Skip to main content
Top
Published in: Breast Cancer Research 3/2011

Open Access 01-06-2011 | Research article

Geminin overexpression prevents the completion of topoisomerase IIα chromosome decatenation, leading to aneuploidy in human mammary epithelial cells

Authors: Lauren Gardner, Rohit Malik, Yoshiko Shimizu, Nicole Mullins, Wael M ElShamy

Published in: Breast Cancer Research | Issue 3/2011

Login to get access

Abstract

Introduction

The nuclear enzyme topoisomerase IIα (TopoIIα) is able to cleave DNA in a reversible manner, making it a valuable target for agents such as etoposide that trap the enzyme in a covalent bond with the 5′ DNA end to which it cleaves. This prevents DNA religation and triggers cell death in cancer cells. However, development of resistance to these agents limits their therapeutic use. In this study, we examined the therapeutic targeting of geminin for improving the therapeutic potential of TopoIIα agents.

Methods

Human mammary epithelial (HME) cells and several breast cancer cell lines were used in this study. Geminin, TopoIIα and cell division cycle 7 (Cdc7) silencing were done using specific small interfering RNA. Transit or stable inducible overexpression of these proteins and casein kinase Iε (CKIε) were also used, as well as several pharmacological inhibitors that target TopoIIα, Cdc7 or CKIε. We manipulated HME cells that expressed H2B-GFP, or did not, to detect chromosome bridges. Immunoprecipitation and direct Western blot analysis were used to detect interactions between these proteins and their total expression, respectively, whereas interactions on chromosomal arms were detected using a trapped in agarose DNA immunostaining assay. TopoIIα phosphorylation by Cdc7 or CKIε was done using an in vitro kinase assay. The TopoGen decatenation kit was used to measure TopoIIα decatenation activity. Finally, a comet assay and metaphase chromosome spread were used to detect chromosome breakage and changes in chromosome condensation or numbers, respectively.

Results

We found that geminin and TopoIIα interact primarily in G2/M/early G1 cells on chromosomes, that geminin recruits TopoIIα to chromosomal decatenation sites or vice versa and that geminin silencing in HME cells triggers the formation of chromosome bridges by suppressing TopoIIα access to chromosomal arms. CKIε kinase phosphorylates and positively regulates TopoIIα chromosome localization and function. CKIε kinase overexpression or Cdc7 kinase silencing, which we show phosphorylates TopoIIα in vitro, restored DNA decatenation and chromosome segregation in geminin-silenced cells before triggering cell death. In vivo, at normal concentration, geminin recruits the deSUMOylating sentrin-specific proteases SENP1 and SENP2 enzymes to deSUMOylate chromosome-bound TopoIIα and promote its release from chromosomes following completion of DNA decatenation. In cells overexpressing geminin, premature departure of TopoIIα from chromosomes is thought to be due to the fact that geminin recruits more of these deSUMOylating enzymes, or recruits them earlier, to bound TopoIIα. This triggers premature release of TopoIIα from chromosomes, which we propose induces aneuploidy in HME cells, since chromosome breakage generated through this mechanism were not sensed and/or repaired and the cell cycle was not arrested. Expression of mitosis-inducing proteins such as cyclin A and cell division kinase 1 was also increased in these cells because of the overexpression of geminin.

Conclusions

TopoIIα recruitment and its chromosome decatenation function require a normal level of geminin. Geminin silencing induces a cytokinetic checkpoint in which Cdc7 phosphorylates TopoIIα and inhibits its chromosomal recruitment and decatenation and/or segregation function. Geminin overexpression prematurely deSUMOylates TopoIIα, triggering its premature departure from chromosomes and leading to chromosomal abnormalities and the formation of aneuploid, drug-resistant cancer cells. On the basis of our findings, we propose that therapeutic targeting of geminin is essential for improving the therapeutic potential of TopoIIα agents.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thomer M, May N, Aggarwal BD, Kwok G, Calvi BR: Drosophila double-parked is sufficient to induce re-replication during development and is regulated by cyclin E/CDK2. Development. 2004, 131: 4807-4818. 10.1242/dev.01348.PubMed Thomer M, May N, Aggarwal BD, Kwok G, Calvi BR: Drosophila double-parked is sufficient to induce re-replication during development and is regulated by cyclin E/CDK2. Development. 2004, 131: 4807-4818. 10.1242/dev.01348.PubMed
2.
go back to reference Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A: Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science. 2000, 290: 2309-2312. 10.1126/science.290.5500.2309.PubMed Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A: Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science. 2000, 290: 2309-2312. 10.1126/science.290.5500.2309.PubMed
3.
go back to reference Tada S, Li A, Maiorano D, Méchali M, Blow JJ: Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol. 2001, 3: 107-113. 10.1038/35055000.PubMedPubMedCentral Tada S, Li A, Maiorano D, Méchali M, Blow JJ: Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol. 2001, 3: 107-113. 10.1038/35055000.PubMedPubMedCentral
4.
go back to reference Lutzmann M, Maiorano D, Méchali M: A Cdt1-geminin complex licenses chromatin for DNA replication and prevents rereplication during S phase in Xenopus. EMBO J. 2006, 25: 5764-5774. 10.1038/sj.emboj.7601436.PubMedPubMedCentral Lutzmann M, Maiorano D, Méchali M: A Cdt1-geminin complex licenses chromatin for DNA replication and prevents rereplication during S phase in Xenopus. EMBO J. 2006, 25: 5764-5774. 10.1038/sj.emboj.7601436.PubMedPubMedCentral
5.
go back to reference Nishitani H, Lygerou Z, Nishimoto T: Proteolysis of DNA replication licensing factor Cdt1 in S-phase is performed independently of geminin through its N-terminal region. J Biol Chem. 2004, 279: 30807-30816. 10.1074/jbc.M312644200.PubMed Nishitani H, Lygerou Z, Nishimoto T: Proteolysis of DNA replication licensing factor Cdt1 in S-phase is performed independently of geminin through its N-terminal region. J Biol Chem. 2004, 279: 30807-30816. 10.1074/jbc.M312644200.PubMed
6.
go back to reference Arias EE, Walter JC: Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes Dev. 2005, 19: 114-126. 10.1101/gad.1255805.PubMedPubMedCentral Arias EE, Walter JC: Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes Dev. 2005, 19: 114-126. 10.1101/gad.1255805.PubMedPubMedCentral
7.
go back to reference Yoshida K, Takisawa H, Kubota Y: Intrinsic nuclear import activity of geminin is essential to prevent re-initiation of DNA replication in Xenopus eggs. Genes Cells. 2005, 10: 63-73.PubMed Yoshida K, Takisawa H, Kubota Y: Intrinsic nuclear import activity of geminin is essential to prevent re-initiation of DNA replication in Xenopus eggs. Genes Cells. 2005, 10: 63-73.PubMed
8.
go back to reference McGarry TJ, Kirschner MW: Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell. 1998, 93: 1043-1053. 10.1016/S0092-8674(00)81209-X.PubMed McGarry TJ, Kirschner MW: Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell. 1998, 93: 1043-1053. 10.1016/S0092-8674(00)81209-X.PubMed
9.
go back to reference Yanagi K, Mizuno T, You Z, Hanaoka F: Mouse geminin inhibits not only Cdt1-MCM6 interactions but also a novel intrinsic Cdt1 DNA binding activity. J Biol Chem. 2002, 277: 40871-40880. 10.1074/jbc.M206202200.PubMed Yanagi K, Mizuno T, You Z, Hanaoka F: Mouse geminin inhibits not only Cdt1-MCM6 interactions but also a novel intrinsic Cdt1 DNA binding activity. J Biol Chem. 2002, 277: 40871-40880. 10.1074/jbc.M206202200.PubMed
10.
go back to reference Li A, Blow JJ: Cdt1 downregulation by proteolysis and geminin inhibition prevents DNA re-replication in Xenopus. EMBO J. 2005, 24: 395-404. 10.1038/sj.emboj.7600520.PubMed Li A, Blow JJ: Cdt1 downregulation by proteolysis and geminin inhibition prevents DNA re-replication in Xenopus. EMBO J. 2005, 24: 395-404. 10.1038/sj.emboj.7600520.PubMed
11.
go back to reference Maiorano D, Krasinska L, Lutzmann M, Mechali M: Recombinant Cdt1 induces rereplication of G2 nuclei in Xenopus egg extracts. Curr Biol. 2005, 15: 146-153. 10.1016/j.cub.2004.12.002.PubMed Maiorano D, Krasinska L, Lutzmann M, Mechali M: Recombinant Cdt1 induces rereplication of G2 nuclei in Xenopus egg extracts. Curr Biol. 2005, 15: 146-153. 10.1016/j.cub.2004.12.002.PubMed
12.
go back to reference Nakuci E, Xu M, Pujana MA, Valls J, ElShamy WM: Geminin is bound to chromatin in G2/M phase to promote proper cytokinesis. Int J Biochem Cell Biol. 2006, 38: 1207-1220. 10.1016/j.biocel.2005.12.017.PubMed Nakuci E, Xu M, Pujana MA, Valls J, ElShamy WM: Geminin is bound to chromatin in G2/M phase to promote proper cytokinesis. Int J Biochem Cell Biol. 2006, 38: 1207-1220. 10.1016/j.biocel.2005.12.017.PubMed
13.
go back to reference Lu F, Lan R, Zhang H, Jiang Q, Zhang C: Geminin is partially localized to the centrosome and plays a role in proper centrosome duplication. Biol Cell. 2009, 101: 273-285. 10.1042/BC20080109.PubMedPubMedCentral Lu F, Lan R, Zhang H, Jiang Q, Zhang C: Geminin is partially localized to the centrosome and plays a role in proper centrosome duplication. Biol Cell. 2009, 101: 273-285. 10.1042/BC20080109.PubMedPubMedCentral
14.
go back to reference Hara K, Nakayama KI, Nakayama K: Geminin is essential for the development of preimplantation mouse embryos. Genes Cells. 2006, 11: 1281-1293. 10.1111/j.1365-2443.2006.01019.x.PubMed Hara K, Nakayama KI, Nakayama K: Geminin is essential for the development of preimplantation mouse embryos. Genes Cells. 2006, 11: 1281-1293. 10.1111/j.1365-2443.2006.01019.x.PubMed
15.
go back to reference Saxena S, Dutta A: Geminin and p53: deterrents to rereplication in human cancer cells. Cell Cycle. 2003, 2: 283-286.PubMed Saxena S, Dutta A: Geminin and p53: deterrents to rereplication in human cancer cells. Cell Cycle. 2003, 2: 283-286.PubMed
16.
go back to reference Saxena S, Dutta A: Geminin-Cdt1 balance is critical for genetic stability. Mutat Res. 2005, 569: 111-121.PubMed Saxena S, Dutta A: Geminin-Cdt1 balance is critical for genetic stability. Mutat Res. 2005, 569: 111-121.PubMed
17.
go back to reference Lygerou Z, Nurse P: Cell cycle. License withheld: geminin blocks DNA replication. Science. 2000, 290: 2271-2273.PubMed Lygerou Z, Nurse P: Cell cycle. License withheld: geminin blocks DNA replication. Science. 2000, 290: 2271-2273.PubMed
18.
go back to reference Madine M, Laskey R: Geminin bans replication licence. Nat Cell Biol. 2001, 3: E49-E50. 10.1038/35055158.PubMed Madine M, Laskey R: Geminin bans replication licence. Nat Cell Biol. 2001, 3: E49-E50. 10.1038/35055158.PubMed
19.
go back to reference Melixetian M, Helin K: Geminin: a major DNA replication safeguard in higher eukaryotes. Cell Cycle. 2004, 3: 1002-1004.PubMed Melixetian M, Helin K: Geminin: a major DNA replication safeguard in higher eukaryotes. Cell Cycle. 2004, 3: 1002-1004.PubMed
20.
go back to reference Quinn LM, Herr A, McGarry TJ, Richardson H: The Drosophila Geminin homolog: roles for Geminin in limiting DNA replication, in anaphase and in neurogenesis. Genes Dev. 2001, 15: 2741-2754. 10.1101/gad.916201.PubMedPubMedCentral Quinn LM, Herr A, McGarry TJ, Richardson H: The Drosophila Geminin homolog: roles for Geminin in limiting DNA replication, in anaphase and in neurogenesis. Genes Dev. 2001, 15: 2741-2754. 10.1101/gad.916201.PubMedPubMedCentral
21.
go back to reference Sclafani RA: Cdc7p-Dbf4p becomes famous in the cell cycle. J Cell Sci. 2000, 113: 2111-2117.PubMed Sclafani RA: Cdc7p-Dbf4p becomes famous in the cell cycle. J Cell Sci. 2000, 113: 2111-2117.PubMed
22.
go back to reference Kim JM, Yamada M, Masai H: Functions of mammalian Cdc7 kinase in initiation/monitoring of DNA replication and development. Mutat Res. 2003, 532: 29-40.PubMed Kim JM, Yamada M, Masai H: Functions of mammalian Cdc7 kinase in initiation/monitoring of DNA replication and development. Mutat Res. 2003, 532: 29-40.PubMed
23.
go back to reference Masai H, Arai K: Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cell Physiol. 2002, 190: 287-296. 10.1002/jcp.10070.PubMed Masai H, Arai K: Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cell Physiol. 2002, 190: 287-296. 10.1002/jcp.10070.PubMed
24.
go back to reference Masai H, Taniyama C, Ogino K, Matsui E, Kakusho N, Matsumoto S, Kim JM, Ishii A, Tanaka T, Kobayashi T, Tamai K, Ohtani K, Arai K: Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin. J Biol Chem. 2006, 281: 39249-39261. 10.1074/jbc.M608935200.PubMed Masai H, Taniyama C, Ogino K, Matsui E, Kakusho N, Matsumoto S, Kim JM, Ishii A, Tanaka T, Kobayashi T, Tamai K, Ohtani K, Arai K: Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin. J Biol Chem. 2006, 281: 39249-39261. 10.1074/jbc.M608935200.PubMed
25.
go back to reference Tsuji T, Ficarro SB, Jiang W: Essential role of phosphorylation of MCM2 by Cdc7/Dbf4 in the initiation of DNA replication in mammalian cells. Mol Biol Cell. 2006, 17: 4459-4472. 10.1091/mbc.E06-03-0241.PubMedPubMedCentral Tsuji T, Ficarro SB, Jiang W: Essential role of phosphorylation of MCM2 by Cdc7/Dbf4 in the initiation of DNA replication in mammalian cells. Mol Biol Cell. 2006, 17: 4459-4472. 10.1091/mbc.E06-03-0241.PubMedPubMedCentral
26.
go back to reference Charych DH, Coyne M, Yabannavar A, Narberes J, Chow S, Wallroth M, Shafer C, Walter AO: Inhibition of Cdc7/Dbf4 kinase activity affects specific phosphorylation sites on MCM2 in cancer cells. J Cell Biochem. 2008, 104: 1075-1086. 10.1002/jcb.21698.PubMed Charych DH, Coyne M, Yabannavar A, Narberes J, Chow S, Wallroth M, Shafer C, Walter AO: Inhibition of Cdc7/Dbf4 kinase activity affects specific phosphorylation sites on MCM2 in cancer cells. J Cell Biochem. 2008, 104: 1075-1086. 10.1002/jcb.21698.PubMed
27.
go back to reference Montagnoli A, Tenca P, Sola F, Carpani D, Brotherton D, Albanese C, Santocanale C: Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells. Cancer Res. 2004, 64: 7110-7116. 10.1158/0008-5472.CAN-04-1547.PubMed Montagnoli A, Tenca P, Sola F, Carpani D, Brotherton D, Albanese C, Santocanale C: Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells. Cancer Res. 2004, 64: 7110-7116. 10.1158/0008-5472.CAN-04-1547.PubMed
28.
go back to reference Yoshizawa-Sugata N, Ishii A, Taniyama C, Matsui E, Arai K, Masai H: A second human Dbf4/ASK-related protein, Drf1/ASKL1, is required for efficient progression of S and M phases. J Biol Chem. 2005, 280: 13062-13070.PubMed Yoshizawa-Sugata N, Ishii A, Taniyama C, Matsui E, Arai K, Masai H: A second human Dbf4/ASK-related protein, Drf1/ASKL1, is required for efficient progression of S and M phases. J Biol Chem. 2005, 280: 13062-13070.PubMed
29.
go back to reference Im JS, Lee JK: ATR-dependent activation of p38 MAP kinase is responsible for apoptotic cell death in cells depleted of Cdc7. J Biol Chem. 2008, 283: 25171-25177. 10.1074/jbc.M802851200.PubMed Im JS, Lee JK: ATR-dependent activation of p38 MAP kinase is responsible for apoptotic cell death in cells depleted of Cdc7. J Biol Chem. 2008, 283: 25171-25177. 10.1074/jbc.M802851200.PubMed
30.
go back to reference Kim JM, Kakusho N, Yamada M, Kanoh Y, Takemoto N, Masai H: Cdc7 kinase mediates claspin phosphorylation in DNA replication checkpoint. Oncogene. 2008, 27: 3475-3482. 10.1038/sj.onc.1210994.PubMed Kim JM, Kakusho N, Yamada M, Kanoh Y, Takemoto N, Masai H: Cdc7 kinase mediates claspin phosphorylation in DNA replication checkpoint. Oncogene. 2008, 27: 3475-3482. 10.1038/sj.onc.1210994.PubMed
31.
go back to reference Felix CA, Kolaris CP, Osheroff N: Topoisomerase II and the etiology of chromosomal translocations. DNA Repair (Amst). 2006, 5: 1093-1108. 10.1016/j.dnarep.2006.05.031. Felix CA, Kolaris CP, Osheroff N: Topoisomerase II and the etiology of chromosomal translocations. DNA Repair (Amst). 2006, 5: 1093-1108. 10.1016/j.dnarep.2006.05.031.
33.
go back to reference Wang J: Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev. 2002, 3: 430-440. 10.1038/nrm831. Wang J: Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev. 2002, 3: 430-440. 10.1038/nrm831.
34.
go back to reference Giménez-Abián JF, Clarke DJ, Giménez-Martín G, Weingartner M, Giménez-Abián M, Carballo JA, Díaz de la Espina SM, Bögre L, De la Torre C: DNA catenations that link sister chromatids until the onset of anaphase are maintained by a checkpoint mechanism. Eur J Cell Biol. 2002, 81: 9-16. 10.1078/0171-9335-00226.PubMed Giménez-Abián JF, Clarke DJ, Giménez-Martín G, Weingartner M, Giménez-Abián M, Carballo JA, Díaz de la Espina SM, Bögre L, De la Torre C: DNA catenations that link sister chromatids until the onset of anaphase are maintained by a checkpoint mechanism. Eur J Cell Biol. 2002, 81: 9-16. 10.1078/0171-9335-00226.PubMed
35.
go back to reference Downes CS, Mullinger AM, Johnson RT: Inhibitors of DNA topoisomerase II prevent chromatid separation in mammalian cells but do not prevent exit from mitosis. Proc Natl Acad Sci USA. 1991, 88: 8895-8899. 10.1073/pnas.88.20.8895.PubMed Downes CS, Mullinger AM, Johnson RT: Inhibitors of DNA topoisomerase II prevent chromatid separation in mammalian cells but do not prevent exit from mitosis. Proc Natl Acad Sci USA. 1991, 88: 8895-8899. 10.1073/pnas.88.20.8895.PubMed
36.
go back to reference Heck MM, Hittelman WN, Earnshaw WC: In vivo phosphorylation of the 170-kDa form of eukaryotic DNA topoisomerase II cell cycle analysis. J Biol Chem. 1989, 264: 15161-15164.PubMed Heck MM, Hittelman WN, Earnshaw WC: In vivo phosphorylation of the 170-kDa form of eukaryotic DNA topoisomerase II cell cycle analysis. J Biol Chem. 1989, 264: 15161-15164.PubMed
37.
go back to reference Kimura K, Nozaki N, Saijo M, Kikuchi A, Ui M, Enomoto T: Identification of the nature of modification that causes the shift of DNA topoisomerase IIβ to apparent higher molecular weight forms in the M phase. J Biol Chem. 1994, 269: 24523-24526.PubMed Kimura K, Nozaki N, Saijo M, Kikuchi A, Ui M, Enomoto T: Identification of the nature of modification that causes the shift of DNA topoisomerase IIβ to apparent higher molecular weight forms in the M phase. J Biol Chem. 1994, 269: 24523-24526.PubMed
38.
go back to reference Wells NJ, Addison CM, Fry AM, Ganapathi R, Hickson ID: Serine 1524 is a major site of phosphorylation on human topoisomerase IIα protein in vivo and is a substrate for casein kinase II in vitro. J Biol Chem. 1994, 269: 29746-29751.PubMed Wells NJ, Addison CM, Fry AM, Ganapathi R, Hickson ID: Serine 1524 is a major site of phosphorylation on human topoisomerase IIα protein in vivo and is a substrate for casein kinase II in vitro. J Biol Chem. 1994, 269: 29746-29751.PubMed
39.
go back to reference Dawlaty MM, Malureanu L, Jeganathan KB, Kao E, Sustmann C, Tahk S, Shuai K, Grosschedl R, van Deursen JM: Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIα. Cell. 2008, 133: 103-115. 10.1016/j.cell.2008.01.045.PubMedPubMedCentral Dawlaty MM, Malureanu L, Jeganathan KB, Kao E, Sustmann C, Tahk S, Shuai K, Grosschedl R, van Deursen JM: Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIα. Cell. 2008, 133: 103-115. 10.1016/j.cell.2008.01.045.PubMedPubMedCentral
40.
go back to reference Chikamori K, Grabowski DR, Kinter M, Willard BB, Yadav S, Aebersold RH, Bukowski RM, Hickson ID, Andersen AH, Ganapathi R, Ganapathi MK: Phosphorylation of serine 1106 in the catalytic domain of topoisomerase IIα regulates enzymatic activity and drug sensitivity. J Biol Chem. 2003, 278: 12696-12702. 10.1074/jbc.M300837200.PubMed Chikamori K, Grabowski DR, Kinter M, Willard BB, Yadav S, Aebersold RH, Bukowski RM, Hickson ID, Andersen AH, Ganapathi R, Ganapathi MK: Phosphorylation of serine 1106 in the catalytic domain of topoisomerase IIα regulates enzymatic activity and drug sensitivity. J Biol Chem. 2003, 278: 12696-12702. 10.1074/jbc.M300837200.PubMed
41.
go back to reference Grozav AG, Chikamori K, Kozuki T, Grabowski DR, Bukowski RM, Willard B, Kinter M, Andersen AH, Ganapathi R, Ganapathi MK: Casein kinase I δ/ε phosphorylates topoisomerase IIα at serine-1106 and modulates DNA cleavage activity. Nucleic Acids Res. 2009, 37: 382-392.PubMed Grozav AG, Chikamori K, Kozuki T, Grabowski DR, Bukowski RM, Willard B, Kinter M, Andersen AH, Ganapathi R, Ganapathi MK: Casein kinase I δ/ε phosphorylates topoisomerase IIα at serine-1106 and modulates DNA cleavage activity. Nucleic Acids Res. 2009, 37: 382-392.PubMed
42.
go back to reference Gorczyca W, Gong J, Ardelt B, Traganos F, Darzynkiewicz Z: The cell cycle related differences in susceptibility of HL-60 cells to apoptosis induced by various antitumor agents. Cancer Res. 1993, 53: 3186-3192.PubMed Gorczyca W, Gong J, Ardelt B, Traganos F, Darzynkiewicz Z: The cell cycle related differences in susceptibility of HL-60 cells to apoptosis induced by various antitumor agents. Cancer Res. 1993, 53: 3186-3192.PubMed
43.
go back to reference Jensen PB, Sehested M: DNA topoisomerase II rescue by catalytic inhibitors: a new strategy to improve the antitumor selectivity of etoposide. Biochem Pharmacol. 1997, 54: 755-759. 10.1016/S0006-2952(97)00116-0.PubMed Jensen PB, Sehested M: DNA topoisomerase II rescue by catalytic inhibitors: a new strategy to improve the antitumor selectivity of etoposide. Biochem Pharmacol. 1997, 54: 755-759. 10.1016/S0006-2952(97)00116-0.PubMed
44.
go back to reference Nitiss JL, Liu YX, Harbury P, Jannatipour M, Wasserman R, Wang JC: Amsacrine and etoposide hypersensitivity of yeast cells overexpressing DNA topoisomerase II. Cancer Res. 1992, 52: 4467-4472.PubMed Nitiss JL, Liu YX, Harbury P, Jannatipour M, Wasserman R, Wang JC: Amsacrine and etoposide hypersensitivity of yeast cells overexpressing DNA topoisomerase II. Cancer Res. 1992, 52: 4467-4472.PubMed
45.
go back to reference Patel S, Fisher LM: Novel selection and genetic characterization of an etoposide-resistant human leukaemic CCRF-CEM cell line. Br J Cancer. 1993, 67: 456-463. 10.1038/bjc.1993.87.PubMedPubMedCentral Patel S, Fisher LM: Novel selection and genetic characterization of an etoposide-resistant human leukaemic CCRF-CEM cell line. Br J Cancer. 1993, 67: 456-463. 10.1038/bjc.1993.87.PubMedPubMedCentral
46.
go back to reference ElShamy WM, Livingston DM: Identification of BRCA1-IRIS, a BRCA1 locus product. Nat Cell Biol. 2004, 6: 954-967. 10.1038/ncb1171.PubMed ElShamy WM, Livingston DM: Identification of BRCA1-IRIS, a BRCA1 locus product. Nat Cell Biol. 2004, 6: 954-967. 10.1038/ncb1171.PubMed
47.
go back to reference Willmore E, Frank AJ, Padget K, Proctor S, Tilby MJ, Austin CA: Etoposide targets topoisomerase IIα and IIβ in leukemic cells: isoform-specific cleavable complexes visualized and quantified in situ by a novel immunofluorescence. Mol Pharmacol. 1998, 53: 78-85. Willmore E, Frank AJ, Padget K, Proctor S, Tilby MJ, Austin CA: Etoposide targets topoisomerase IIα and IIβ in leukemic cells: isoform-specific cleavable complexes visualized and quantified in situ by a novel immunofluorescence. Mol Pharmacol. 1998, 53: 78-85.
48.
go back to reference Olaharski AJ, Mondrala ST, Eastmond DA: Chromosomal malsegregation and micronucleus induction in vitro by the DNA topoisomerase II inhibitor fisetin. Mutat Res. 2005, 582: 79-86.PubMed Olaharski AJ, Mondrala ST, Eastmond DA: Chromosomal malsegregation and micronucleus induction in vitro by the DNA topoisomerase II inhibitor fisetin. Mutat Res. 2005, 582: 79-86.PubMed
49.
go back to reference Masuda A, Takahashi T: Chromosome instability in human lung cancers: possible underlying mechanisms and potential consequences in the pathogenesis. Oncogene. 2002, 21: 6884-6897. 10.1038/sj.onc.1205566.PubMed Masuda A, Takahashi T: Chromosome instability in human lung cancers: possible underlying mechanisms and potential consequences in the pathogenesis. Oncogene. 2002, 21: 6884-6897. 10.1038/sj.onc.1205566.PubMed
50.
go back to reference Bruck I, Kaplan D: Dbf4-Cdc7 phosphorylation of Mcm2 is required for cell growth. J Biol Chem. 2009, 284: 28823-28831. 10.1074/jbc.M109.039123.PubMedPubMedCentral Bruck I, Kaplan D: Dbf4-Cdc7 phosphorylation of Mcm2 is required for cell growth. J Biol Chem. 2009, 284: 28823-28831. 10.1074/jbc.M109.039123.PubMedPubMedCentral
51.
go back to reference Menichincheri M, Bargiotti A, Berthelsen J, Bertrand JA, Bossi R, Ciavolella A, Cirla A, Cristiani C, Croci V, D'Alessio R, Fasolini M, Fiorentini F, Forte B, Isacchi A, Martina K, Molinari A, Montagnoli A, Orsini P, Orzi F, Pesenti E, Pezzetta D, Pillan A, Poggesi I, Roletto F, Scolaro A, Tatò M, Tibolla M, Valsasina B, Varasi M, Volpi D, et al: First Cdc7 kinase inhibitors: pyrrolopyridinones as potent and orally active antitumor agents. 2. Lead discovery. J Med Chem. 2009, 52: 293-307. 10.1021/jm800977q.PubMed Menichincheri M, Bargiotti A, Berthelsen J, Bertrand JA, Bossi R, Ciavolella A, Cirla A, Cristiani C, Croci V, D'Alessio R, Fasolini M, Fiorentini F, Forte B, Isacchi A, Martina K, Molinari A, Montagnoli A, Orsini P, Orzi F, Pesenti E, Pezzetta D, Pillan A, Poggesi I, Roletto F, Scolaro A, Tatò M, Tibolla M, Valsasina B, Varasi M, Volpi D, et al: First Cdc7 kinase inhibitors: pyrrolopyridinones as potent and orally active antitumor agents. 2. Lead discovery. J Med Chem. 2009, 52: 293-307. 10.1021/jm800977q.PubMed
52.
go back to reference Palancade B, Bensaude O: Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. Eur J Biochem. 2003, 270: 3859-3870. 10.1046/j.1432-1033.2003.03794.x.PubMed Palancade B, Bensaude O: Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. Eur J Biochem. 2003, 270: 3859-3870. 10.1046/j.1432-1033.2003.03794.x.PubMed
53.
go back to reference Shapiro G: Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol. 2006, 24: 1770-1783. 10.1200/JCO.2005.03.7689.PubMed Shapiro G: Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol. 2006, 24: 1770-1783. 10.1200/JCO.2005.03.7689.PubMed
54.
go back to reference Kolli N, Mikolajczyk J, Drag M, Mukhopadhyay D, Moffatt N, Dasso M, Salvesen G, Wilkinson KD: Distribution and paralogue specificity of mammalian deSUMOylating enzymes. Biochem J. 2010, 430: 335-344. 10.1042/BJ20100504.PubMedPubMedCentral Kolli N, Mikolajczyk J, Drag M, Mukhopadhyay D, Moffatt N, Dasso M, Salvesen G, Wilkinson KD: Distribution and paralogue specificity of mammalian deSUMOylating enzymes. Biochem J. 2010, 430: 335-344. 10.1042/BJ20100504.PubMedPubMedCentral
55.
go back to reference Ismail IH, Hendzel MJ: The γ-H2A.X: is it just a surrogate marker of double-strand breaks or much more?. Environ Mol Mutagen. 2008, 49: 73-82. 10.1002/em.20358.PubMed Ismail IH, Hendzel MJ: The γ-H2A.X: is it just a surrogate marker of double-strand breaks or much more?. Environ Mol Mutagen. 2008, 49: 73-82. 10.1002/em.20358.PubMed
56.
57.
go back to reference Marians KJ, Minden JS, Parada C: Replication of superhelical DNAs in vitro. Prog Nucleic Acids Res Mol Biol. 1986, 33: 111-140. Marians KJ, Minden JS, Parada C: Replication of superhelical DNAs in vitro. Prog Nucleic Acids Res Mol Biol. 1986, 33: 111-140.
58.
go back to reference Funnell B, Baker T, Kornberg A: In vitro assembly of a prepriming complex at the origin of the Escherichia coli chromosome. J Biol Chem. 1987, 262: 10327-10334.PubMed Funnell B, Baker T, Kornberg A: In vitro assembly of a prepriming complex at the origin of the Escherichia coli chromosome. J Biol Chem. 1987, 262: 10327-10334.PubMed
59.
go back to reference Peter BJ, Ullsperger C, Hiasa H, Marians KJ, Cozzarelli N: The structure of supercoiled intermediates in DNA replication. Cell. 1998, 94: 819-827. 10.1016/S0092-8674(00)81740-7.PubMed Peter BJ, Ullsperger C, Hiasa H, Marians KJ, Cozzarelli N: The structure of supercoiled intermediates in DNA replication. Cell. 1998, 94: 819-827. 10.1016/S0092-8674(00)81740-7.PubMed
60.
go back to reference Crisona NJ, Strick TR, Bensimon D, Croquette V, Cozzarelli N: Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev. 2000, 14: 2881-2892. 10.1101/gad.838900.PubMedPubMedCentral Crisona NJ, Strick TR, Bensimon D, Croquette V, Cozzarelli N: Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev. 2000, 14: 2881-2892. 10.1101/gad.838900.PubMedPubMedCentral
61.
go back to reference Kanaar R, Cozzarelli N: Roles of supercoiled DNA structure in DNA transactions. Curr Opin Struct Biol. 1992, 2: 369-379. 10.1016/0959-440X(92)90227-X. Kanaar R, Cozzarelli N: Roles of supercoiled DNA structure in DNA transactions. Curr Opin Struct Biol. 1992, 2: 369-379. 10.1016/0959-440X(92)90227-X.
62.
go back to reference Alexandrov AI, Cozzarelli NR, Holmes VF, Khodursky AB, Peter BJ, Postow L, Rybenkov V, Vologodskii AV: Mechanisms of separation of the complementary strands of DNA during replication. Genetica. 1999, 106: 131-140. 10.1023/A:1003749416449.PubMed Alexandrov AI, Cozzarelli NR, Holmes VF, Khodursky AB, Peter BJ, Postow L, Rybenkov V, Vologodskii AV: Mechanisms of separation of the complementary strands of DNA during replication. Genetica. 1999, 106: 131-140. 10.1023/A:1003749416449.PubMed
63.
go back to reference Lucas I, Germe T, Chevrier-Miller M, Hyrien O: Topoisomerase II can unlink replicating DNA by precatenane removal. EMBO J. 2001, 20: 6509-6519. 10.1093/emboj/20.22.6509.PubMedPubMedCentral Lucas I, Germe T, Chevrier-Miller M, Hyrien O: Topoisomerase II can unlink replicating DNA by precatenane removal. EMBO J. 2001, 20: 6509-6519. 10.1093/emboj/20.22.6509.PubMedPubMedCentral
64.
go back to reference Ault J, Rieder C: Centrosome and kinetochore movement during mitosis. Curr Opin Cell Biol. 1994, 6: 41-49. 10.1016/0955-0674(94)90114-7.PubMed Ault J, Rieder C: Centrosome and kinetochore movement during mitosis. Curr Opin Cell Biol. 1994, 6: 41-49. 10.1016/0955-0674(94)90114-7.PubMed
65.
go back to reference Li X, Nicklas R: Mitotic forces control a cell-cycle checkpoint. Nature. 1995, 373: 630-632. 10.1038/373630a0.PubMed Li X, Nicklas R: Mitotic forces control a cell-cycle checkpoint. Nature. 1995, 373: 630-632. 10.1038/373630a0.PubMed
66.
go back to reference Skoufias D, Lacroix F, Andreassen P, Wilson L, Margolis R: Inhibition of DNA decatenation, but not DNA damage, arrests cells at metaphase. Mol Cell. 2004, 15: 977-990. 10.1016/j.molcel.2004.08.018.PubMed Skoufias D, Lacroix F, Andreassen P, Wilson L, Margolis R: Inhibition of DNA decatenation, but not DNA damage, arrests cells at metaphase. Mol Cell. 2004, 15: 977-990. 10.1016/j.molcel.2004.08.018.PubMed
67.
go back to reference Li Y, Stewart NK, Berger AJ, Vos S, Schoeffer AJ, Berger JM, Chait BT, Oakley MG: Escherichia coli condensin MukB stimulates topoisomerase IV activity by a direct physical interaction. Proc Natl Acad Sci USA. 2010, 107: 18832-18837. 10.1073/pnas.1008678107.PubMed Li Y, Stewart NK, Berger AJ, Vos S, Schoeffer AJ, Berger JM, Chait BT, Oakley MG: Escherichia coli condensin MukB stimulates topoisomerase IV activity by a direct physical interaction. Proc Natl Acad Sci USA. 2010, 107: 18832-18837. 10.1073/pnas.1008678107.PubMed
68.
go back to reference Bhat MA, Philp AV, Glover DM, Bellen HJ: Chromatid segregation at anaphase requires the barren product, a novel chromosome-associated protein that interacts with topoisomerase II. Cell. 1996, 87: 1103-1114. 10.1016/S0092-8674(00)81804-8.PubMed Bhat MA, Philp AV, Glover DM, Bellen HJ: Chromatid segregation at anaphase requires the barren product, a novel chromosome-associated protein that interacts with topoisomerase II. Cell. 1996, 87: 1103-1114. 10.1016/S0092-8674(00)81804-8.PubMed
69.
go back to reference Kang S, Han JS, Park JH, Skarstad K, Hwang DS: SeqA protein stimulates the relaxing and decatenating activities of topoisomerase IV. J Biol Chem. 2003, 278: 48779-48785. 10.1074/jbc.M308843200.PubMed Kang S, Han JS, Park JH, Skarstad K, Hwang DS: SeqA protein stimulates the relaxing and decatenating activities of topoisomerase IV. J Biol Chem. 2003, 278: 48779-48785. 10.1074/jbc.M308843200.PubMed
70.
go back to reference Thépaut M, Maiorano D, Guichou JF, Augé MT, Dumas C, Méchali M, Padilla A: Crystal structure of the coiled-coil dimerization motif of geminin: structural and functional insights on DNA replication regulation. J Mol Biol. 2004, 342: 275-287. 10.1016/j.jmb.2004.06.065.PubMed Thépaut M, Maiorano D, Guichou JF, Augé MT, Dumas C, Méchali M, Padilla A: Crystal structure of the coiled-coil dimerization motif of geminin: structural and functional insights on DNA replication regulation. J Mol Biol. 2004, 342: 275-287. 10.1016/j.jmb.2004.06.065.PubMed
71.
go back to reference Perry JJ, Asaithamby A, Barnebey A, Kiamanesch F, Chen DJ, Han S, Tainer JA, Yannone SM: Identification of a coiled coil in Werner syndrome protein that facilitates multimerization and promotes exonuclease processivity. J Biol Chem. 2010, 285: 25699-25707. 10.1074/jbc.M110.124941.PubMedPubMedCentral Perry JJ, Asaithamby A, Barnebey A, Kiamanesch F, Chen DJ, Han S, Tainer JA, Yannone SM: Identification of a coiled coil in Werner syndrome protein that facilitates multimerization and promotes exonuclease processivity. J Biol Chem. 2010, 285: 25699-25707. 10.1074/jbc.M110.124941.PubMedPubMedCentral
72.
go back to reference Khan KL, Palmai-Pallag T, Ying S, Hickson I: Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol. 2009, 11: 753-760. 10.1038/ncb1882. Khan KL, Palmai-Pallag T, Ying S, Hickson I: Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol. 2009, 11: 753-760. 10.1038/ncb1882.
73.
go back to reference Osheroff N, Corbett A, Robinson M: Mechanism of action of topoisomerase II-targeted antineoplastic drugs. Adv Pharmacol. 1994, 29B: 105-126.PubMed Osheroff N, Corbett A, Robinson M: Mechanism of action of topoisomerase II-targeted antineoplastic drugs. Adv Pharmacol. 1994, 29B: 105-126.PubMed
74.
go back to reference Clifford B, Beljin M, Stark GR, Taylor WR: G2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res. 2003, 63: 4074-4081.PubMed Clifford B, Beljin M, Stark GR, Taylor WR: G2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res. 2003, 63: 4074-4081.PubMed
75.
go back to reference Zhu W, DePamphilis M: Selective killing of cancer cells by suppression of geminin activity. Cancer Res. 2009, 69: 4870-4877. 10.1158/0008-5472.CAN-08-4559.PubMedPubMedCentral Zhu W, DePamphilis M: Selective killing of cancer cells by suppression of geminin activity. Cancer Res. 2009, 69: 4870-4877. 10.1158/0008-5472.CAN-08-4559.PubMedPubMedCentral
76.
go back to reference Zechiedrich E, Khodursky A, Cozzarelli N: Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. Genes Dev. 1997, 11: 2580-2592. 10.1101/gad.11.19.2580.PubMedPubMedCentral Zechiedrich E, Khodursky A, Cozzarelli N: Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. Genes Dev. 1997, 11: 2580-2592. 10.1101/gad.11.19.2580.PubMedPubMedCentral
77.
go back to reference Richardson C, Jasin M: Frequent chromosomal translocations induced by DNA double-strand breaks. Nature. 2000, 405: 697-700. 10.1038/35015097.PubMed Richardson C, Jasin M: Frequent chromosomal translocations induced by DNA double-strand breaks. Nature. 2000, 405: 697-700. 10.1038/35015097.PubMed
78.
go back to reference Moynahan M, Jasin M: Loss of heterozygosity induced by a chromosomal double-strand break. Proc Natl Acad Sci USA. 1997, 94: 8988-8993. 10.1073/pnas.94.17.8988.PubMed Moynahan M, Jasin M: Loss of heterozygosity induced by a chromosomal double-strand break. Proc Natl Acad Sci USA. 1997, 94: 8988-8993. 10.1073/pnas.94.17.8988.PubMed
79.
go back to reference Renglin Lindh A, Schultz N, Saleh-Gohari N, Helleday T: RAD51C (RAD51L2) is involved in maintaining centrosome number in mitosis. Cytogenet Genome Res. 2007, 116: 38-45. 10.1159/000097416.PubMed Renglin Lindh A, Schultz N, Saleh-Gohari N, Helleday T: RAD51C (RAD51L2) is involved in maintaining centrosome number in mitosis. Cytogenet Genome Res. 2007, 116: 38-45. 10.1159/000097416.PubMed
Metadata
Title
Geminin overexpression prevents the completion of topoisomerase IIα chromosome decatenation, leading to aneuploidy in human mammary epithelial cells
Authors
Lauren Gardner
Rohit Malik
Yoshiko Shimizu
Nicole Mullins
Wael M ElShamy
Publication date
01-06-2011
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 3/2011
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr2884

Other articles of this Issue 3/2011

Breast Cancer Research 3/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine