Skip to main content
Top
Published in: Breast Cancer Research 1/2002

Open Access 01-02-2002 | Research article

Functional and molecular characterisation of mammary side population cells

Authors: Azra J Alvi, Helen Clayton, Chirag Joshi, Tariq Enver, Alan Ashworth, Maria ad M Vivanco, Trevor C Dale, Matthew J Smalley

Published in: Breast Cancer Research | Issue 1/2002

Login to get access

Abstract

Background

Breast cancer is thought to arise in mammary epithelial stem cells. However, the identity of these stem cells is unknown.

Methods

Studies in the haematopoetic and muscle systems show that stem cells have the ability to efflux the dye Hoechst 33342. Cells with this phenotype are referred to as the side population (SP). We have adapted the techniques from the haematopoetic and muscle systems to look for a mammary epithelial SP.

Results

Of mammary epithelial cells isolated from both the human and mouse mammary epithelia, 0.2–0.45% formed a distinct SP. The SP was relatively undifferentiated but grew as typical differentiated epithelial clones when cultured. Transplantation of murine SP cells at limiting dilution into cleared mammary fat pads generated epithelial ductal and lobuloalveolar structures.

Conclusion

These data demonstrate the existence of an undifferentiated SP in human and murine mammary epithelium. Purified SP cells are a live single-cell population that retain the ability to differentiate in vitro and in vivo. Studies of haematopoetic cells have suggested that the SP phenotype constitutes a universal stem cell marker. This work therefore has implications for mammary stem cell biology.
Literature
1.
go back to reference Smith GH, Chepko G: Mammary epithelial stem cells. Microsc Res Tech. 2001, 52: 190-203. 10.1002/1097-0029(20010115)52:2<190::AID-JEMT1005>3.0.CO;2-O.CrossRefPubMed Smith GH, Chepko G: Mammary epithelial stem cells. Microsc Res Tech. 2001, 52: 190-203. 10.1002/1097-0029(20010115)52:2<190::AID-JEMT1005>3.0.CO;2-O.CrossRefPubMed
2.
go back to reference Daniel CW, Silberstein GB: Postnatal development of the rodent mammary gland. In The Mammary Gland: Development, Regulation and Function. Edited by: Neville MC, Daniel CW. 1987, New York: Plenum Press, 3-36.CrossRef Daniel CW, Silberstein GB: Postnatal development of the rodent mammary gland. In The Mammary Gland: Development, Regulation and Function. Edited by: Neville MC, Daniel CW. 1987, New York: Plenum Press, 3-36.CrossRef
3.
go back to reference Kordon EC, Smith GH: An entire functional mammary gland may comprise the progeny from a single cell. Development. 1998, 125: 1921-1930.PubMed Kordon EC, Smith GH: An entire functional mammary gland may comprise the progeny from a single cell. Development. 1998, 125: 1921-1930.PubMed
4.
go back to reference Chepko G, Smith GH: Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell. 1997, 29: 239-253.CrossRefPubMed Chepko G, Smith GH: Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell. 1997, 29: 239-253.CrossRefPubMed
5.
go back to reference Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996, 183: 1797-1806.CrossRefPubMed Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996, 183: 1797-1806.CrossRefPubMed
6.
go back to reference Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP: The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001, 7: 1028-1034. 10.1038/nm0901-1028.CrossRefPubMed Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP: The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001, 7: 1028-1034. 10.1038/nm0901-1028.CrossRefPubMed
7.
go back to reference Hallowes RC, Bone EJ, Jones W: A new dimension in the culture of human breast. In Second International Conference on Tissue Culture in Medical Research, Cardiff, UK. Edited by: Richards RJ, Rajan KT. 1980, Oxford and New York: Pergamon Press, II: 213-220. Hallowes RC, Bone EJ, Jones W: A new dimension in the culture of human breast. In Second International Conference on Tissue Culture in Medical Research, Cardiff, UK. Edited by: Richards RJ, Rajan KT. 1980, Oxford and New York: Pergamon Press, II: 213-220.
8.
go back to reference Smalley MJ, Titley J, O'Hare MJ: Clonal characterization of mouse mammary luminal epithelial and myopeithelial cells separated by fluorescence-activated cell sorting. In Vitro Cell Dev Biol. 1998, 34: 711-721.CrossRef Smalley MJ, Titley J, O'Hare MJ: Clonal characterization of mouse mammary luminal epithelial and myopeithelial cells separated by fluorescence-activated cell sorting. In Vitro Cell Dev Biol. 1998, 34: 711-721.CrossRef
9.
go back to reference Naylor S, Smalley MJ, Robertson D, Gusterson BA, Edwards PAW, Dale TC: Retroviral expression of Wnt-1 and Wnt-7b produces different effects in mouse mammary epithelium. J Cell Sci. 2000, 113: 2129-2138.PubMed Naylor S, Smalley MJ, Robertson D, Gusterson BA, Edwards PAW, Dale TC: Retroviral expression of Wnt-1 and Wnt-7b produces different effects in mouse mammary epithelium. J Cell Sci. 2000, 113: 2129-2138.PubMed
10.
go back to reference Delassus S, Titley I, Enver T: Functional and molecular analysis of hematopoietic progenitors derived from the aorta–gonad–mesonephros region of the mouse embryo. Blood. 1999, 94: 1495-1503.PubMed Delassus S, Titley I, Enver T: Functional and molecular analysis of hematopoietic progenitors derived from the aorta–gonad–mesonephros region of the mouse embryo. Blood. 1999, 94: 1495-1503.PubMed
11.
go back to reference Daniel CW, DeOme KB: Growth of mouse mammary glands in vivo after monolayer culture. Science. 1965, 149: 634-636.CrossRefPubMed Daniel CW, DeOme KB: Growth of mouse mammary glands in vivo after monolayer culture. Science. 1965, 149: 634-636.CrossRefPubMed
12.
go back to reference Edwards PA, Ward JL, Bradbury JM: Alteration of morphogenesis by the v-myc oncogene in transplants of mammary gland. Oncogene. 1988, 2: 407-412.PubMed Edwards PA, Ward JL, Bradbury JM: Alteration of morphogenesis by the v-myc oncogene in transplants of mammary gland. Oncogene. 1988, 2: 407-412.PubMed
13.
go back to reference Ben-Ze'ev A: Cell density and cell shape-related regulation of vimentin and cytokeratin synthesis. Inhibition of vimentin synthesis and appearance of a new 45 kD cytokeratin in dense epithelial cell cultures. Exp Cell Res. 1985, 157: 520-532.CrossRefPubMed Ben-Ze'ev A: Cell density and cell shape-related regulation of vimentin and cytokeratin synthesis. Inhibition of vimentin synthesis and appearance of a new 45 kD cytokeratin in dense epithelial cell cultures. Exp Cell Res. 1985, 157: 520-532.CrossRefPubMed
14.
go back to reference Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE, Bodnar AG, Lichtsteiner S, Kim NW, Trager JB, Taylor RD, Carlos R, Andrews WH, Wright WE, Shay JW, Harley CB, Morin GB: Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet. 1997, 17: 498-502.CrossRefPubMed Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE, Bodnar AG, Lichtsteiner S, Kim NW, Trager JB, Taylor RD, Carlos R, Andrews WH, Wright WE, Shay JW, Harley CB, Morin GB: Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet. 1997, 17: 498-502.CrossRefPubMed
15.
go back to reference Smalley MJ, Titley J, Paterson H, Perusinghe N, Clarke C, O'Hare MJ: Differentiation of separated mouse mammary luminal epithelial and myoepithelial cells cultured on EHS matrix analyzed by indirect immunofluorescence of cytoskeletal antigens. J Histochem Cytochem. 1999, 47: 1513-1524.CrossRefPubMed Smalley MJ, Titley J, Paterson H, Perusinghe N, Clarke C, O'Hare MJ: Differentiation of separated mouse mammary luminal epithelial and myoepithelial cells cultured on EHS matrix analyzed by indirect immunofluorescence of cytoskeletal antigens. J Histochem Cytochem. 1999, 47: 1513-1524.CrossRefPubMed
16.
go back to reference Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, van De Vijver MJ, Scheper RJ, Schellens JH: Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001, 61: 3458-3464.PubMed Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, van De Vijver MJ, Scheper RJ, Schellens JH: Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001, 61: 3458-3464.PubMed
17.
go back to reference Kolquist KA, Ellisen LW, Counter CM, Meyerson M, Tan LK, Weinberg RA, Haber DA, Gerald WL: Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nat Genet. 1998, 19: 182-186. 10.1038/554.CrossRefPubMed Kolquist KA, Ellisen LW, Counter CM, Meyerson M, Tan LK, Weinberg RA, Haber DA, Gerald WL: Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nat Genet. 1998, 19: 182-186. 10.1038/554.CrossRefPubMed
18.
go back to reference Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE: Extension of life-span by introduction of telomerase into normal human cells. Science. 1998, 279: 349-352. 10.1126/science.279.5349.349.CrossRefPubMed Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE: Extension of life-span by introduction of telomerase into normal human cells. Science. 1998, 279: 349-352. 10.1126/science.279.5349.349.CrossRefPubMed
19.
go back to reference Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA: Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol. 2002, 245: 42-56. 10.1006/dbio.2002.0625.CrossRefPubMed Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA: Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol. 2002, 245: 42-56. 10.1006/dbio.2002.0625.CrossRefPubMed
20.
go back to reference Smalley MJ: Thesis: Clonal Analysis of Mouse Mammary Epithelial Cells. London: University of London. 1995 Smalley MJ: Thesis: Clonal Analysis of Mouse Mammary Epithelial Cells. London: University of London. 1995
21.
go back to reference Smith GH: Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat. 1996, 39: 21-31.CrossRefPubMed Smith GH: Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat. 1996, 39: 21-31.CrossRefPubMed
22.
go back to reference Wagner K-U, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH: An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development. 2002, 129: 1377-1386.PubMed Wagner K-U, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH: An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development. 2002, 129: 1377-1386.PubMed
Metadata
Title
Functional and molecular characterisation of mammary side population cells
Authors
Azra J Alvi
Helen Clayton
Chirag Joshi
Tariq Enver
Alan Ashworth
Maria ad M Vivanco
Trevor C Dale
Matthew J Smalley
Publication date
01-02-2002
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2002
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr547

Other articles of this Issue 1/2002

Breast Cancer Research 1/2002 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine