocellular carcinoma complicating chronic hepatitis c: An immunohistochemical and pcr study of human liver biopsies. BMC Res Notes 5:390CrossRefPubMedPubMedCentral
14.
go back to reference Old EA, Clark AK, Malcangio M (2015) The role of glia in the spinal cord in neuropathic and inflammatory pain. Handb Exp Pharmacol 227:145–170CrossRefPubMed Old EA, Clark AK, Malcangio M (2015) The role of glia in the spinal cord in neuropathic and inflammatory pain. Handb Exp Pharmacol 227:145–170CrossRefPubMed
15.
go back to reference Johnson KM, Milner R, Crocker SJ (2015) Extracellular matrix composition determines astrocyte responses to mechanical and inflammatory stimuli. Neurosci Lett 600:104–109CrossRefPubMedPubMedCentral Johnson KM, Milner R, Crocker SJ (2015) Extracellular matrix composition determines astrocyte responses to mechanical and inflammatory stimuli. Neurosci Lett 600:104–109CrossRefPubMedPubMedCentral
16.
go back to reference Brahme NN, Harburger DS, Kemp-O’Brien K, Stewart R, Raghavan S, Parsons M, Calderwood DA (2013) Kindlin binds migfilin tandem lim domains and regulates migfilin focal adhesion localization and recruitment dynamics. J Biol Chem 288:35604–35616CrossRefPubMedPubMedCentral Brahme NN, Harburger DS, Kemp-O’Brien K, Stewart R, Raghavan S, Parsons M, Calderwood DA (2013) Kindlin binds migfilin tandem lim domains and regulates migfilin focal adhesion localization and recruitment dynamics. J Biol Chem 288:35604–35616CrossRefPubMedPubMedCentral
17.
go back to reference Rognoni E, Widmaier M, Jakobson M, Ruppert R, Ussar S, Katsougkri D, Bottcher RT, Lai-Cheong JE, Rifkin DB, McGrath JA, Fassler R (2014) Kindlin-1 controls wnt and tgf-beta availability to regulate cutaneous stem cell proliferation. Nat Med 20:350–359CrossRefPubMedPubMedCentral Rognoni E, Widmaier M, Jakobson M, Ruppert R, Ussar S, Katsougkri D, Bottcher RT, Lai-Cheong JE, Rifkin DB, McGrath JA, Fassler R (2014) Kindlin-1 controls wnt and tgf-beta availability to regulate cutaneous stem cell proliferation. Nat Med 20:350–359CrossRefPubMedPubMedCentral
18.
go back to reference Song XJ, Hu SJ, Greenquist KW, Zhang JM, LaMotte RH (1999) Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia. J Neurophysiol 82:3347–3358PubMed Song XJ, Hu SJ, Greenquist KW, Zhang JM, LaMotte RH (1999) Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia. J Neurophysiol 82:3347–3358PubMed
19.
go back to reference Zhao BS, Pan YY, Wang ZX (2016) Intrathecal administration of tempol reduces chronic constriction injury-induced neuropathic pain in rats by increasing SOD activity and inhibiting NGF expression. Cell Mol Neurobiol 36(6):893–906CrossRefPubMed Zhao BS, Pan YY, Wang ZX (2016) Intrathecal administration of tempol reduces chronic constriction injury-induced neuropathic pain in rats by increasing SOD activity and inhibiting NGF expression. Cell Mol Neurobiol 36(6):893–906CrossRefPubMed
22.
go back to reference Zheng W, Ouyang H, Zheng X, Liu S, Mata M, Fink DJ, Hao S (2011) Glial tnfalpha in the spinal cord regulates neuropathic pain induced by hiv gp120 application in rats. Mol Pain 7:40CrossRefPubMedPubMedCentral Zheng W, Ouyang H, Zheng X, Liu S, Mata M, Fink DJ, Hao S (2011) Glial tnfalpha in the spinal cord regulates neuropathic pain induced by hiv gp120 application in rats. Mol Pain 7:40CrossRefPubMedPubMedCentral
23.
go back to reference Xu JT, Xin WJ, Zang Y, Wu CY, Liu XG (2006) The role of tumor necrosis factor-alpha in the neuropathic pain induced by lumbar 5 ventral root transection in rat. Pain 123:306–321CrossRefPubMed Xu JT, Xin WJ, Zang Y, Wu CY, Liu XG (2006) The role of tumor necrosis factor-alpha in the neuropathic pain induced by lumbar 5 ventral root transection in rat. Pain 123:306–321CrossRefPubMed
24.
go back to reference Watkins LR, Hutchinson MR, Johnston IN, Maier SF (2005) Glia: novel counter-regulators of opioid analgesia. Trends Neurosci 28:661–669CrossRefPubMed Watkins LR, Hutchinson MR, Johnston IN, Maier SF (2005) Glia: novel counter-regulators of opioid analgesia. Trends Neurosci 28:661–669CrossRefPubMed
25.
go back to reference Mika J, Rojewska E, Makuch W, Korostynski M, Luvisetto S, Marinelli S, Pavone F, Przewlocka B (2011) The effect of botulinum neurotoxin a on sciatic nerve injury-induced neuroimmunological changes in rat dorsal root ganglia and spinal cord. Neuroscience 175:358–366CrossRefPubMed Mika J, Rojewska E, Makuch W, Korostynski M, Luvisetto S, Marinelli S, Pavone F, Przewlocka B (2011) The effect of botulinum neurotoxin a on sciatic nerve injury-induced neuroimmunological changes in rat dorsal root ganglia and spinal cord. Neuroscience 175:358–366CrossRefPubMed
26.
go back to reference Gerard E, Spengler RN, Bonoiu AC, Mahajan SD, Davidson BA, Ding H, Kumar R, Prasad PN, Knight PR, Ignatowski TA (2015) Chronic constriction injury-induced nociception is relieved by nanomedicine-mediated decrease of rat hippocampal tumor necrosis factor. Pain 156:1320–1333CrossRefPubMedPubMedCentral Gerard E, Spengler RN, Bonoiu AC, Mahajan SD, Davidson BA, Ding H, Kumar R, Prasad PN, Knight PR, Ignatowski TA (2015) Chronic constriction injury-induced nociception is relieved by nanomedicine-mediated decrease of rat hippocampal tumor necrosis factor. Pain 156:1320–1333CrossRefPubMedPubMedCentral
27.
go back to reference Li F, Fang L, Huang S, Yang Z, Nandi J, Thomas S, Chen C, Camporesi E (2011) Hyperbaric oxygenation therapy alleviates chronic constrictive injury-induced neuropathic pain and reduces tumor necrosis factor-alpha production. Anesth Analg 113:626–633PubMed Li F, Fang L, Huang S, Yang Z, Nandi J, Thomas S, Chen C, Camporesi E (2011) Hyperbaric oxygenation therapy alleviates chronic constrictive injury-induced neuropathic pain and reduces tumor necrosis factor-alpha production. Anesth Analg 113:626–633PubMed
28.
go back to reference Zhang YK, Huang ZJ, Liu S, Liu YP, Song AA, Song XJ (2013) Wnt signaling underlies the pathogenesis of neuropathic pain in rodents. J Clin Invest 123:2268–2286CrossRefPubMedPubMedCentral Zhang YK, Huang ZJ, Liu S, Liu YP, Song AA, Song XJ (2013) Wnt signaling underlies the pathogenesis of neuropathic pain in rodents. J Clin Invest 123:2268–2286CrossRefPubMedPubMedCentral
29.
go back to reference Itokazu T, Hayano Y, Takahashi R, Yamashita T (2014) Involvement of wnt/beta-catenin signaling in the development of neuropathic pain. Neurosci Res 79:34–40CrossRefPubMed Itokazu T, Hayano Y, Takahashi R, Yamashita T (2014) Involvement of wnt/beta-catenin signaling in the development of neuropathic pain. Neurosci Res 79:34–40CrossRefPubMed
30.
go back to reference Shi Y, Yuan S, Li B, Wang J, Carlton SM, Chung K, Chung JM, Tang SJ (2012) Regulation of wnt signaling by nociceptive input in animal models. Mol Pain 8:47CrossRefPubMedPubMedCentral Shi Y, Yuan S, Li B, Wang J, Carlton SM, Chung K, Chung JM, Tang SJ (2012) Regulation of wnt signaling by nociceptive input in animal models. Mol Pain 8:47CrossRefPubMedPubMedCentral
Metadata
Title
Hyperbaric oxygen attenuates neuropathic pain and reverses inflammatory signaling likely via the Kindlin-1/Wnt-10a signaling pathway in the chronic pain injury model in rats
Authors
Baisong Zhao
Yongying Pan
Haiping Xu
Xingrong Song
Publication date
01-12-2017
Publisher
Springer Milan
Published in
The Journal of Headache and Pain / Issue 1/2017
Print ISSN: 1129-2369
Electronic ISSN: 1129-2377
DOI
https://doi.org/10.1186/s10194-016-0713-y

Other articles of this Issue 1/2017

The Journal of Headache and Pain 1/2017 Go to the issue