Skip to main content
Top
Published in: Critical Care 2/2014

Open Access 01-04-2014 | Research

Decreased cardiac excitability secondary to reduction of sodium current may be a significant contributor to reduced contractility in a rat model of sepsis

Authors: Andrew Koesters, Kathrin L Engisch, Mark M Rich

Published in: Critical Care | Issue 2/2014

Login to get access

Abstract

Introduction

Multisystem organ failure remains a poorly understood complication of sepsis. During sepsis, reduced excitability contributes to organ failure of skeletal muscle, nerves and the spinal cord. The goal of this study was to determine whether reduced excitability might also contribute to cardiac failure during sepsis.

Methods

Wistar rats were made septic by cecal ligation and puncture. One day later, action potentials were recorded from beating left ventricular papillary muscle ex vivo by impaling myocytes with sharp microelectrodes.

Results

In cardiac papillary muscle from septic rats, action potential amplitude and rate of rise were reduced, while threshold was elevated. These changes in action potential properties suggest sepsis selectively reduces sodium current. To determine the effects of selective reduction in sodium current, we applied tetrodotoxin to papillary muscle from healthy rats and found reduction in action potential amplitude and rate of rise, as well as elevation of threshold. The changes were similar to those triggered by sepsis. Blocking calcium current using nifedipine did not mimic action potential changes induced by sepsis. Contractility of healthy papillary muscle was reduced to 40% of normal following partial block of sodium current by tetrodotoxin, close to the low contractility of septic papillary muscle, which was 30% of normal.

Conclusions

Our data suggest cardiac excitability is reduced during sepsis in rats. The reduction in excitability appears to be primarily due to reduction of sodium current. The reduction in sodium current may be sufficient to explain most of the reduction in cardiac contractility during sepsis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rich MM, Bird SJ, Raps EC, McCluskey LF, Teener JW: Direct muscle stimulation in acute quadriplegic myopathy. Muscle Nerve 1997, 20: 665-673. 10.1002/(SICI)1097-4598(199706)20:6<665::AID-MUS2>3.0.CO;2-6CrossRefPubMed Rich MM, Bird SJ, Raps EC, McCluskey LF, Teener JW: Direct muscle stimulation in acute quadriplegic myopathy. Muscle Nerve 1997, 20: 665-673. 10.1002/(SICI)1097-4598(199706)20:6<665::AID-MUS2>3.0.CO;2-6CrossRefPubMed
2.
go back to reference Rich MM, Teener JW, Raps EC, Schotland DL, Bird SJ: Muscle is electrically inexcitable in acute quadriplegic myopathy [see comments]. Neurology 1996, 46: 731-736. 10.1212/WNL.46.3.731CrossRefPubMed Rich MM, Teener JW, Raps EC, Schotland DL, Bird SJ: Muscle is electrically inexcitable in acute quadriplegic myopathy [see comments]. Neurology 1996, 46: 731-736. 10.1212/WNL.46.3.731CrossRefPubMed
3.
go back to reference Allen DC, Arunachalam R, Mills KR: Critical illness myopathy: further evidence from muscle-fiber excitability studies of an acquired channelopathy. Muscle Nerve 2008, 37: 14-22. 10.1002/mus.20884CrossRefPubMed Allen DC, Arunachalam R, Mills KR: Critical illness myopathy: further evidence from muscle-fiber excitability studies of an acquired channelopathy. Muscle Nerve 2008, 37: 14-22. 10.1002/mus.20884CrossRefPubMed
4.
go back to reference Z'Graggen WJ, Brander L, Tuchscherer D, Scheidegger O, Takala J, Bostock H: Muscle membrane dysfunction in critical illness myopathy assessed by velocity recovery cycles. Clin Neurophysiol 2011, 122: 834-841. 10.1016/j.clinph.2010.09.024CrossRefPubMed Z'Graggen WJ, Brander L, Tuchscherer D, Scheidegger O, Takala J, Bostock H: Muscle membrane dysfunction in critical illness myopathy assessed by velocity recovery cycles. Clin Neurophysiol 2011, 122: 834-841. 10.1016/j.clinph.2010.09.024CrossRefPubMed
5.
go back to reference Rich MM, Pinter MJ, Kraner SD, Barchi RL: Loss of electrical excitability in an animal model of acute quadriplegic myopathy. Ann Neurol 1998, 43: 171-179. 10.1002/ana.410430207CrossRefPubMed Rich MM, Pinter MJ, Kraner SD, Barchi RL: Loss of electrical excitability in an animal model of acute quadriplegic myopathy. Ann Neurol 1998, 43: 171-179. 10.1002/ana.410430207CrossRefPubMed
6.
go back to reference Z'Graggen WJ, Lin CS, Howard RS, Beale RJ, Bostock H: Nerve excitability changes in critical illness polyneuropathy. Brain 2006, 129: 2461-2470. 10.1093/brain/awl191CrossRefPubMed Z'Graggen WJ, Lin CS, Howard RS, Beale RJ, Bostock H: Nerve excitability changes in critical illness polyneuropathy. Brain 2006, 129: 2461-2470. 10.1093/brain/awl191CrossRefPubMed
7.
go back to reference Novak KR, Nardelli P, Cope TC, Filatov G, Glass JD, Khan J, Rich MM: Inactivation of sodium channels underlies reversible neuropathy during critical illness in rats. J Clin Invest 2009, 119: 1150-1158. 10.1172/JCI36570PubMedCentralCrossRefPubMed Novak KR, Nardelli P, Cope TC, Filatov G, Glass JD, Khan J, Rich MM: Inactivation of sodium channels underlies reversible neuropathy during critical illness in rats. J Clin Invest 2009, 119: 1150-1158. 10.1172/JCI36570PubMedCentralCrossRefPubMed
8.
go back to reference Nardelli P, Khan J, Powers R, Cope TC, Rich MM: Reduced motoneuron excitability in a rat model of sepsis. J Neurophysiol 2013, 109: 1775-1781. 10.1152/jn.00936.2012PubMedCentralCrossRefPubMed Nardelli P, Khan J, Powers R, Cope TC, Rich MM: Reduced motoneuron excitability in a rat model of sepsis. J Neurophysiol 2013, 109: 1775-1781. 10.1152/jn.00936.2012PubMedCentralCrossRefPubMed
9.
go back to reference Rich MM, Pinter MJ: Sodium channel inactivation in an animal model of acute quadriplegic myopathy. Ann Neurol 2001, 50: 26-33. 10.1002/ana.1016CrossRefPubMed Rich MM, Pinter MJ: Sodium channel inactivation in an animal model of acute quadriplegic myopathy. Ann Neurol 2001, 50: 26-33. 10.1002/ana.1016CrossRefPubMed
10.
go back to reference Rich MM, Pinter MJ: Crucial role of sodium channel fast inactivation in muscle fibre inexcitability in a rat model of critical illness myopathy. J Physiol 2003, 547: 555-566. 10.1113/jphysiol.2002.035188PubMedCentralCrossRefPubMed Rich MM, Pinter MJ: Crucial role of sodium channel fast inactivation in muscle fibre inexcitability in a rat model of critical illness myopathy. J Physiol 2003, 547: 555-566. 10.1113/jphysiol.2002.035188PubMedCentralCrossRefPubMed
11.
go back to reference Rossignol B, Gueret G, Pennec JP, Morel J, Giroux-Metges MA, Talarmin H, Arvieux CC: Effects of chronic sepsis on the voltage-gated sodium channel in isolated rat muscle fibers. Crit Care Med 2007, 35: 351-357. 10.1097/01.CCM.0000254335.88023.0ECrossRefPubMed Rossignol B, Gueret G, Pennec JP, Morel J, Giroux-Metges MA, Talarmin H, Arvieux CC: Effects of chronic sepsis on the voltage-gated sodium channel in isolated rat muscle fibers. Crit Care Med 2007, 35: 351-357. 10.1097/01.CCM.0000254335.88023.0ECrossRefPubMed
12.
go back to reference Filatov GN, Rich MM: Hyperpolarized shifts in the voltage dependence of fast inactivation of Nav1.4 and Nav1.5 in a rat model of critical illness myopathy. J Physiol 2004, 559: 813-820. 10.1113/jphysiol.2004.062349PubMedCentralCrossRefPubMed Filatov GN, Rich MM: Hyperpolarized shifts in the voltage dependence of fast inactivation of Nav1.4 and Nav1.5 in a rat model of critical illness myopathy. J Physiol 2004, 559: 813-820. 10.1113/jphysiol.2004.062349PubMedCentralCrossRefPubMed
13.
14.
go back to reference Maeder M, Fehr T, Rickli H, Ammann P: Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest 2006, 129: 1349-1366. 10.1378/chest.129.5.1349CrossRefPubMed Maeder M, Fehr T, Rickli H, Ammann P: Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest 2006, 129: 1349-1366. 10.1378/chest.129.5.1349CrossRefPubMed
15.
go back to reference Merx MW, Weber C: Sepsis and the heart. Circulation 2007, 116: 793-802. 10.1161/CIRCULATIONAHA.106.678359CrossRefPubMed Merx MW, Weber C: Sepsis and the heart. Circulation 2007, 116: 793-802. 10.1161/CIRCULATIONAHA.106.678359CrossRefPubMed
16.
go back to reference Rudiger A, Singer M: Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 2007, 35: 1599-1608. 10.1097/01.CCM.0000266683.64081.02CrossRefPubMed Rudiger A, Singer M: Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 2007, 35: 1599-1608. 10.1097/01.CCM.0000266683.64081.02CrossRefPubMed
17.
go back to reference Rich MM, McGarvey ML, Teener JW, Frame LH: ECG changes during septic shock. Cardiology 2002, 97: 187-196. 10.1159/000063120CrossRefPubMed Rich MM, McGarvey ML, Teener JW, Frame LH: ECG changes during septic shock. Cardiology 2002, 97: 187-196. 10.1159/000063120CrossRefPubMed
18.
go back to reference Madias JE, Bazaz R, Agarwal H, Win M, Medepalli L: Anasarca-mediated attenuation of the amplitude of electrocardiogram complexes: a description of a heretofore unrecognized phenomenon. J Am Coll Cardiol 2001, 38: 756-764. 10.1016/S0735-1097(01)01429-2CrossRefPubMed Madias JE, Bazaz R, Agarwal H, Win M, Medepalli L: Anasarca-mediated attenuation of the amplitude of electrocardiogram complexes: a description of a heretofore unrecognized phenomenon. J Am Coll Cardiol 2001, 38: 756-764. 10.1016/S0735-1097(01)01429-2CrossRefPubMed
19.
go back to reference Madias JE, Bazaz R: On the mechanism of the reduction in the ECG QRS amplitudes in patients with sepsis. Cardiology 2003, 99: 166-168. 10.1159/000070674CrossRefPubMed Madias JE, Bazaz R: On the mechanism of the reduction in the ECG QRS amplitudes in patients with sepsis. Cardiology 2003, 99: 166-168. 10.1159/000070674CrossRefPubMed
20.
go back to reference Filatov GN, Pinter MJ, Rich MM: Role of Ca(2+) in injury-induced changes in sodium current in rat skeletal muscle. Am J Physiol Cell Physiol 2009, 297: C352-C359. 10.1152/ajpcell.00021.2009PubMedCentralCrossRefPubMed Filatov GN, Pinter MJ, Rich MM: Role of Ca(2+) in injury-induced changes in sodium current in rat skeletal muscle. Am J Physiol Cell Physiol 2009, 297: C352-C359. 10.1152/ajpcell.00021.2009PubMedCentralCrossRefPubMed
21.
go back to reference Mulieri LA, Hasenfuss G, Ittleman F, Blanchard EM, Alpert NR: Protection of human left ventricular myocardium from cutting injury with 2,3-butanedione monoxime. Circ Res 1989, 65: 1441-1449. 10.1161/01.RES.65.5.1441CrossRefPubMed Mulieri LA, Hasenfuss G, Ittleman F, Blanchard EM, Alpert NR: Protection of human left ventricular myocardium from cutting injury with 2,3-butanedione monoxime. Circ Res 1989, 65: 1441-1449. 10.1161/01.RES.65.5.1441CrossRefPubMed
22.
go back to reference Kiriazis H, Gibbs CL: Papillary muscles split in the presence of 2,3-butanedione monoxime have normal energetic and mechanical properties. Am J Physiol 1995, 269: H1685-H1694.PubMed Kiriazis H, Gibbs CL: Papillary muscles split in the presence of 2,3-butanedione monoxime have normal energetic and mechanical properties. Am J Physiol 1995, 269: H1685-H1694.PubMed
23.
go back to reference Venditti P, Balestrieri M, De Leo T, Di Meo S: Free radical involvement in doxorubicin-induced electrophysiological alterations in rat papillary muscle fibres. Cardiovasc Res 1998, 38: 695-702. 10.1016/S0008-6363(98)00034-0CrossRefPubMed Venditti P, Balestrieri M, De Leo T, Di Meo S: Free radical involvement in doxorubicin-induced electrophysiological alterations in rat papillary muscle fibres. Cardiovasc Res 1998, 38: 695-702. 10.1016/S0008-6363(98)00034-0CrossRefPubMed
24.
go back to reference Backx PH, Gao WD, Azan-Backx MD, Marban E: Mechanism of force inhibition by 2,3-butanedione monoxime in rat cardiac muscle: roles of [Ca2+]i and cross-bridge kinetics. J Physiol 1994, 476: 487-500.PubMedCentralCrossRefPubMed Backx PH, Gao WD, Azan-Backx MD, Marban E: Mechanism of force inhibition by 2,3-butanedione monoxime in rat cardiac muscle: roles of [Ca2+]i and cross-bridge kinetics. J Physiol 1994, 476: 487-500.PubMedCentralCrossRefPubMed
25.
go back to reference Abraham S, Beatch GN, MacLeod BA, Walker MJ: Antiarrhythmic properties of tetrodotoxin against occlusion-induced arrhythmias in the rat: a novel approach to the study of the antiarrhythmic effects of ventricular sodium channel blockade. J Pharmacol Exp Ther 1989, 251: 1166-1173.PubMed Abraham S, Beatch GN, MacLeod BA, Walker MJ: Antiarrhythmic properties of tetrodotoxin against occlusion-induced arrhythmias in the rat: a novel approach to the study of the antiarrhythmic effects of ventricular sodium channel blockade. J Pharmacol Exp Ther 1989, 251: 1166-1173.PubMed
27.
go back to reference Goldin AL: Resurgence of sodium channel research. Annu Rev Physiol 2001, 63: 871-894. 10.1146/annurev.physiol.63.1.871CrossRefPubMed Goldin AL: Resurgence of sodium channel research. Annu Rev Physiol 2001, 63: 871-894. 10.1146/annurev.physiol.63.1.871CrossRefPubMed
28.
go back to reference Cribbs LL, Satin J, Fozzard HA, Rogart RB: Functional expression of the rat heart I Na + channel isoform. Demonstration of properties characteristic of native cardiac Na + channels. FEBS Lett 1990, 275: 195-200. 10.1016/0014-5793(90)81470-9CrossRefPubMed Cribbs LL, Satin J, Fozzard HA, Rogart RB: Functional expression of the rat heart I Na + channel isoform. Demonstration of properties characteristic of native cardiac Na + channels. FEBS Lett 1990, 275: 195-200. 10.1016/0014-5793(90)81470-9CrossRefPubMed
29.
go back to reference White MM, Chen LQ, Kleinfield R, Kallen RG, Barchi RL: SkM2, a Na + channel cDNA clone from denervated skeletal muscle, encodes a tetrodotoxin-insensitive Na + channel. Mol Pharmacol 1991, 39: 604-608.PubMed White MM, Chen LQ, Kleinfield R, Kallen RG, Barchi RL: SkM2, a Na + channel cDNA clone from denervated skeletal muscle, encodes a tetrodotoxin-insensitive Na + channel. Mol Pharmacol 1991, 39: 604-608.PubMed
30.
go back to reference Szentandrassy N, Nagy D, Ruzsnavszky F, Harmati G, Banyasz T, Magyar J, Szentmiklosi AJ, Nanasi PP: Powerful technique to test selectivity of agents acting on cardiac ion channels: the action potential voltage-clamp. Curr Med Chem 2011, 18: 3737-3756. 10.2174/092986711796642418CrossRefPubMed Szentandrassy N, Nagy D, Ruzsnavszky F, Harmati G, Banyasz T, Magyar J, Szentmiklosi AJ, Nanasi PP: Powerful technique to test selectivity of agents acting on cardiac ion channels: the action potential voltage-clamp. Curr Med Chem 2011, 18: 3737-3756. 10.2174/092986711796642418CrossRefPubMed
31.
go back to reference Boucher PA, Joos B, Morris CE: Coupled left-shift of Nav channels: modeling the Na(+)-loading and dysfunctional excitability of damaged axons. J Comput Neurosci 2012, 33: 301-319. 10.1007/s10827-012-0387-7CrossRefPubMed Boucher PA, Joos B, Morris CE: Coupled left-shift of Nav channels: modeling the Na(+)-loading and dysfunctional excitability of damaged axons. J Comput Neurosci 2012, 33: 301-319. 10.1007/s10827-012-0387-7CrossRefPubMed
32.
go back to reference Morris CE, Boucher PA, Joos B: Left-shifted nav channels in injured bilayer: primary targets for neuroprotective nav antagonists? Front Pharmacol 2012, 3: 19.PubMedCentralCrossRefPubMed Morris CE, Boucher PA, Joos B: Left-shifted nav channels in injured bilayer: primary targets for neuroprotective nav antagonists? Front Pharmacol 2012, 3: 19.PubMedCentralCrossRefPubMed
33.
go back to reference Pinet C, Le Grand B, John GW, Coulombe A: Thrombin facilitation of voltage-gated sodium channel activation in human cardiomyocytes: implications for ischemic sodium loading. Circulation 2002, 106: 2098-2103. 10.1161/01.CIR.0000034510.64828.96CrossRefPubMed Pinet C, Le Grand B, John GW, Coulombe A: Thrombin facilitation of voltage-gated sodium channel activation in human cardiomyocytes: implications for ischemic sodium loading. Circulation 2002, 106: 2098-2103. 10.1161/01.CIR.0000034510.64828.96CrossRefPubMed
34.
go back to reference Goldhaber JI, Philipson KD: Cardiac sodium-calcium exchange and efficient excitation-contraction coupling: implications for heart disease. Adv Exp Med Biol 2013, 961: 355-364. 10.1007/978-1-4614-4756-6_30PubMedCentralCrossRefPubMed Goldhaber JI, Philipson KD: Cardiac sodium-calcium exchange and efficient excitation-contraction coupling: implications for heart disease. Adv Exp Med Biol 2013, 961: 355-364. 10.1007/978-1-4614-4756-6_30PubMedCentralCrossRefPubMed
35.
go back to reference Zhong J, Hwang TC, Adams HR, Rubin LJ: Reduced L-type calcium current in ventricular myocytes from endotoxemic guinea pigs. Am J Physiol 1997,273(5 Pt 2):H2312-2324.PubMed Zhong J, Hwang TC, Adams HR, Rubin LJ: Reduced L-type calcium current in ventricular myocytes from endotoxemic guinea pigs. Am J Physiol 1997,273(5 Pt 2):H2312-2324.PubMed
36.
go back to reference Ren J, Ren BH, Sharma AC: Sepsis-induced depressed contractile function of isolated ventricular myocytes is due to altered calcium transient properties. Shock 2002, 18: 285-288. 10.1097/00024382-200209000-00014CrossRefPubMed Ren J, Ren BH, Sharma AC: Sepsis-induced depressed contractile function of isolated ventricular myocytes is due to altered calcium transient properties. Shock 2002, 18: 285-288. 10.1097/00024382-200209000-00014CrossRefPubMed
37.
go back to reference Zhu X, Bernecker OY, Manohar NS, Hajjar RJ, Hellman J, Ichinose F, Valdivia HH, Schmidt U: Increased leakage of sarcoplasmic reticulum Ca2+ contributes to abnormal myocyte Ca2+ handling and shortening in sepsis. Crit Care Med 2005, 33: 598-604. 10.1097/01.CCM.0000152223.27176.A6CrossRefPubMed Zhu X, Bernecker OY, Manohar NS, Hajjar RJ, Hellman J, Ichinose F, Valdivia HH, Schmidt U: Increased leakage of sarcoplasmic reticulum Ca2+ contributes to abnormal myocyte Ca2+ handling and shortening in sepsis. Crit Care Med 2005, 33: 598-604. 10.1097/01.CCM.0000152223.27176.A6CrossRefPubMed
38.
go back to reference Hassoun SM, Marechal X, Montaigne D, Bouazza Y, Decoster B, Lancel S, Neviere R: Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Crit Care Med 2008, 36: 2590-2596. 10.1097/CCM.0b013e3181844276CrossRefPubMed Hassoun SM, Marechal X, Montaigne D, Bouazza Y, Decoster B, Lancel S, Neviere R: Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Crit Care Med 2008, 36: 2590-2596. 10.1097/CCM.0b013e3181844276CrossRefPubMed
39.
go back to reference Duncan DJ, Yang Z, Hopkins PM, Steele DS, Harrison SM: TNF-alpha and IL-1beta increase Ca2+ leak from the sarcoplasmic reticulum and susceptibility to arrhythmia in rat ventricular myocytes. Cell Calcium 2010, 47: 378-386. 10.1016/j.ceca.2010.02.002PubMedCentralCrossRefPubMed Duncan DJ, Yang Z, Hopkins PM, Steele DS, Harrison SM: TNF-alpha and IL-1beta increase Ca2+ leak from the sarcoplasmic reticulum and susceptibility to arrhythmia in rat ventricular myocytes. Cell Calcium 2010, 47: 378-386. 10.1016/j.ceca.2010.02.002PubMedCentralCrossRefPubMed
40.
go back to reference Dong M, Niklewski PJ, Wang HS: Ionic mechanisms of cellular electrical and mechanical abnormalities in Brugada syndrome. Am J Physiol Heart Circ Physiol 2011, 300: H279-H287. 10.1152/ajpheart.00079.2010PubMedCentralCrossRefPubMed Dong M, Niklewski PJ, Wang HS: Ionic mechanisms of cellular electrical and mechanical abnormalities in Brugada syndrome. Am J Physiol Heart Circ Physiol 2011, 300: H279-H287. 10.1152/ajpheart.00079.2010PubMedCentralCrossRefPubMed
41.
go back to reference Maier SK, Westenbroek RE, Schenkman KA, Feigl EO, Scheuer T, Catterall WA: An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc Natl Acad Sci U S A 2002, 99: 4073-4078. 10.1073/pnas.261705699PubMedCentralCrossRefPubMed Maier SK, Westenbroek RE, Schenkman KA, Feigl EO, Scheuer T, Catterall WA: An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc Natl Acad Sci U S A 2002, 99: 4073-4078. 10.1073/pnas.261705699PubMedCentralCrossRefPubMed
42.
go back to reference Aggarwal R, Shorofsky SR, Goldman L, Balke CW: Tetrodotoxin-blockable calcium currents in rat ventricular myocytes; a third type of cardiac cell sodium current. J Physiol 1997, 505: 353-369. 10.1111/j.1469-7793.1997.353bb.xPubMedCentralCrossRefPubMed Aggarwal R, Shorofsky SR, Goldman L, Balke CW: Tetrodotoxin-blockable calcium currents in rat ventricular myocytes; a third type of cardiac cell sodium current. J Physiol 1997, 505: 353-369. 10.1111/j.1469-7793.1997.353bb.xPubMedCentralCrossRefPubMed
43.
go back to reference Leblanc N, Hume JR: Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 1990, 248: 372-376. 10.1126/science.2158146CrossRefPubMed Leblanc N, Hume JR: Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 1990, 248: 372-376. 10.1126/science.2158146CrossRefPubMed
44.
go back to reference Torres NS, Larbig R, Rock A, Goldhaber JI, Bridge JH: Na + currents are required for efficient excitation-contraction coupling in rabbit ventricular myocytes: a possible contribution of neuronal Na + channels. J Physiol 2010, 588: 4249-4260. 10.1113/jphysiol.2010.194688PubMedCentralCrossRefPubMed Torres NS, Larbig R, Rock A, Goldhaber JI, Bridge JH: Na + currents are required for efficient excitation-contraction coupling in rabbit ventricular myocytes: a possible contribution of neuronal Na + channels. J Physiol 2010, 588: 4249-4260. 10.1113/jphysiol.2010.194688PubMedCentralCrossRefPubMed
45.
go back to reference Larbig R, Torres N, Bridge JH, Goldhaber JI, Philipson KD: Activation of reverse Na + −Ca2+ exchange by the Na + current augments the cardiac Ca2+ transient: evidence from NCX knockout mice. J Physiol 2010, 588: 3267-3276. 10.1113/jphysiol.2010.187708PubMedCentralCrossRefPubMed Larbig R, Torres N, Bridge JH, Goldhaber JI, Philipson KD: Activation of reverse Na + −Ca2+ exchange by the Na + current augments the cardiac Ca2+ transient: evidence from NCX knockout mice. J Physiol 2010, 588: 3267-3276. 10.1113/jphysiol.2010.187708PubMedCentralCrossRefPubMed
Metadata
Title
Decreased cardiac excitability secondary to reduction of sodium current may be a significant contributor to reduced contractility in a rat model of sepsis
Authors
Andrew Koesters
Kathrin L Engisch
Mark M Rich
Publication date
01-04-2014
Publisher
BioMed Central
Published in
Critical Care / Issue 2/2014
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc13800

Other articles of this Issue 2/2014

Critical Care 2/2014 Go to the issue