Skip to main content
Top
Published in: Breast Cancer Research 4/2012

Open Access 01-08-2012 | Research article

Reversal by RARα agonist Am580 of c-Myc-induced imbalance in RARα/RARγ expression during MMTV-Myc tumorigenesis

Authors: Almudena Bosch, Silvina P Bertran, Yongke Lu, Avalon Garcia, Alexis M Jones, Marcia I Dawson, Eduardo F Farias

Published in: Breast Cancer Research | Issue 4/2012

Login to get access

Abstract

Introduction

Retinoic acid signaling plays key roles in embryonic development and in maintaining the differentiated status of adult tissues. Recently, the nuclear retinoic acid receptor (RAR) isotypes α, β and γ were found to play specific functions in the expansion and differentiation of the stem compartments of various tissues. For instance, RARγ appears to be involved in stem cell compartment expansion, while RARα and RARβ are implicated in the subsequent cell differentiation. We found that over-expressing c-Myc in normal mouse mammary epithelium and in a c-Myc-driven transgenic model of mammary cancer, disrupts the balance between RARγ and RARα/β in favor of RARγ.

Methods

The effects of c-Myc on RAR isotype expression were evaluated in normal mouse mammary epithelium, mammary tumor cells obtained from the MMTV-Myc transgenic mouse model as well as human normal immortalized breast epithelial and breast cancer cell lines. The in vivo effect of the RARα-selective agonist 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthyl)carboxamido]benzoic acid (Am580) was examined in the MMTV-Myc mouse model of mammary tumorigenesis.

Results

Modulation of the RARα/β to RARγ expression in mammary glands of normal mice, oncomice, and human mammary cell lines through the alteration of RAR-target gene expression affected cell proliferation, survival and tumor growth. Treatment of MMTV-Myc mice with the RARα-selective agonist Am580 led to significant inhibition of mammary tumor growth (~90%, P<0.001), lung metastasis (P<0.01) and extended tumor latency in 63% of mice. Immunocytochemical analysis showed that in these mice, RARα responsive genes such as Cyp26A1, E-cadherin, cellular retinol-binding protein 1 (CRBP1) and p27, were up-regulated. In contrast, the mammary gland tumors of mice that responded poorly to Am580 treatment (37%) expressed significantly higher levels of RARγ. In vitro experiments indicated that the rise in RARγ was functionally linked to promotion of tumor growth and inhibition of differentiation. Thus, activation of the RARα pathway is linked to tumor growth inhibition, differentiation and cell death.

Conclusions

The functional consequence of the interplay between c-Myc oncogene expression and the RARγ to RARα/β balance suggests that prevalence of RARγ over-RARα/β expression levels in breast cancer accompanied by c-Myc amplification or over-expression in breast cancer should be predictive of response to treatment with RARα-isotype-specific agonists and warrant monitoring during clinical trials.
Appendix
Available only for authorised users
Literature
2.
go back to reference Han YH, Zhou H, Kim JH, Yan TD, Lee KH, Wu H, Lin F, Lu N, Liu J, Zeng JZ, Zhang XK: A unique cytoplasmic localization of RARgamma and its regulations. J Biol Chem. 2009, 284: 18503-14. 10.1074/jbc.M109.007708.CrossRefPubMedPubMedCentral Han YH, Zhou H, Kim JH, Yan TD, Lee KH, Wu H, Lin F, Lu N, Liu J, Zeng JZ, Zhang XK: A unique cytoplasmic localization of RARgamma and its regulations. J Biol Chem. 2009, 284: 18503-14. 10.1074/jbc.M109.007708.CrossRefPubMedPubMedCentral
3.
go back to reference Purton LE, Dworkin S, Olsen GH, Walkley CR, Fabb SA, Collins SJ, Chambon P: RARgamma is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. J Exp Med. 2006, 203: 1283-1293. 10.1084/jem.20052105.CrossRefPubMedPubMedCentral Purton LE, Dworkin S, Olsen GH, Walkley CR, Fabb SA, Collins SJ, Chambon P: RARgamma is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. J Exp Med. 2006, 203: 1283-1293. 10.1084/jem.20052105.CrossRefPubMedPubMedCentral
4.
go back to reference Spinella MJ, Kitareewan S, Mellado B, Sekula D, Khoo KS, Dmitrovsky E: Specific retinoid receptors cooperate to signal growth suppression and maturation of human embryonal carcinoma cells. Oncogene. 1998, 16: 3471-3480. 10.1038/sj.onc.1201876.CrossRefPubMed Spinella MJ, Kitareewan S, Mellado B, Sekula D, Khoo KS, Dmitrovsky E: Specific retinoid receptors cooperate to signal growth suppression and maturation of human embryonal carcinoma cells. Oncogene. 1998, 16: 3471-3480. 10.1038/sj.onc.1201876.CrossRefPubMed
5.
go back to reference Astrom A, Pettersson U, Krust A, Chambon P, Voorhees JJ: Retinoic acid and synthetic analogs differentially activate retinoic acid receptor dependent transcription. Biochem Biophys Res Commun. 1990, 173: 339-345. 10.1016/S0006-291X(05)81062-9.CrossRefPubMed Astrom A, Pettersson U, Krust A, Chambon P, Voorhees JJ: Retinoic acid and synthetic analogs differentially activate retinoic acid receptor dependent transcription. Biochem Biophys Res Commun. 1990, 173: 339-345. 10.1016/S0006-291X(05)81062-9.CrossRefPubMed
6.
go back to reference Mark M, Ghyselinck NB, Chambon P: Function of retinoic acid receptors during embryonic development. Nucl Recept Signal. 2009, 7: e002-PubMedPubMedCentral Mark M, Ghyselinck NB, Chambon P: Function of retinoic acid receptors during embryonic development. Nucl Recept Signal. 2009, 7: e002-PubMedPubMedCentral
7.
go back to reference Mark M, Ghyselinck NB, Chambon P: Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol. 2006, 46: 451-480. 10.1146/annurev.pharmtox.46.120604.141156.CrossRefPubMed Mark M, Ghyselinck NB, Chambon P: Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol. 2006, 46: 451-480. 10.1146/annurev.pharmtox.46.120604.141156.CrossRefPubMed
8.
go back to reference Lohnes D, Mark M, Mendelsohn C, Dolle P, Decimo D, LeMeur M, Dierich A, Gorry P, Chambon P: Developmental roles of the retinoic acid receptors. J Steroid Biochem Mol Biol. 1995, 53: 475-486. 10.1016/0960-0760(95)00094-G.CrossRefPubMed Lohnes D, Mark M, Mendelsohn C, Dolle P, Decimo D, LeMeur M, Dierich A, Gorry P, Chambon P: Developmental roles of the retinoic acid receptors. J Steroid Biochem Mol Biol. 1995, 53: 475-486. 10.1016/0960-0760(95)00094-G.CrossRefPubMed
9.
go back to reference Rochette-Egly C, Germain P: Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs). Nucl Recept Signal. 2009, 7: e005-PubMedPubMedCentral Rochette-Egly C, Germain P: Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs). Nucl Recept Signal. 2009, 7: e005-PubMedPubMedCentral
10.
go back to reference Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H: International Union of Pharmacology. LXIII. Retinoid × receptors. Pharmacol Rev. 2006, 58: 760-772. 10.1124/pr.58.4.7.CrossRefPubMed Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H: International Union of Pharmacology. LXIII. Retinoid × receptors. Pharmacol Rev. 2006, 58: 760-772. 10.1124/pr.58.4.7.CrossRefPubMed
11.
go back to reference Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H: International Union of Pharmacology. LX. Retinoic acid receptors. Pharmacol Rev. 2006, 58: 712-725. 10.1124/pr.58.4.4.CrossRefPubMed Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H: International Union of Pharmacology. LX. Retinoic acid receptors. Pharmacol Rev. 2006, 58: 712-725. 10.1124/pr.58.4.4.CrossRefPubMed
12.
go back to reference Hong WK, Sporn MB: Recent advances in chemoprevention of cancer. Science. 1997, 278: 1073-1077. 10.1126/science.278.5340.1073.CrossRefPubMed Hong WK, Sporn MB: Recent advances in chemoprevention of cancer. Science. 1997, 278: 1073-1077. 10.1126/science.278.5340.1073.CrossRefPubMed
13.
go back to reference Fitzgerald P, Teng M, Chandraratna RA, Heyman RA, Allegretto EA: Retinoic acid receptor alpha expression correlates with retinoid-induced growth inhibition of human breast cancer cells regardless of estrogen receptor status. Cancer Res. 1997, 57: 2642-2650.PubMed Fitzgerald P, Teng M, Chandraratna RA, Heyman RA, Allegretto EA: Retinoic acid receptor alpha expression correlates with retinoid-induced growth inhibition of human breast cancer cells regardless of estrogen receptor status. Cancer Res. 1997, 57: 2642-2650.PubMed
14.
go back to reference Toma S, Isnardi L, Raffo P, Dastoli G, De Francisci E, Riccardi L, Palumbo R, Bollag W: Effects of all-trans-retinoic acid and 13-cis-retinoic acid on breast-cancer cell lines: growth inhibition and apoptosis induction. Int J Cancer. 1997, 70: 619-627. 10.1002/(SICI)1097-0215(19970304)70:5<619::AID-IJC21>3.0.CO;2-6.CrossRefPubMed Toma S, Isnardi L, Raffo P, Dastoli G, De Francisci E, Riccardi L, Palumbo R, Bollag W: Effects of all-trans-retinoic acid and 13-cis-retinoic acid on breast-cancer cell lines: growth inhibition and apoptosis induction. Int J Cancer. 1997, 70: 619-627. 10.1002/(SICI)1097-0215(19970304)70:5<619::AID-IJC21>3.0.CO;2-6.CrossRefPubMed
15.
go back to reference Fontana JA, Hobbs PD, Dawson MI: Inhibition of mammary carcinoma growth by retinoidal benzoic acid derivatives. Exp Cell Biol. 1988, 56: 254-263.PubMed Fontana JA, Hobbs PD, Dawson MI: Inhibition of mammary carcinoma growth by retinoidal benzoic acid derivatives. Exp Cell Biol. 1988, 56: 254-263.PubMed
16.
go back to reference Donato LJ, Noy N: Suppression of mammary carcinoma growth by retinoic acid: proapoptotic genes are targets for retinoic acid receptor and cellular retinoic acid-binding protein II signaling. Cancer Res. 2005, 65: 8193-8199. 10.1158/0008-5472.CAN-05-1177.CrossRefPubMed Donato LJ, Noy N: Suppression of mammary carcinoma growth by retinoic acid: proapoptotic genes are targets for retinoic acid receptor and cellular retinoic acid-binding protein II signaling. Cancer Res. 2005, 65: 8193-8199. 10.1158/0008-5472.CAN-05-1177.CrossRefPubMed
17.
go back to reference Liu Y, Lee MO, Wang HG, Li Y, Hashimoto Y, Klaus M, Reed JC, Zhang X: Retinoic acid receptor beta mediates the growth-inhibitory effect of retinoic acid by promoting apoptosis in human breast cancer cells. Mol Cell Biol. 1996, 16: 1138-1149.CrossRefPubMedPubMedCentral Liu Y, Lee MO, Wang HG, Li Y, Hashimoto Y, Klaus M, Reed JC, Zhang X: Retinoic acid receptor beta mediates the growth-inhibitory effect of retinoic acid by promoting apoptosis in human breast cancer cells. Mol Cell Biol. 1996, 16: 1138-1149.CrossRefPubMedPubMedCentral
18.
go back to reference Seewaldt VL, Kim JH, Caldwell LE, Johnson BS, Swisshelm K, Collins SJ: All-trans-retinoic acid mediates G1 arrest but not apoptosis of normal human mammary epithelial cells. Cell Growth Differ. 1997, 8: 631-641.PubMed Seewaldt VL, Kim JH, Caldwell LE, Johnson BS, Swisshelm K, Collins SJ: All-trans-retinoic acid mediates G1 arrest but not apoptosis of normal human mammary epithelial cells. Cell Growth Differ. 1997, 8: 631-641.PubMed
19.
go back to reference Sporn MB, Dunlop NM, Newton DL, Smith JM: Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc. 1976, 35: 1332-1338.PubMed Sporn MB, Dunlop NM, Newton DL, Smith JM: Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc. 1976, 35: 1332-1338.PubMed
20.
go back to reference Moon RC, Mehta RG: Chemoprevention of experimental carcinogenesis in animals. Prev Med. 1989, 18: 576-591. 10.1016/0091-7435(89)90031-5.CrossRefPubMed Moon RC, Mehta RG: Chemoprevention of experimental carcinogenesis in animals. Prev Med. 1989, 18: 576-591. 10.1016/0091-7435(89)90031-5.CrossRefPubMed
21.
go back to reference Steele VE, Moon RC, Lubet RA, Grubbs CJ, Reddy BS, Wargovich M, McCormick DL, Pereira MA, Crowell JA, Bagheri D, Sigman CC, Boone CW, Kelloff GJ: Preclinical efficacy evaluation of potential chemopreventive agents in animal carcinogenesis models: methods and results from the NCI Chemoprevention Drug Development Program. J Cell Biochem Suppl. 1994, 20: 32-54.CrossRefPubMed Steele VE, Moon RC, Lubet RA, Grubbs CJ, Reddy BS, Wargovich M, McCormick DL, Pereira MA, Crowell JA, Bagheri D, Sigman CC, Boone CW, Kelloff GJ: Preclinical efficacy evaluation of potential chemopreventive agents in animal carcinogenesis models: methods and results from the NCI Chemoprevention Drug Development Program. J Cell Biochem Suppl. 1994, 20: 32-54.CrossRefPubMed
22.
go back to reference Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, Gu LJ, Wang ZY: Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988, 72: 567-572.PubMed Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, Gu LJ, Wang ZY: Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988, 72: 567-572.PubMed
23.
go back to reference Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L: All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood. 1990, 76: 1704-1709.PubMed Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L: All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood. 1990, 76: 1704-1709.PubMed
24.
go back to reference de The H, Chen Z: Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer. 2010, 10: 775-783. 10.1038/nrc2943.CrossRefPubMed de The H, Chen Z: Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer. 2010, 10: 775-783. 10.1038/nrc2943.CrossRefPubMed
25.
go back to reference Wu JM, DiPietrantonio AM, Hsieh TC: Mechanism of fenretinide (4-HPR)-induced cell death. Apoptosis. 2001, 6: 377-388. 10.1023/A:1011342220621.CrossRefPubMed Wu JM, DiPietrantonio AM, Hsieh TC: Mechanism of fenretinide (4-HPR)-induced cell death. Apoptosis. 2001, 6: 377-388. 10.1023/A:1011342220621.CrossRefPubMed
26.
go back to reference Anzano MA, Byers SW, Smith JM, Peer CW, Mullen LT, Brown CC, Roberts AB, Sporn MB: Prevention of breast cancer in the rat with 9-cis-retinoic acid as a single agent and in combination with tamoxifen. Cancer Res. 1994, 54: 4614-4617.PubMed Anzano MA, Byers SW, Smith JM, Peer CW, Mullen LT, Brown CC, Roberts AB, Sporn MB: Prevention of breast cancer in the rat with 9-cis-retinoic acid as a single agent and in combination with tamoxifen. Cancer Res. 1994, 54: 4614-4617.PubMed
27.
go back to reference Farol LT, Hymes KB: Bexarotene: a clinical review. Expert Rev Anticancer Ther. 2004, 4: 180-188. 10.1586/14737140.4.2.180.CrossRefPubMed Farol LT, Hymes KB: Bexarotene: a clinical review. Expert Rev Anticancer Ther. 2004, 4: 180-188. 10.1586/14737140.4.2.180.CrossRefPubMed
28.
go back to reference Rigas JR, Dragnev KH: Emerging role of rexinoids in non-small cell lung cancer: focus on bexarotene. Oncologist. 2005, 10: 22-33. 10.1634/theoncologist.10-1-22.CrossRefPubMed Rigas JR, Dragnev KH: Emerging role of rexinoids in non-small cell lung cancer: focus on bexarotene. Oncologist. 2005, 10: 22-33. 10.1634/theoncologist.10-1-22.CrossRefPubMed
29.
go back to reference Dragnev KH, Petty WJ, Ma Y, Rigas JR, Dmitrovsky E: Nonclassical retinoids and lung carcinogenesis. Clin Lung Cancer. 2005, 6: 237-244. 10.3816/CLC.2005.n.003.CrossRefPubMed Dragnev KH, Petty WJ, Ma Y, Rigas JR, Dmitrovsky E: Nonclassical retinoids and lung carcinogenesis. Clin Lung Cancer. 2005, 6: 237-244. 10.3816/CLC.2005.n.003.CrossRefPubMed
30.
go back to reference Chiba H, Clifford J, Metzger D, Chambon P: Specific and redundant functions of retinoid × Receptor/Retinoic acid receptor heterodimers in differentiation, proliferation, and apoptosis of F9 embryonal carcinoma cells. J Cell Biol. 1997, 139: 735-747. 10.1083/jcb.139.3.735.CrossRefPubMedPubMedCentral Chiba H, Clifford J, Metzger D, Chambon P: Specific and redundant functions of retinoid × Receptor/Retinoic acid receptor heterodimers in differentiation, proliferation, and apoptosis of F9 embryonal carcinoma cells. J Cell Biol. 1997, 139: 735-747. 10.1083/jcb.139.3.735.CrossRefPubMedPubMedCentral
31.
go back to reference Gillespie RF, Gudas LJ: Retinoic acid receptor isotype specificity in F9 teratocarcinoma stem cells results from the differential recruitment of coregulators to retinoic response elements. J Biol Chem. 2007, 282: 33421-33434. 10.1074/jbc.M704845200.CrossRefPubMed Gillespie RF, Gudas LJ: Retinoic acid receptor isotype specificity in F9 teratocarcinoma stem cells results from the differential recruitment of coregulators to retinoic response elements. J Biol Chem. 2007, 282: 33421-33434. 10.1074/jbc.M704845200.CrossRefPubMed
32.
33.
go back to reference Duong V, Rochette-Egly C: The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim Biophys Acta. 2011, 1812: 1023-1031. 10.1016/j.bbadis.2010.10.007.CrossRefPubMed Duong V, Rochette-Egly C: The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim Biophys Acta. 2011, 1812: 1023-1031. 10.1016/j.bbadis.2010.10.007.CrossRefPubMed
34.
go back to reference Chytil F, Ong DE: Cellular retinol- and retinoic acid-binding proteins in vitamin A action. Fed Proc. 1979, 38: 2510-2514.PubMed Chytil F, Ong DE: Cellular retinol- and retinoic acid-binding proteins in vitamin A action. Fed Proc. 1979, 38: 2510-2514.PubMed
35.
go back to reference Burns LL, Ropson IJ: Folding of intracellular retinol and retinoic acid binding proteins. Proteins. 2001, 43: 292-302. 10.1002/prot.1040.CrossRefPubMed Burns LL, Ropson IJ: Folding of intracellular retinol and retinoic acid binding proteins. Proteins. 2001, 43: 292-302. 10.1002/prot.1040.CrossRefPubMed
36.
go back to reference Li E, Norris AW: Structure/function of cytoplasmic vitamin A-binding proteins. Annu Rev Nutr. 1996, 16: 205-234. 10.1146/annurev.nu.16.070196.001225.CrossRefPubMed Li E, Norris AW: Structure/function of cytoplasmic vitamin A-binding proteins. Annu Rev Nutr. 1996, 16: 205-234. 10.1146/annurev.nu.16.070196.001225.CrossRefPubMed
37.
go back to reference Napoli JL, Boerman MH, Chai X, Zhai Y, Fiorella PD: Enzymes and binding proteins affecting retinoic acid concentrations. J Steroid Biochem Mol Biol. 1995, 53: 497-502. 10.1016/0960-0760(95)00096-I.CrossRefPubMed Napoli JL, Boerman MH, Chai X, Zhai Y, Fiorella PD: Enzymes and binding proteins affecting retinoic acid concentrations. J Steroid Biochem Mol Biol. 1995, 53: 497-502. 10.1016/0960-0760(95)00096-I.CrossRefPubMed
38.
go back to reference Yan TD, Wu H, Zhang HP, Lu N, Ye P, Yu FH, Zhou H, Li WG, Cao X, Lin YY, He JY, Gao WW, Zhao Y, Xie L, Chen JB, Zhang XK, Zeng JZ: Oncogenic potential of retinoic acid receptor-gamma in hepatocellular carcinoma. Cancer Res. 2010, 70: 2285-2295. 10.1158/0008-5472.CAN-09-2968.CrossRefPubMed Yan TD, Wu H, Zhang HP, Lu N, Ye P, Yu FH, Zhou H, Li WG, Cao X, Lin YY, He JY, Gao WW, Zhao Y, Xie L, Chen JB, Zhang XK, Zeng JZ: Oncogenic potential of retinoic acid receptor-gamma in hepatocellular carcinoma. Cancer Res. 2010, 70: 2285-2295. 10.1158/0008-5472.CAN-09-2968.CrossRefPubMed
39.
go back to reference Lu Y, Bertran S, Samuels TA, Mira-y-Lopez R, Farias EF: Mechanism of inhibition of MMTV-neu and MMTV-wnt1 induced mammary oncogenesis by RARalpha agonist AM580. Oncogene. 2010, 29: 3665-3676. 10.1038/onc.2010.119.CrossRefPubMedPubMedCentral Lu Y, Bertran S, Samuels TA, Mira-y-Lopez R, Farias EF: Mechanism of inhibition of MMTV-neu and MMTV-wnt1 induced mammary oncogenesis by RARalpha agonist AM580. Oncogene. 2010, 29: 3665-3676. 10.1038/onc.2010.119.CrossRefPubMedPubMedCentral
40.
go back to reference Delescluse C, Cavey MT, Martin B, Bernard BA, Reichert U, Maignan J, Darmon M, Shroot B: Selective high affinity retinoic acid receptor alpha or beta-gamma ligands. Mol Pharmacol. 1991, 40: 556-562.PubMed Delescluse C, Cavey MT, Martin B, Bernard BA, Reichert U, Maignan J, Darmon M, Shroot B: Selective high affinity retinoic acid receptor alpha or beta-gamma ligands. Mol Pharmacol. 1991, 40: 556-562.PubMed
41.
go back to reference Schug TT, Berry DC, Shaw NS, Travis SN, Noy N: Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell. 2007, 129: 723-733. 10.1016/j.cell.2007.02.050.CrossRefPubMedPubMedCentral Schug TT, Berry DC, Shaw NS, Travis SN, Noy N: Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell. 2007, 129: 723-733. 10.1016/j.cell.2007.02.050.CrossRefPubMedPubMedCentral
42.
go back to reference Farias EF, Marzan C, Mira-y-Lopez R: Cellular retinol-binding protein-I inhibits PI3K/Akt signaling through a retinoic acid receptor-dependent mechanism that regulates p85-p110 heterodimerization. Oncogene. 2005, 24: 1598-1606. 10.1038/sj.onc.1208347.CrossRefPubMed Farias EF, Marzan C, Mira-y-Lopez R: Cellular retinol-binding protein-I inhibits PI3K/Akt signaling through a retinoic acid receptor-dependent mechanism that regulates p85-p110 heterodimerization. Oncogene. 2005, 24: 1598-1606. 10.1038/sj.onc.1208347.CrossRefPubMed
43.
go back to reference Farias EF, Ong DE, Ghyselinck NB, Nakajo S, Kuppumbatti YS, Mira y Lopez R: Cellular retinol-binding protein I, a regulator of breast epithelial retinoic acid receptor activity, cell differentiation, and tumorigenicity. J Natl Cancer Inst. 2005, 97: 21-29. 10.1093/jnci/dji004.CrossRefPubMed Farias EF, Ong DE, Ghyselinck NB, Nakajo S, Kuppumbatti YS, Mira y Lopez R: Cellular retinol-binding protein I, a regulator of breast epithelial retinoic acid receptor activity, cell differentiation, and tumorigenicity. J Natl Cancer Inst. 2005, 97: 21-29. 10.1093/jnci/dji004.CrossRefPubMed
45.
go back to reference Grandori C, Eisenman RN: Myc target genes. Trends Biochem Sci. 1997, 22: 177-181. 10.1016/S0968-0004(97)01025-6.CrossRefPubMed Grandori C, Eisenman RN: Myc target genes. Trends Biochem Sci. 1997, 22: 177-181. 10.1016/S0968-0004(97)01025-6.CrossRefPubMed
46.
go back to reference Grandori C, Cowley SM, James LP, Eisenman RN: The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol. 2000, 16: 653-699. 10.1146/annurev.cellbio.16.1.653.CrossRefPubMed Grandori C, Cowley SM, James LP, Eisenman RN: The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol. 2000, 16: 653-699. 10.1146/annurev.cellbio.16.1.653.CrossRefPubMed
47.
go back to reference Claassen GF, Hann SR: Myc-mediated transformation: the repression connection. Oncogene. 1999, 18: 2925-2933. 10.1038/sj.onc.1202747.CrossRefPubMed Claassen GF, Hann SR: Myc-mediated transformation: the repression connection. Oncogene. 1999, 18: 2925-2933. 10.1038/sj.onc.1202747.CrossRefPubMed
48.
go back to reference Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA: Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell. 2003, 3: 219-231. 10.1016/S1535-6108(03)00030-8.CrossRefPubMed Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA: Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell. 2003, 3: 219-231. 10.1016/S1535-6108(03)00030-8.CrossRefPubMed
49.
go back to reference Dimberg A, Oberg F: Retinoic acid-induced cell cycle arrest of human myeloid cell lines. Leuk Lymphoma. 2003, 44: 1641-1650. 10.1080/1042819031000083316.CrossRefPubMed Dimberg A, Oberg F: Retinoic acid-induced cell cycle arrest of human myeloid cell lines. Leuk Lymphoma. 2003, 44: 1641-1650. 10.1080/1042819031000083316.CrossRefPubMed
50.
go back to reference Debnath J, Muthuswamy SK, Brugge JS: Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003, 30: 256-268. 10.1016/S1046-2023(03)00032-X.CrossRefPubMed Debnath J, Muthuswamy SK, Brugge JS: Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003, 30: 256-268. 10.1016/S1046-2023(03)00032-X.CrossRefPubMed
51.
go back to reference Ricci MS, Jin Z, Dews M, Yu D, Thomas-Tikhonenko A, Dicker DT, El-Deiry WS: Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity. Mol Cell Biol. 2004, 24: 8541-8555. 10.1128/MCB.24.19.8541-8555.2004.CrossRefPubMedPubMedCentral Ricci MS, Jin Z, Dews M, Yu D, Thomas-Tikhonenko A, Dicker DT, El-Deiry WS: Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity. Mol Cell Biol. 2004, 24: 8541-8555. 10.1128/MCB.24.19.8541-8555.2004.CrossRefPubMedPubMedCentral
52.
go back to reference Smith WC, Nakshatri H, Leroy P, Rees J, Chambon P: A retinoic acid response element is present in the mouse cellular retinol binding protein I (mCRBPI) promoter. EMBO J. 1991, 10: 2223-2230.PubMedPubMedCentral Smith WC, Nakshatri H, Leroy P, Rees J, Chambon P: A retinoic acid response element is present in the mouse cellular retinol binding protein I (mCRBPI) promoter. EMBO J. 1991, 10: 2223-2230.PubMedPubMedCentral
53.
go back to reference Esteller M: Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol. 2003, 109: 80-88. 10.1016/S1521-6616(03)00208-0.CrossRefPubMed Esteller M: Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol. 2003, 109: 80-88. 10.1016/S1521-6616(03)00208-0.CrossRefPubMed
54.
go back to reference Orlando FA, Brown KD: Unraveling breast cancer heterogeneity through transcriptomic and epigenomic analysis. Ann Surg Oncol. 2009, 16: 2270-2279. 10.1245/s10434-009-0500-y.CrossRefPubMedPubMedCentral Orlando FA, Brown KD: Unraveling breast cancer heterogeneity through transcriptomic and epigenomic analysis. Ann Surg Oncol. 2009, 16: 2270-2279. 10.1245/s10434-009-0500-y.CrossRefPubMedPubMedCentral
55.
go back to reference Borriello A, Bencivenga D, Criscuolo M, Caldarelli I, Cucciolla V, Tramontano A, Borgia A, Spina A, Oliva A, Naviglio S, Della Regione F: Targeting p27Kip1 protein: its relevance in the therapy of human cancer. Expert Opin Ther Targets. 2011, 15: 677-693. 10.1517/14728222.2011.561318.CrossRefPubMed Borriello A, Bencivenga D, Criscuolo M, Caldarelli I, Cucciolla V, Tramontano A, Borgia A, Spina A, Oliva A, Naviglio S, Della Regione F: Targeting p27Kip1 protein: its relevance in the therapy of human cancer. Expert Opin Ther Targets. 2011, 15: 677-693. 10.1517/14728222.2011.561318.CrossRefPubMed
56.
go back to reference Nieto MA: The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol. 2011, 27: 347-376. 10.1146/annurev-cellbio-092910-154036.CrossRefPubMed Nieto MA: The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol. 2011, 27: 347-376. 10.1146/annurev-cellbio-092910-154036.CrossRefPubMed
57.
go back to reference Dawson MI, Zhang XK: Discovery and design of retinoic acid receptor and retinoid × receptor class- and subtype-selective synthetic analogs of all-trans-retinoic acid and 9-cis-retinoic acid. Curr Med Chem. 2002, 9: 623-637.CrossRefPubMed Dawson MI, Zhang XK: Discovery and design of retinoic acid receptor and retinoid × receptor class- and subtype-selective synthetic analogs of all-trans-retinoic acid and 9-cis-retinoic acid. Curr Med Chem. 2002, 9: 623-637.CrossRefPubMed
58.
go back to reference Peterson VJ, Barofsky E, Deinzer ML, Dawson MI, Feng KC, Zhang XK, Madduru MR, Leid M: Mass-spectrometric analysis of agonist-induced retinoic acid receptor gamma conformational change. Biochem J. 2002, 362: 173-181. 10.1042/0264-6021:3620173.CrossRefPubMedPubMedCentral Peterson VJ, Barofsky E, Deinzer ML, Dawson MI, Feng KC, Zhang XK, Madduru MR, Leid M: Mass-spectrometric analysis of agonist-induced retinoic acid receptor gamma conformational change. Biochem J. 2002, 362: 173-181. 10.1042/0264-6021:3620173.CrossRefPubMedPubMedCentral
59.
go back to reference Lu M, Mira-y-Lopez R, Nakajo S, Nakaya K, Jing Y: Expression of estrogen receptor alpha, retinoic acid receptor alpha and cellular retinoic acid binding protein II genes is coordinately regulated in human breast cancer cells. Oncogene. 2005, 24: 4362-4369. 10.1038/sj.onc.1208661.CrossRefPubMed Lu M, Mira-y-Lopez R, Nakajo S, Nakaya K, Jing Y: Expression of estrogen receptor alpha, retinoic acid receptor alpha and cellular retinoic acid binding protein II genes is coordinately regulated in human breast cancer cells. Oncogene. 2005, 24: 4362-4369. 10.1038/sj.onc.1208661.CrossRefPubMed
60.
go back to reference Kagechika H, Kawachi E, Hashimoto Y, Himi T, Shudo K: Retinobenzoic acids. 1. Structure-activity relationships of aromatic amides with retinoidal activity. J Med Chem. 1988, 31: 2182-2192. 10.1021/jm00119a021.CrossRefPubMed Kagechika H, Kawachi E, Hashimoto Y, Himi T, Shudo K: Retinobenzoic acids. 1. Structure-activity relationships of aromatic amides with retinoidal activity. J Med Chem. 1988, 31: 2182-2192. 10.1021/jm00119a021.CrossRefPubMed
61.
go back to reference Nguyen DX, Bos PD, Massague J: Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009, 9: 274-284. 10.1038/nrc2622.CrossRefPubMed Nguyen DX, Bos PD, Massague J: Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009, 9: 274-284. 10.1038/nrc2622.CrossRefPubMed
62.
go back to reference Eskild W, Troen G, Blaner WS, Nilsson A, Hansson V: Evidence for independent control at the mRNA and protein levels of cellular retinol binding protein 1 in rat Sertoli cells. J Reprod Fertil. 2000, 119: 101-109.CrossRefPubMed Eskild W, Troen G, Blaner WS, Nilsson A, Hansson V: Evidence for independent control at the mRNA and protein levels of cellular retinol binding protein 1 in rat Sertoli cells. J Reprod Fertil. 2000, 119: 101-109.CrossRefPubMed
63.
go back to reference Sun SY, Yue P, Chandraratna RA, Tesfaigzi Y, Hong WK, Lotan R: Dual mechanisms of action of the retinoid CD437: nuclear retinoic acid receptor-mediated suppression of squamous differentiation and receptor-independent induction of apoptosis in UMSCC22B human head and neck squamous cell carcinoma cells. Mol Pharmacol. 2000, 58: 508-514.PubMed Sun SY, Yue P, Chandraratna RA, Tesfaigzi Y, Hong WK, Lotan R: Dual mechanisms of action of the retinoid CD437: nuclear retinoic acid receptor-mediated suppression of squamous differentiation and receptor-independent induction of apoptosis in UMSCC22B human head and neck squamous cell carcinoma cells. Mol Pharmacol. 2000, 58: 508-514.PubMed
64.
go back to reference Rishi AK, Zhang L, Boyanapalli M, Wali A, Mohammad RM, Yu Y, Fontana JA, Hatfield JS, Dawson MI, Majumdar AP, Reicher U: Identification and characterization of a cell cycle and apoptosis regulatory protein-1 as a novel mediator of apoptosis signaling by retinoid CD437. J Biol Chem. 2003, 278: 33422-33435. 10.1074/jbc.M303173200.CrossRefPubMed Rishi AK, Zhang L, Boyanapalli M, Wali A, Mohammad RM, Yu Y, Fontana JA, Hatfield JS, Dawson MI, Majumdar AP, Reicher U: Identification and characterization of a cell cycle and apoptosis regulatory protein-1 as a novel mediator of apoptosis signaling by retinoid CD437. J Biol Chem. 2003, 278: 33422-33435. 10.1074/jbc.M303173200.CrossRefPubMed
65.
go back to reference Farhana L, Dawson MI, Leid M, Wang L, Moore DD, Liu G, Xia Z, Fontana JA: Adamantyl-substituted retinoid-related molecules bind small heterodimer partner and modulate the Sin3A repressor. Cancer Res. 2007, 67: 318-325. 10.1158/0008-5472.CAN-06-2164.CrossRefPubMedPubMedCentral Farhana L, Dawson MI, Leid M, Wang L, Moore DD, Liu G, Xia Z, Fontana JA: Adamantyl-substituted retinoid-related molecules bind small heterodimer partner and modulate the Sin3A repressor. Cancer Res. 2007, 67: 318-325. 10.1158/0008-5472.CAN-06-2164.CrossRefPubMedPubMedCentral
66.
go back to reference Paroni G, Fratelli M, Gardini G, Bassano C, Flora M, Zanetti A, Guarnaccia V, Ubezio P, Centritto F, Terao M, Garattini E: Synergistic antitumor activity of lapatinib and retinoids on a novel subtype of breast cancer with coamplification of ERBB2 and RARA. Oncogene. 2011, 31: 3431-43.CrossRefPubMed Paroni G, Fratelli M, Gardini G, Bassano C, Flora M, Zanetti A, Guarnaccia V, Ubezio P, Centritto F, Terao M, Garattini E: Synergistic antitumor activity of lapatinib and retinoids on a novel subtype of breast cancer with coamplification of ERBB2 and RARA. Oncogene. 2011, 31: 3431-43.CrossRefPubMed
67.
go back to reference Chambon P: A decade of molecular biology of retinoic acid receptors. Faseb J. 1996, 10: 940-954.PubMed Chambon P: A decade of molecular biology of retinoic acid receptors. Faseb J. 1996, 10: 940-954.PubMed
68.
go back to reference Mengeling BJ, Goodson ML, Bourguet W, Privalsky ML: SMRTepsilon, a corepressor variant, interacts with a restricted subset of nuclear receptors, including the retinoic acid receptors alpha and beta. Mol Cell Endocrinol. 2012, 351: 306-316. 10.1016/j.mce.2012.01.006.CrossRefPubMedPubMedCentral Mengeling BJ, Goodson ML, Bourguet W, Privalsky ML: SMRTepsilon, a corepressor variant, interacts with a restricted subset of nuclear receptors, including the retinoic acid receptors alpha and beta. Mol Cell Endocrinol. 2012, 351: 306-316. 10.1016/j.mce.2012.01.006.CrossRefPubMedPubMedCentral
69.
go back to reference Amat R, Gudas LJ: RARgamma is required for correct deposition and removal of Suz12 and H2A.Z in embryonic stem cells. J Cell Physiol. 2011, 226: 293-298. 10.1002/jcp.22420.CrossRefPubMedPubMedCentral Amat R, Gudas LJ: RARgamma is required for correct deposition and removal of Suz12 and H2A.Z in embryonic stem cells. J Cell Physiol. 2011, 226: 293-298. 10.1002/jcp.22420.CrossRefPubMedPubMedCentral
70.
go back to reference Kirmizis A, Bartley SM, Farnham PJ: Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther. 2003, 2: 113-121.PubMed Kirmizis A, Bartley SM, Farnham PJ: Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther. 2003, 2: 113-121.PubMed
71.
go back to reference Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K: Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell. 2010, 39: 761-772. 10.1016/j.molcel.2010.08.013.CrossRefPubMedPubMedCentral Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K: Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell. 2010, 39: 761-772. 10.1016/j.molcel.2010.08.013.CrossRefPubMedPubMedCentral
72.
go back to reference Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F: The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006, 439: 871-874. 10.1038/nature04431.CrossRefPubMed Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F: The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006, 439: 871-874. 10.1038/nature04431.CrossRefPubMed
73.
go back to reference Arapshian A, Bertran S, Kuppumbatti YS, Nakajo S, Mira YLR: Epigenetic CRBP downregulation appears to be an evolutionarily conserved (human and mouse) and oncogene-specific phenomenon in breast cancer. Mol Cancer. 2004, 3: 13-10.1186/1476-4598-3-13.CrossRefPubMedPubMedCentral Arapshian A, Bertran S, Kuppumbatti YS, Nakajo S, Mira YLR: Epigenetic CRBP downregulation appears to be an evolutionarily conserved (human and mouse) and oncogene-specific phenomenon in breast cancer. Mol Cancer. 2004, 3: 13-10.1186/1476-4598-3-13.CrossRefPubMedPubMedCentral
74.
go back to reference Kuppumbatti YS, Bleiweiss IJ, Mandeli JP, Waxman S, Mira YLR: Cellular retinol-binding protein expression and breast cancer. J Natl Cancer Inst. 2000, 92: 475-480. 10.1093/jnci/92.6.475.CrossRefPubMed Kuppumbatti YS, Bleiweiss IJ, Mandeli JP, Waxman S, Mira YLR: Cellular retinol-binding protein expression and breast cancer. J Natl Cancer Inst. 2000, 92: 475-480. 10.1093/jnci/92.6.475.CrossRefPubMed
75.
go back to reference Boxer RB, Jang JW, Sintasath L, Chodosh LA: Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell. 2004, 6: 577-586. 10.1016/j.ccr.2004.10.013.CrossRefPubMed Boxer RB, Jang JW, Sintasath L, Chodosh LA: Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell. 2004, 6: 577-586. 10.1016/j.ccr.2004.10.013.CrossRefPubMed
76.
go back to reference Liao DJ, Dickson RB: c-Myc in breast cancer. Endocr Relat Cancer. 2000, 7: 143-164. 10.1677/erc.0.0070143.CrossRefPubMed Liao DJ, Dickson RB: c-Myc in breast cancer. Endocr Relat Cancer. 2000, 7: 143-164. 10.1677/erc.0.0070143.CrossRefPubMed
77.
go back to reference Watson PH, Safneck JR, Le K, Dubik D, Shiu RP: Relationship of c-myc amplification to progression of breast cancer from in situ to invasive tumor and lymph node metastasis. J Natl Cancer Inst. 1993, 85: 902-907. 10.1093/jnci/85.11.902.CrossRefPubMed Watson PH, Safneck JR, Le K, Dubik D, Shiu RP: Relationship of c-myc amplification to progression of breast cancer from in situ to invasive tumor and lymph node metastasis. J Natl Cancer Inst. 1993, 85: 902-907. 10.1093/jnci/85.11.902.CrossRefPubMed
78.
go back to reference Shiu RP, Watson PH, Dubik D: c-myc oncogene expression in estrogen-dependent and -independent breast cancer. Clin Chem. 1993, 39: 353-355.PubMed Shiu RP, Watson PH, Dubik D: c-myc oncogene expression in estrogen-dependent and -independent breast cancer. Clin Chem. 1993, 39: 353-355.PubMed
Metadata
Title
Reversal by RARα agonist Am580 of c-Myc-induced imbalance in RARα/RARγ expression during MMTV-Myc tumorigenesis
Authors
Almudena Bosch
Silvina P Bertran
Yongke Lu
Avalon Garcia
Alexis M Jones
Marcia I Dawson
Eduardo F Farias
Publication date
01-08-2012
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 4/2012
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr3247

Other articles of this Issue 4/2012

Breast Cancer Research 4/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine