Skip to main content
Top
Published in: Breast Cancer Research 4/2001

Open Access 01-08-2001 | Research article

Reversal effects of nomegestrol acetate on multidrug resistance in adriamycin-resistant MCF7 breast cancer cell line

Authors: Jie Li, Liang-Zhong Xu, Kai-Ling He, Wei-Jian Guo, Yun-Hong Zheng, Peng Xia, Ying Chen

Published in: Breast Cancer Research | Issue 4/2001

Login to get access

Abstract

Background

Chemotherapy is important in the systematic treatment of breast cancer. To enhance the response of tumours to chemotherapy, attention has been focused on agents to reverse multidrug resistance (MDR) and on the sensitivity of tumour cells to chemical drugs. Hundreds of reversal drugs have been found in vitro, but their clinical application has been limited because of their toxicity. The reversal activity of progestogen compounds has been demonstrated. However, classical agents such as progesterone and megestrol (MG) also have high toxicity. Nomegestrol (NOM) belongs to a new derivation of progestogens and shows very low toxicity. We studied the reversal activity of NOM and compared it with that of verapamil (VRP), droloxifene (DRO), tamoxifen (TAM) and MG, and investigated the reversal mechanism, i.e. effects on the expression of the MDR1, glutathione S-transferase Pi (GSTπ), MDR-related protein (MRP) and topoisomerase IIα (TopoIIα) genes, as well as the intracellular drug concentration and the cell cycle. The aim of the study was to examine the reversal effects of NOM on MDR in MCF7/ADR, an MCF7 breast cancer cell line resistant to adriamycin (ADR), and its mechanism of action.

Methods

MCF7/ADR cells and MCF7/WT, an MCF7 breast cancer cell line sensitive to ADR, were treated with NOM as the acetate ester. With an assay based on a tetrazolium dye [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide; MTT], the effects of various concentrations of NOM on MDR in MCF7/ADR cells were studied. Before and after the treatment with 5 μM NOM, the expression of the MDR-related genes MDR1, GSTπ, TopoIIα and MRP were assayed with a reverse transcriptase polymerase chain reaction (RT-PCR) immunocytochemistry assay. By using flow cytometry (FCM), we observed the intracellular ADR concentration and the effects of combined treatment with NOM and ADR on the cell cycle. Results collected were analysed with Student's t test.

Results

NOM significantly reversed MDR in MCF7/ADR cells. After treatment NOM at 20, 10 and 5 μM, chemosensitivity to ADR increased 21-fold, 12-fold and 8-fold, respectively. The reversal activity of NOM was stronger than that of the precursor compound MG, and comparable to that of VRP. After treatment with 5 μM NOM, the expression of both the MDR1 and the GSTπ mRNA genes began to decline on the second day (P <0.05 and P <0.01, respectively), and reached the lowest level on the third day (both P <0.01); however, on the fifth day the expression levels began to increase again (both P <0.05). The expression of MRP and TopoIIα had no significant changes. Changes in the expression of P-glycoprotein (P-gp) and GSTπ were similar to those of their mRNA expressions, showing early declines and late increases. Two hours after treatment with 20, 10 and 5 μM NOM, the intracellular ADR concentration increased 2.7-fold, 2.3-fold and 1.5-fold respectively. However, NOM did not increase ADR accumulation in MCF7/WT cells. FCM data showed that after 48 h of combined administration of NOM (20 μM) and ADR (from low to high concentration), MCF7/ADR cells showed a gradual arrest at the G2M phase with increasing ADR dose. The arrest effect with combined drug treatment was stronger than that with the single ADR treatment.

Conclusion

MDR is the major mechanism of drug resistance in malignant tumour cells. To overcome MDR and to increase chemosensitivity, many reversal agents have been found. Most progestogen compounds have been demonstrated to have reversal effects, but we found no data on NOM, a new progestogen compound. Our results show that NOM has strong reversal activity. The reversal effects were stronger than those of the precursor compound, MG, and were comparable to that of VRP. Because NOM has low toxicity, it might have good prospects in clinical application. Using RT-PCR and immunocytochemistry assays, we studied the effects of NOM on MDR-related genes. The results were that NOM could markedly downregulate the mRNA and protein expression levels of MDR1 and GSTπ. TopoIIα and MRP gene expression showed no significant changes. It is known that P-gp induces MDR in tumour cells mainly by decreasing the intracellular drug concentration. After treatment with NOM, the intracellular drug concentration in MCF7/ADR cells increased significantly. Combined treatment with NOM and ADR induced arrest at the G2M phase. It is worth noting that NOM caused an early decrease and a late increase in the expression of some MDR-related genes in a time-dependent manner. The phenomena raise a question for the continued administration of reversal agents in clinics that merits further study. We demonstrate that NOM has strong reversal effects on MDR in MCF7/ADR cells. The reversal is via different routes, namely downregulating the mRNA and protein expression levels of MDR1 and GSTπ, increasing intracellular drug concentration and arresting cells at the G2M phase (NOM in combination with ADR). The reversal mechanism needs further study.
Literature
1.
go back to reference Early Breast Cancer Trialists' Collaborative Group: Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy: 133 randomised trials involving 31,000 recurrences and 24,000 deaths among 75,000 women. Lancet. 1992, 339: 71-84. 10.1016/0140-6736(92)90997-H. Early Breast Cancer Trialists' Collaborative Group: Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy: 133 randomised trials involving 31,000 recurrences and 24,000 deaths among 75,000 women. Lancet. 1992, 339: 71-84. 10.1016/0140-6736(92)90997-H.
2.
go back to reference Gottesman MM: How cancer cells evade chemotherapy. Cancer Res. 1993, 53: 747-754.PubMed Gottesman MM: How cancer cells evade chemotherapy. Cancer Res. 1993, 53: 747-754.PubMed
3.
go back to reference Ferry DR, Traunecker H, Kerr DJ: Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer. 1996, 32A: 1070-1081. 10.1016/0959-8049(96)00091-3.PubMedCrossRef Ferry DR, Traunecker H, Kerr DJ: Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer. 1996, 32A: 1070-1081. 10.1016/0959-8049(96)00091-3.PubMedCrossRef
4.
go back to reference Panasci L, Jean-Claude BJ, Vasilescu D, Mustafa A, Damian S, Damian Z, Georges E, Liu Z, Batist G, Leyland-Jones B: Sensitization to doxorubicin resistance in breast cancer cell lines by tamoxifen and megestrol acetate. Biochem Pharmacol. 1996, 52: 1097-1102. 10.1016/0006-2952(96)00456-X.PubMedCrossRef Panasci L, Jean-Claude BJ, Vasilescu D, Mustafa A, Damian S, Damian Z, Georges E, Liu Z, Batist G, Leyland-Jones B: Sensitization to doxorubicin resistance in breast cancer cell lines by tamoxifen and megestrol acetate. Biochem Pharmacol. 1996, 52: 1097-1102. 10.1016/0006-2952(96)00456-X.PubMedCrossRef
5.
go back to reference Claudio JA, Emerman JT: The effects of cyclosporin A, tamoxifen, and medroxyprogesterone acetate on the enhancement of adriamycin cytotoxicity in primary cultures of human breast epethelial cells. Breast Cancer Res Treat. 1996, 41: 111-122.PubMedCrossRef Claudio JA, Emerman JT: The effects of cyclosporin A, tamoxifen, and medroxyprogesterone acetate on the enhancement of adriamycin cytotoxicity in primary cultures of human breast epethelial cells. Breast Cancer Res Treat. 1996, 41: 111-122.PubMedCrossRef
6.
go back to reference Fleming GF, Amato JM, Agresti M, Safa AR: Megestrol acetate reverses multidrug resistance and interacts with P-glycoprotein. Cancer Chemother Pharmacol. 1992, 29: 445-449.PubMedCrossRef Fleming GF, Amato JM, Agresti M, Safa AR: Megestrol acetate reverses multidrug resistance and interacts with P-glycoprotein. Cancer Chemother Pharmacol. 1992, 29: 445-449.PubMedCrossRef
7.
go back to reference Aisner J, Tchekmedyian NS, Tait N, Parnes H, Novak M: Studies of high-dose megestrol acetate: potential application in cachexia. Semin Oncol. 1988, 15S: 68-75. Aisner J, Tchekmedyian NS, Tait N, Parnes H, Novak M: Studies of high-dose megestrol acetate: potential application in cachexia. Semin Oncol. 1988, 15S: 68-75.
8.
go back to reference Grulol DJ, Bourgeois S: Chemosensitizing steroids: glucocorticoid receptor agonists capable of inhibiting P-glycoprotein function. Cancer Res. 1997, 54: 720-727. Grulol DJ, Bourgeois S: Chemosensitizing steroids: glucocorticoid receptor agonists capable of inhibiting P-glycoprotein function. Cancer Res. 1997, 54: 720-727.
9.
go back to reference Gasteaud JM: 3,20-Diketo, 6-methyl, 17-α-hydroxy 19-norpregna 4,6-diene, its esters and the uses thereof. US Patent 4544555. 1985 Gasteaud JM: 3,20-Diketo, 6-methyl, 17-α-hydroxy 19-norpregna 4,6-diene, its esters and the uses thereof. US Patent 4544555. 1985
10.
go back to reference Yang C-PH, DePinho SH, Greenberger LM, Arceci RJ, Horwitz SB: Progesterone interacts with P-glycoprotein in multidrug-resistant cells and in the endometrium of gravid uterus. J Biol Chem. 1989, 264: 782-785.PubMed Yang C-PH, DePinho SH, Greenberger LM, Arceci RJ, Horwitz SB: Progesterone interacts with P-glycoprotein in multidrug-resistant cells and in the endometrium of gravid uterus. J Biol Chem. 1989, 264: 782-785.PubMed
11.
go back to reference Wang L, Yang CP, Horwitz SB, Trail PA, Casazza AM: Reversal of the human multidrug-resistance phenotype with megestrol acetate. Cancer Chemother Pharmacol. 1994, 34: 96-102. 10.1007/s002800050112.PubMedCrossRef Wang L, Yang CP, Horwitz SB, Trail PA, Casazza AM: Reversal of the human multidrug-resistance phenotype with megestrol acetate. Cancer Chemother Pharmacol. 1994, 34: 96-102. 10.1007/s002800050112.PubMedCrossRef
12.
go back to reference Bojar H, Stuschke M, Staib W: Effects of high-dose medrox-yprogesterone acetate on plasma membrane lipid mobility. Prog Cancer Res Ther. 1984, 31: 115-119. Bojar H, Stuschke M, Staib W: Effects of high-dose medrox-yprogesterone acetate on plasma membrane lipid mobility. Prog Cancer Res Ther. 1984, 31: 115-119.
13.
go back to reference Vickers PJ, Dickson RB, Shoemaker R, Cowan KH: A multidrug-resistant MCF7 human cancer cell line which exhibits cross-resistance to anti-estrogens and hormone-independent tumor growth. Mol Endocrinol. 1988, 2: 886-892.PubMedCrossRef Vickers PJ, Dickson RB, Shoemaker R, Cowan KH: A multidrug-resistant MCF7 human cancer cell line which exhibits cross-resistance to anti-estrogens and hormone-independent tumor growth. Mol Endocrinol. 1988, 2: 886-892.PubMedCrossRef
14.
go back to reference Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB: Evaluation of a tetrzolium based semiautomated colormetric assay: assessment of chemosensitivity testing. Cancer Res. 1987, 47: 936-PubMed Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB: Evaluation of a tetrzolium based semiautomated colormetric assay: assessment of chemosensitivity testing. Cancer Res. 1987, 47: 936-PubMed
15.
go back to reference O'Driscoll L, Kennedy S, McDermott E, Kelehan P, Clynes M: Multiple drug resistance-related messenger RNA expression in archival formalin-fixed paraffin-embedded human breast tumour tissue. Eur J Cancer. 1996, 32A: 128-133. 10.1016/0959-8049(95)00552-8.PubMedCrossRef O'Driscoll L, Kennedy S, McDermott E, Kelehan P, Clynes M: Multiple drug resistance-related messenger RNA expression in archival formalin-fixed paraffin-embedded human breast tumour tissue. Eur J Cancer. 1996, 32A: 128-133. 10.1016/0959-8049(95)00552-8.PubMedCrossRef
16.
go back to reference Zhou G: Routine histoimmunochemistry methods. In Practical Methodology of Oncopathology [in Chinese]. Edited by Xu L. Shanghai: Shanghai Medical University Press, Changshu Printing Factory;. 1997, 173-174. Zhou G: Routine histoimmunochemistry methods. In Practical Methodology of Oncopathology [in Chinese]. Edited by Xu L. Shanghai: Shanghai Medical University Press, Changshu Printing Factory;. 1997, 173-174.
17.
go back to reference Xu L, Yang W: Standards of determining histoimmunochemistry staining results [in Chinese]. China Oncol. 1996, 6: 229-231. Xu L, Yang W: Standards of determining histoimmunochemistry staining results [in Chinese]. China Oncol. 1996, 6: 229-231.
18.
go back to reference Ling V: P-glycoprotein and resistance to anticancer drugs. Cancer. 1992, 69: 2693-2609.CrossRef Ling V: P-glycoprotein and resistance to anticancer drugs. Cancer. 1992, 69: 2693-2609.CrossRef
19.
go back to reference Ford JM: Experimental reversal of P-glycoprotein-mediated multidrug resistance by pharmacological chemosensitisers. Eur J Cancer. 1996, 32A: 991-1001. 10.1016/0959-8049(96)00047-0.PubMedCrossRef Ford JM: Experimental reversal of P-glycoprotein-mediated multidrug resistance by pharmacological chemosensitisers. Eur J Cancer. 1996, 32A: 991-1001. 10.1016/0959-8049(96)00047-0.PubMedCrossRef
20.
go back to reference Yang CP, Cohen D, Greenberger LM, Hsu SI, Horwitz SB: Differential transport properties of two mdr gene products are distinguished by progesterone. J Biol Chem. 1990, 265: 10282-10288.PubMed Yang CP, Cohen D, Greenberger LM, Hsu SI, Horwitz SB: Differential transport properties of two mdr gene products are distinguished by progesterone. J Biol Chem. 1990, 265: 10282-10288.PubMed
21.
go back to reference Wang L, Yang C-PH, Trial P, Horwitz SB, Casazza AM: Reversal of the multidrug resistance (MDR) phenotype with megesterol acetate. (MA). Proc Am Assoc Cancer Res. 1991, 32: 377- Wang L, Yang C-PH, Trial P, Horwitz SB, Casazza AM: Reversal of the multidrug resistance (MDR) phenotype with megesterol acetate. (MA). Proc Am Assoc Cancer Res. 1991, 32: 377-
22.
go back to reference Pasqualini JR, Paris J, Sitruk-Ware R, Chetrite G, Botella J: Progestins and breast cancer. J Steroid Biochem Mol Biol. 1998, 65: 225-235. 10.1016/S0960-0760(98)00028-4.PubMedCrossRef Pasqualini JR, Paris J, Sitruk-Ware R, Chetrite G, Botella J: Progestins and breast cancer. J Steroid Biochem Mol Biol. 1998, 65: 225-235. 10.1016/S0960-0760(98)00028-4.PubMedCrossRef
23.
go back to reference Rao US, Fine RL, Scarborough GA: Antiestrogens and steroid hormones: substrates of the human P-glycoprotein. Biochem Pharmacol. 1994, 48: 287-292. 10.1016/0006-2952(94)90099-X.PubMedCrossRef Rao US, Fine RL, Scarborough GA: Antiestrogens and steroid hormones: substrates of the human P-glycoprotein. Biochem Pharmacol. 1994, 48: 287-292. 10.1016/0006-2952(94)90099-X.PubMedCrossRef
24.
go back to reference Batist G, Tulpule A, Sinha BK, Katki AG, Myers CE, Cowan KH: Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem. 1986, 261: 15544-15549.PubMed Batist G, Tulpule A, Sinha BK, Katki AG, Myers CE, Cowan KH: Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem. 1986, 261: 15544-15549.PubMed
25.
go back to reference Ford JM, Brufferman EP: Cellular and biochemical characterization of thioxanthenes for reversal of multidrug resistance in human and murine cell lines. Cancer Res. 1990, 50: 1748-1756.PubMed Ford JM, Brufferman EP: Cellular and biochemical characterization of thioxanthenes for reversal of multidrug resistance in human and murine cell lines. Cancer Res. 1990, 50: 1748-1756.PubMed
26.
go back to reference Wunder JS, Andrulis IL, Gazdar AF, Willman CL, Griffith B, Von Hoff DD: Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc Natl Acad Sci USA. 1990, 87: 7160-7164.PubMedPubMedCentralCrossRef Wunder JS, Andrulis IL, Gazdar AF, Willman CL, Griffith B, Von Hoff DD: Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc Natl Acad Sci USA. 1990, 87: 7160-7164.PubMedPubMedCentralCrossRef
27.
go back to reference Herzog CE, Trepel JB, Mickley LA, Bates SE, Fojo AT: Various methods of analysis of mdr1/P-glycoprotein in human colon cancer cell lines. J Natl Cancer Inst. 1992, 84: 711-716.PubMedCrossRef Herzog CE, Trepel JB, Mickley LA, Bates SE, Fojo AT: Various methods of analysis of mdr1/P-glycoprotein in human colon cancer cell lines. J Natl Cancer Inst. 1992, 84: 711-716.PubMedCrossRef
28.
go back to reference Lehnert M: Clinical multidrug resistance in cancer: a multifactorial problem. Eur J Cancer. 1996, 32A: 912-920. 10.1016/0959-8049(96)00069-X.PubMedCrossRef Lehnert M: Clinical multidrug resistance in cancer: a multifactorial problem. Eur J Cancer. 1996, 32A: 912-920. 10.1016/0959-8049(96)00069-X.PubMedCrossRef
29.
go back to reference Stein U, Walther W, Shoemaker RH: Modulation of mdr1 expression by cytokines in human colon carcinoma cells: an approach for reversal of multidrug resistance. Br J Cancer. 1996, 74: 1384-1391.PubMedPubMedCentralCrossRef Stein U, Walther W, Shoemaker RH: Modulation of mdr1 expression by cytokines in human colon carcinoma cells: an approach for reversal of multidrug resistance. Br J Cancer. 1996, 74: 1384-1391.PubMedPubMedCentralCrossRef
30.
go back to reference Liu S, Meng S, Yang J, Ping W: Reversal effect of R3 (extract from a Chinese herb Bu-Gu-Zhi) on MDR of MCF7/ADR cell line [in Chinese]. Chinese J Clin Oncol. 1997, 24: 325-330. Liu S, Meng S, Yang J, Ping W: Reversal effect of R3 (extract from a Chinese herb Bu-Gu-Zhi) on MDR of MCF7/ADR cell line [in Chinese]. Chinese J Clin Oncol. 1997, 24: 325-330.
31.
go back to reference Herzog CE, Tsokos M, Bates SE, Fojo AT: Increased mdr-1/P-glycoprotein expression after treatment of human colon carcinoma cells with P-glycoprotein antagonists. J Biol Chem. 1993, 268: 2946-2952.PubMed Herzog CE, Tsokos M, Bates SE, Fojo AT: Increased mdr-1/P-glycoprotein expression after treatment of human colon carcinoma cells with P-glycoprotein antagonists. J Biol Chem. 1993, 268: 2946-2952.PubMed
32.
go back to reference Bhat UG, Winter MA, Pearce HL, Beck WT: A structure-function relationship among reserpine/yohimbine analogs in their ability to increase expression of mdr1 and P-glycoprotein in a colon carcinoma cell line. Mol Pharmacol. 1995, 48: 682-689.PubMed Bhat UG, Winter MA, Pearce HL, Beck WT: A structure-function relationship among reserpine/yohimbine analogs in their ability to increase expression of mdr1 and P-glycoprotein in a colon carcinoma cell line. Mol Pharmacol. 1995, 48: 682-689.PubMed
33.
go back to reference Lee GY, Croop JM, Anderson E: Multidrug resistance gene expression correlates with progesterone production in dehydroepiandrosterone-induced polycystic and equine chorionic gonadotropin-stimulated ovaries of prepubertal rats. Biol Reprod. 1998, 58: 330-337.PubMedCrossRef Lee GY, Croop JM, Anderson E: Multidrug resistance gene expression correlates with progesterone production in dehydroepiandrosterone-induced polycystic and equine chorionic gonadotropin-stimulated ovaries of prepubertal rats. Biol Reprod. 1998, 58: 330-337.PubMedCrossRef
34.
go back to reference Danks MK, Schmidt CA, Cirtain MC, Suttle DP, Beck WT: Altered catalytic activity of and DNA cleavage topoisomeraseII from human leukemic cells selected for resistance to VM-26. Biochemistry. 1988, 27: 8861-8869.PubMedCrossRef Danks MK, Schmidt CA, Cirtain MC, Suttle DP, Beck WT: Altered catalytic activity of and DNA cleavage topoisomeraseII from human leukemic cells selected for resistance to VM-26. Biochemistry. 1988, 27: 8861-8869.PubMedCrossRef
35.
go back to reference Danks MK, Yalowich JC, Beck WT: Atypical multiple drug resistance in a human leukemic cell line selected for resistance to teniposide (VM-26). Cancer Res. 1987, 47: 1297-1301.PubMed Danks MK, Yalowich JC, Beck WT: Atypical multiple drug resistance in a human leukemic cell line selected for resistance to teniposide (VM-26). Cancer Res. 1987, 47: 1297-1301.PubMed
36.
go back to reference Loe DW, Deeley RG, Cole SP: Biology of the multidrug resistance-associated protein, MRP. Eur J Cancer. 1996, 32A: 945-957. 10.1016/0959-8049(96)00046-9.PubMedCrossRef Loe DW, Deeley RG, Cole SP: Biology of the multidrug resistance-associated protein, MRP. Eur J Cancer. 1996, 32A: 945-957. 10.1016/0959-8049(96)00046-9.PubMedCrossRef
37.
go back to reference Loe DW, Deeley RG, Cole SP: Chemosensitisation and drug accumulation effects of cyclosporin A, PSC833 and verapamil in human MDR large cell lung cancer cells expressing a 190k membrane protein distinct from P-glycoprotein. Eur J Cancer. 1993, 29A: 408-415. Loe DW, Deeley RG, Cole SP: Chemosensitisation and drug accumulation effects of cyclosporin A, PSC833 and verapamil in human MDR large cell lung cancer cells expressing a 190k membrane protein distinct from P-glycoprotein. Eur J Cancer. 1993, 29A: 408-415.
38.
go back to reference Leier I, Jedlitschky G, Buchholz U, Cole SP, Deeley RG, Keppler D: The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem. 1994, 269: 27807-27810.PubMed Leier I, Jedlitschky G, Buchholz U, Cole SP, Deeley RG, Keppler D: The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem. 1994, 269: 27807-27810.PubMed
39.
go back to reference Zaman GJ, Flens MJ, van Leusden MR, de Haas M, Mulder HS, Lankelma J, Pinedo HM, Scheper RJ, Baas F, Broxterman HJ: The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc Natl Acad Sci USA. 1994, 91: 8822-8826.PubMedPubMedCentralCrossRef Zaman GJ, Flens MJ, van Leusden MR, de Haas M, Mulder HS, Lankelma J, Pinedo HM, Scheper RJ, Baas F, Broxterman HJ: The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc Natl Acad Sci USA. 1994, 91: 8822-8826.PubMedPubMedCentralCrossRef
40.
go back to reference Hwang J, Hwong CL: Cellular regulation of mammalian DNA topoisomerases. Adv Pharmacol. 1994, 29A: 167-189.PubMedCrossRef Hwang J, Hwong CL: Cellular regulation of mammalian DNA topoisomerases. Adv Pharmacol. 1994, 29A: 167-189.PubMedCrossRef
41.
go back to reference de Jong S, Zijlstra JG, de Vries EG, Mulder NH: Reduced DNA topoisomerase and drug-induced DNA cleavage activity in an adriamycin-resistant human small cell lung carcinoma cell line. Cancer Res. 1990, 50: 304-309.PubMed de Jong S, Zijlstra JG, de Vries EG, Mulder NH: Reduced DNA topoisomerase and drug-induced DNA cleavage activity in an adriamycin-resistant human small cell lung carcinoma cell line. Cancer Res. 1990, 50: 304-309.PubMed
42.
go back to reference Bugg BY, Danks MK, Beck WT, Suttle DP: Expression of a mutant DNA topoisomerase etioposide in CCRF-CEM human leukemic cells selected for resistance to teniposide. Proc Natl Acad Sci USA. 1991, 88: 7654-7658.PubMedPubMedCentralCrossRef Bugg BY, Danks MK, Beck WT, Suttle DP: Expression of a mutant DNA topoisomerase etioposide in CCRF-CEM human leukemic cells selected for resistance to teniposide. Proc Natl Acad Sci USA. 1991, 88: 7654-7658.PubMedPubMedCentralCrossRef
43.
go back to reference Germann UA: P-glycoprotein-a mediator of multidrug resistance in tumour cells. Eur J Cancer. 1996, 32A: 927-944. 10.1016/0959-8049(96)00057-3.PubMedCrossRef Germann UA: P-glycoprotein-a mediator of multidrug resistance in tumour cells. Eur J Cancer. 1996, 32A: 927-944. 10.1016/0959-8049(96)00057-3.PubMedCrossRef
44.
go back to reference Claudo JA, Emerman JT: The effects of cyclosporin A, tamoxifen, and medroxyprogesterone acetate on the enhancement of adriamycin cytotoxicity in primary cultures of human breast epithelial cells. Breast Cancer Res Treat. 1996, 41: 111-122.CrossRef Claudo JA, Emerman JT: The effects of cyclosporin A, tamoxifen, and medroxyprogesterone acetate on the enhancement of adriamycin cytotoxicity in primary cultures of human breast epithelial cells. Breast Cancer Res Treat. 1996, 41: 111-122.CrossRef
45.
go back to reference Wadler S, Green MD, Basch R, Muggia FM: Lethal and sublethal effects of the combination of doxorubicin and the bis-dioxopiperazine(+)-1,2-bis(3,5-diozopeperazinyl-l-yl) propane (ICRF 187) on murine sarcoma S180 in vitro. Biochem Pharmacol. 1987, 9: 1495-1501. 10.1016/0006-2952(87)90116-X.CrossRef Wadler S, Green MD, Basch R, Muggia FM: Lethal and sublethal effects of the combination of doxorubicin and the bis-dioxopiperazine(+)-1,2-bis(3,5-diozopeperazinyl-l-yl) propane (ICRF 187) on murine sarcoma S180 in vitro. Biochem Pharmacol. 1987, 9: 1495-1501. 10.1016/0006-2952(87)90116-X.CrossRef
Metadata
Title
Reversal effects of nomegestrol acetate on multidrug resistance in adriamycin-resistant MCF7 breast cancer cell line
Authors
Jie Li
Liang-Zhong Xu
Kai-Ling He
Wei-Jian Guo
Yun-Hong Zheng
Peng Xia
Ying Chen
Publication date
01-08-2001
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 4/2001
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr303

Other articles of this Issue 4/2001

Breast Cancer Research 4/2001 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine