Skip to main content
Top
Published in: Breast Cancer Research 4/2004

Open Access 01-08-2004 | Research article

Analysis of dendritic cells in tumor-free and tumor-containing sentinel lymph nodes from patients with breast cancer

Authors: Nancy J Poindexter, Aysegul Sahin, Kelly K Hunt, Elizabeth A Grimm

Published in: Breast Cancer Research | Issue 4/2004

Login to get access

Abstract

Introduction

Sentinel lymph node (SLN) biopsy allows identification of the first lymph node into which a primary tumor drains. In breast cancer, identification of tumor cells in the SLNs is a predictor of the tumor's metastatic potential. In the present article, we tested the hypotheses that a positive immune response can occur in tumor-free SLNs and that the activation state of dendritic cells (DCs), the major antigen presenting cells within SLNs, predicts the immune status and metastatic potential of the tumor.

Methods

Fifty paraffin-embedded SLN sections, 25 tumor-free and 25 tumor-containing, from patients with breast cancer were analyzed by immunohistochemistry to determine the immune maturation state of their DCs. In addition, 12 lymph nodes from noncancer-containing breasts were analyzed. Tissues were stained with antibodies against CD3, MHC class II, CD1a, CD83, IL-10, and IL-12. Mature DCs were defined by CD83 expression and immature DCs by CD1a expression.

Results

We found a trend toward higher numbers of mature CD83-positive DCs in tumor-free SLNs than in tumor-containing SLNs (P = 0.07). In addition, tumor-free SLNs were more likely to contain cells expressing IL-10 (P = 0.02) and, to a lesser extent, IL-12 (P = 0.12). In contrast, when all SLNs, both tumor-free and tumor-containing, were compared with uninvolved lymph nodes, the numbers of mature and immature DCs were similar.

Conclusions

Our results suggest tumor-free SLNs are immunologically competent and potentially a site of tumor-specific T-cell activation, as evidenced by the presence of greater numbers of mature DCs and cytokine-producing cells in tumor-free SLNs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature. 1998, 392: 245-252. 10.1038/32588.CrossRefPubMed Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature. 1998, 392: 245-252. 10.1038/32588.CrossRefPubMed
2.
go back to reference Bell D, Chomarat P, Broyles D, Netto G, Harb GM, Lebecque S, Valladeau J, Davoust J, Palucka KA, Banchereau J: In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med. 1999, 190: 1417-1425. 10.1084/jem.190.10.1417.CrossRefPubMedPubMedCentral Bell D, Chomarat P, Broyles D, Netto G, Harb GM, Lebecque S, Valladeau J, Davoust J, Palucka KA, Banchereau J: In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med. 1999, 190: 1417-1425. 10.1084/jem.190.10.1417.CrossRefPubMedPubMedCentral
3.
go back to reference Cella M, Sallusto F, Lanzavecchia A: Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol. 1997, 9: 10-16. 10.1016/S0952-7915(97)80153-7.CrossRefPubMed Cella M, Sallusto F, Lanzavecchia A: Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol. 1997, 9: 10-16. 10.1016/S0952-7915(97)80153-7.CrossRefPubMed
4.
go back to reference Lapointe R, Toso JF, Butts C, Young HA, Hwu P: Human dendritic cells require multiple activation signals for the efficient generation of tumor antigen-specific T lymphocytes. Eur J Immunol. 2000, 30: 3291-3298. 10.1002/1521-4141(200011)30:11<3291::AID-IMMU3291>3.0.CO;2-2.CrossRefPubMed Lapointe R, Toso JF, Butts C, Young HA, Hwu P: Human dendritic cells require multiple activation signals for the efficient generation of tumor antigen-specific T lymphocytes. Eur J Immunol. 2000, 30: 3291-3298. 10.1002/1521-4141(200011)30:11<3291::AID-IMMU3291>3.0.CO;2-2.CrossRefPubMed
5.
go back to reference Giuliano AE, Jones RC, Brennan M, Statman R: Sentinel lymphadenectomy in breast cancer. J Clin Oncol. 1997, 15: 2345-2350.PubMed Giuliano AE, Jones RC, Brennan M, Statman R: Sentinel lymphadenectomy in breast cancer. J Clin Oncol. 1997, 15: 2345-2350.PubMed
6.
go back to reference Leong SPL: Paradigm of metastasis for melanoma and breast cancer based on the sentinel lymph node experience. Ann Surg Oncol. 2004, 11: 192S-197S. 10.1245/ASO.2004.12.922.CrossRefPubMed Leong SPL: Paradigm of metastasis for melanoma and breast cancer based on the sentinel lymph node experience. Ann Surg Oncol. 2004, 11: 192S-197S. 10.1245/ASO.2004.12.922.CrossRefPubMed
7.
go back to reference Zhou LJ, Schwarting R, Smith HM, Tedder TF: A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J Immunol. 1992, 149: 735-742.PubMed Zhou LJ, Schwarting R, Smith HM, Tedder TF: A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J Immunol. 1992, 149: 735-742.PubMed
8.
go back to reference Zhou LJ, Tedder TF: CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA. 1995, 93: 2588-2592. 10.1073/pnas.93.6.2588.CrossRef Zhou LJ, Tedder TF: CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA. 1995, 93: 2588-2592. 10.1073/pnas.93.6.2588.CrossRef
9.
go back to reference Iwamota M, Shinohara H, Miyamoto A, Okuzawa M, Mabuchi H, Nohara H, Gon G, Toyoda M, Tanigawa N: Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer. 2003, 104: 92-97. 10.1002/ijc.10915.CrossRef Iwamota M, Shinohara H, Miyamoto A, Okuzawa M, Mabuchi H, Nohara H, Gon G, Toyoda M, Tanigawa N: Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer. 2003, 104: 92-97. 10.1002/ijc.10915.CrossRef
10.
go back to reference Kalinski P, Hilkens CMU, Wierenga EA, Kapsenberg ML: T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today. 1999, 20: 561-567. 10.1016/S0167-5699(99)01547-9.CrossRefPubMed Kalinski P, Hilkens CMU, Wierenga EA, Kapsenberg ML: T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today. 1999, 20: 561-567. 10.1016/S0167-5699(99)01547-9.CrossRefPubMed
11.
go back to reference Halak BK, Maguire HC, Lattime EC: Tumor-induced interleukin-10 inhibits type 1 immune responses directed at a tumor antigen as well as a non-tumor antigen present at the tumor site. Cancer Res. 1999, 59: 911-917.PubMed Halak BK, Maguire HC, Lattime EC: Tumor-induced interleukin-10 inhibits type 1 immune responses directed at a tumor antigen as well as a non-tumor antigen present at the tumor site. Cancer Res. 1999, 59: 911-917.PubMed
12.
go back to reference Jonuleit H, Schmitt E, Steinbrink K, Enk AH: Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol. 2001, 22: 394-400. 10.1016/S1471-4906(01)01952-4.CrossRefPubMed Jonuleit H, Schmitt E, Steinbrink K, Enk AH: Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol. 2001, 22: 394-400. 10.1016/S1471-4906(01)01952-4.CrossRefPubMed
13.
go back to reference Heufler C, Koch F, Stanzl U, Topar G, Wysocka M, Trinchieri G, Enk A, Steinman RM, Romani N, Schuler G: Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol. 1996, 26: 659-668.CrossRefPubMed Heufler C, Koch F, Stanzl U, Topar G, Wysocka M, Trinchieri G, Enk A, Steinman RM, Romani N, Schuler G: Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol. 1996, 26: 659-668.CrossRefPubMed
14.
go back to reference Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G: Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med. 1996, 184: 741-747.CrossRef Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G: Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med. 1996, 184: 741-747.CrossRef
15.
go back to reference Huang RR, Wen D-R, Guo J, Giuliana AE, Nguyen M, Offodile R, Stern S, Turner R, Cochran AJ: Selective modulation of paracortical dendritic cells and T-lymphocytes in breast sentinel lymph nodes. Breast. 2000, 6: 225-232. 10.1046/j.1524-4741.2000.98114.x.CrossRef Huang RR, Wen D-R, Guo J, Giuliana AE, Nguyen M, Offodile R, Stern S, Turner R, Cochran AJ: Selective modulation of paracortical dendritic cells and T-lymphocytes in breast sentinel lymph nodes. Breast. 2000, 6: 225-232. 10.1046/j.1524-4741.2000.98114.x.CrossRef
16.
go back to reference Chu Y, Hu HM, Winter H, Wood WJ, Doran T, Lashley D, Bashey J, Schuster J, Wood J, Lowe BA, Vetto JT, Weinberg AD, Puri R, Smith JW, Urba WJ, Fox BA: Examining the immune response in sentinel lymph nodes of mice and men. Eur J Nucl Med. 1999, 26 (Suppl): S50-S53. 10.1007/s002590050578.CrossRefPubMed Chu Y, Hu HM, Winter H, Wood WJ, Doran T, Lashley D, Bashey J, Schuster J, Wood J, Lowe BA, Vetto JT, Weinberg AD, Puri R, Smith JW, Urba WJ, Fox BA: Examining the immune response in sentinel lymph nodes of mice and men. Eur J Nucl Med. 1999, 26 (Suppl): S50-S53. 10.1007/s002590050578.CrossRefPubMed
17.
go back to reference Leong SPL, Peng M, Zhou Y-M, Vaquerano JE, Chang JWC: Cytokine profiles of sentinel lymph nodes draining the primary melanoma. Ann Surg Oncol. 2002, 9: 82-87. 10.1245/aso.2002.9.1.82.CrossRefPubMed Leong SPL, Peng M, Zhou Y-M, Vaquerano JE, Chang JWC: Cytokine profiles of sentinel lymph nodes draining the primary melanoma. Ann Surg Oncol. 2002, 9: 82-87. 10.1245/aso.2002.9.1.82.CrossRefPubMed
18.
go back to reference Vitale M, Rezzani R, Rodella L, Zauli G, Grigolato P, Cadei M, Hicklin DJ, Ferrone S: HLA class I antigen and transporter associated with antigen processing (TAP1 and TAP2) down-regulation in high-grade primary breast carcinoma lesions. Cancer Res. 1998, 58: 737-742.PubMed Vitale M, Rezzani R, Rodella L, Zauli G, Grigolato P, Cadei M, Hicklin DJ, Ferrone S: HLA class I antigen and transporter associated with antigen processing (TAP1 and TAP2) down-regulation in high-grade primary breast carcinoma lesions. Cancer Res. 1998, 58: 737-742.PubMed
Metadata
Title
Analysis of dendritic cells in tumor-free and tumor-containing sentinel lymph nodes from patients with breast cancer
Authors
Nancy J Poindexter
Aysegul Sahin
Kelly K Hunt
Elizabeth A Grimm
Publication date
01-08-2004
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 4/2004
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr808

Other articles of this Issue 4/2004

Breast Cancer Research 4/2004 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine