Skip to main content
Top
Published in: Breast Cancer Research 2/2009

Open Access 01-04-2009 | Research article

Peroxisome proliferator-activated receptor-γ protects ERBB2-positive breast cancer cells from palmitate toxicity

Authors: Antonis Kourtidis, Rekha Srinivasaiah, Richard D Carkner, M Julia Brosnan, Douglas S Conklin

Published in: Breast Cancer Research | Issue 2/2009

Login to get access

Abstract

Introduction

Accumulation of fatty acids and neutral lipids in nonadipose tissues is cytotoxic. We recently showed that ERBB2-positive breast cancer cells produce significantly high amounts of fats, because of overexpression of the peroxisome proliferator-activated receptor (PPAR)γ-binding protein and the nuclear receptor NR1D1 (nuclear receptor subfamily 1, group D, member 1; Rev-erbα). These genes upregulate de novo fatty acid synthesis, which is a critical pathway for the energy production and survival of these cells. NR1D1 and PPARγ-binding protein are functionally related to PPARγ, a well established positive regulator of adipogenesis and lipid storage.

Methods

The effects of GW9662 and exogenously added palmitate on breast cells (BT474, MDA-MB-361, MCF-7, and human mammary epithelial cells) in monolayer culture were assessed. Mass spectrometric quantitation of fatty acids and fluorescence-based high content microscopy assays of cell growth, apoptosis, triglyceride storage and reactive oxygen species production were used.

Results

ERBB2-positive breast cancer cells are more sensitive to inhibition of PPARγ activity by the antagonist GW9662. PPARγ inhibition results in increased levels of total fats in the cells, mostly because of increased amounts of palmitic and stearic unsaturated acids. Administration of exogenous palmitate is lethal to ERBB2-positive but not to ERBB2-negative cells. GW9662 exacerbates the effects of palmitate addition on BT474 and MDA-MB-361 cells, but it has no significant effect on MCF-7 and human mammary epithelial cells. Palmitate administration results in a fivefold to tenfold greater increase in fat stores in ERBB2-negative cells compared with ERBB2-positive cells, which suggests that the ERBB2-positive cells have maximized their ability to store fats and that additional palmitate is toxic to these cells. Both PPARγ inhibition and palmitate administration result in increased reactive oxygen species production in BT474 cells. The cell death that results from this treatment can be counteracted by the antioxidant N-acetyl cysteine.

Conclusions

Our findings indicate that PPARγ activity enables ERBB2-positive breast cancer cells, which produce high levels of fat, to convert fatty acids to triglycerides, allowing these cells to avert the cell death that results from lipotoxicity. Endogenous palmitate toxicity represents a genetically based property of ERBB2-positive breast cancer that can be exploited for therapeutic intervention.
Appendix
Available only for authorised users
Literature
1.
go back to reference Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987, 235: 177-182. 10.1126/science.3798106.CrossRefPubMed Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987, 235: 177-182. 10.1126/science.3798106.CrossRefPubMed
2.
go back to reference Bertucci F, Borie N, Ginestier C, Groulet A, Charafe-Jauffret E, Adelaide J, Geneix J, Bachelart L, Finetti P, Koki A, Hermitte F, Hassoun J, Debono S, Viens P, Fert V, Jacquemier J, Birnbaum D: Identification and validation of an ERBB2 gene expression signature in breast cancers. Oncogene. 2004, 23: 2564-2575. 10.1038/sj.onc.1207361.CrossRefPubMed Bertucci F, Borie N, Ginestier C, Groulet A, Charafe-Jauffret E, Adelaide J, Geneix J, Bachelart L, Finetti P, Koki A, Hermitte F, Hassoun J, Debono S, Viens P, Fert V, Jacquemier J, Birnbaum D: Identification and validation of an ERBB2 gene expression signature in breast cancers. Oncogene. 2004, 23: 2564-2575. 10.1038/sj.onc.1207361.CrossRefPubMed
3.
go back to reference Schaffer JE: Lipotoxicity: when tissues overeat. Curr Opin Lipidol. 2003, 14: 281-287. 10.1097/00041433-200306000-00008.CrossRefPubMed Schaffer JE: Lipotoxicity: when tissues overeat. Curr Opin Lipidol. 2003, 14: 281-287. 10.1097/00041433-200306000-00008.CrossRefPubMed
4.
go back to reference Listenberger LL, Schaffer JE: Mechanisms of lipoapoptosis: implications for human heart disease. Trends Cardiovasc Med. 2002, 12: 134-138. 10.1016/S1050-1738(02)00152-4.CrossRefPubMed Listenberger LL, Schaffer JE: Mechanisms of lipoapoptosis: implications for human heart disease. Trends Cardiovasc Med. 2002, 12: 134-138. 10.1016/S1050-1738(02)00152-4.CrossRefPubMed
5.
go back to reference Shimabukuro M, Higa M, Zhou YT, Wang MY, Newgard CB, Unger RH: Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem. 1998, 273: 32487-32490. 10.1074/jbc.273.49.32487.CrossRefPubMed Shimabukuro M, Higa M, Zhou YT, Wang MY, Newgard CB, Unger RH: Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem. 1998, 273: 32487-32490. 10.1074/jbc.273.49.32487.CrossRefPubMed
6.
go back to reference Lu ZH, Mu YM, Wang BA, Li XL, Lu JM, Li JY, Pan CY, Yanase T, Nawata H: Saturated free fatty acids, palmitic acid and stearic acid, induce apoptosis by stimulation of ceramide generation in rat testicular Leydig cell. Biochem Biophys Res Commun. 2003, 303: 1002-1007. 10.1016/S0006-291X(03)00449-2.CrossRefPubMed Lu ZH, Mu YM, Wang BA, Li XL, Lu JM, Li JY, Pan CY, Yanase T, Nawata H: Saturated free fatty acids, palmitic acid and stearic acid, induce apoptosis by stimulation of ceramide generation in rat testicular Leydig cell. Biochem Biophys Res Commun. 2003, 303: 1002-1007. 10.1016/S0006-291X(03)00449-2.CrossRefPubMed
7.
go back to reference Listenberger LL, Ory DS, Schaffer JE: Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem. 2001, 276: 14890-14895. 10.1074/jbc.M010286200.CrossRefPubMed Listenberger LL, Ory DS, Schaffer JE: Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem. 2001, 276: 14890-14895. 10.1074/jbc.M010286200.CrossRefPubMed
8.
go back to reference Hardy S, El-Assaad W, Przybytkowski E, Joly E, Prentki M, Langelier Y: Saturated fatty acid-induced apoptosis in MDA-MB-231 breast cancer cells. A role for cardiolipin. J Biol Chem. 2003, 278: 31861-31870. 10.1074/jbc.M300190200.CrossRefPubMed Hardy S, El-Assaad W, Przybytkowski E, Joly E, Prentki M, Langelier Y: Saturated fatty acid-induced apoptosis in MDA-MB-231 breast cancer cells. A role for cardiolipin. J Biol Chem. 2003, 278: 31861-31870. 10.1074/jbc.M300190200.CrossRefPubMed
9.
go back to reference Hardy S, Langelier Y, Prentki M: Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. Cancer Res. 2000, 60: 6353-6358.PubMed Hardy S, Langelier Y, Prentki M: Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. Cancer Res. 2000, 60: 6353-6358.PubMed
10.
go back to reference Listenberger LL, Han X, Lewis SE, Cases S, Farese RV, Ory DS, Schaffer JE: Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA. 2003, 100: 3077-3082. 10.1073/pnas.0630588100.CrossRefPubMedPubMedCentral Listenberger LL, Han X, Lewis SE, Cases S, Farese RV, Ory DS, Schaffer JE: Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA. 2003, 100: 3077-3082. 10.1073/pnas.0630588100.CrossRefPubMedPubMedCentral
11.
go back to reference Zhu Y, Qi C, Jain S, Rao MS, Reddy JK: Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J Biol Chem. 1997, 272: 25500-25506. 10.1074/jbc.272.41.25500.CrossRefPubMed Zhu Y, Qi C, Jain S, Rao MS, Reddy JK: Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J Biol Chem. 1997, 272: 25500-25506. 10.1074/jbc.272.41.25500.CrossRefPubMed
12.
go back to reference Fontaine C, Dubois G, Duguay Y, Helledie T, Vu-Dac N, Gervois P, Soncin F, Mandrup S, Fruchart JC, Fruchart-Najib J, Staels B: The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPARgamma) target gene and promotes PPARgamma-induced adipocyte differentiation. J Biol Chem. 2003, 278: 37672-37680. 10.1074/jbc.M304664200.CrossRefPubMed Fontaine C, Dubois G, Duguay Y, Helledie T, Vu-Dac N, Gervois P, Soncin F, Mandrup S, Fruchart JC, Fruchart-Najib J, Staels B: The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPARgamma) target gene and promotes PPARgamma-induced adipocyte differentiation. J Biol Chem. 2003, 278: 37672-37680. 10.1074/jbc.M304664200.CrossRefPubMed
13.
go back to reference Elstner E, Williamson EA, Zang C, Fritz J, Heber D, Fenner M, Possinger K, Koeffler HP: Novel therapeutic approach: ligands for PPARgamma and retinoid receptors induce apoptosis in bcl-2-positive human breast cancer cells. Breast Cancer Res Treat. 2002, 74: 155-165. 10.1023/A:1016114026769.CrossRefPubMed Elstner E, Williamson EA, Zang C, Fritz J, Heber D, Fenner M, Possinger K, Koeffler HP: Novel therapeutic approach: ligands for PPARgamma and retinoid receptors induce apoptosis in bcl-2-positive human breast cancer cells. Breast Cancer Res Treat. 2002, 74: 155-165. 10.1023/A:1016114026769.CrossRefPubMed
14.
go back to reference Lowell BB: PPARgamma: an essential regulator of adipogenesis and modulator of fat cell function. Cell. 1999, 99: 239-242. 10.1016/S0092-8674(00)81654-2.CrossRefPubMed Lowell BB: PPARgamma: an essential regulator of adipogenesis and modulator of fat cell function. Cell. 1999, 99: 239-242. 10.1016/S0092-8674(00)81654-2.CrossRefPubMed
15.
go back to reference Folch J, Lees M, Sloane Stanley GH: A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957, 226: 497-509.PubMed Folch J, Lees M, Sloane Stanley GH: A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957, 226: 497-509.PubMed
16.
go back to reference Perera RJ, Marcusson EG, Koo S, Kang X, Kim Y, White N, Dean NM: Identification of novel PPARgamma target genes in primary human adipocytes. Gene. 2006, 369: 90-99. 10.1016/j.gene.2005.10.021.CrossRefPubMed Perera RJ, Marcusson EG, Koo S, Kang X, Kim Y, White N, Dean NM: Identification of novel PPARgamma target genes in primary human adipocytes. Gene. 2006, 369: 90-99. 10.1016/j.gene.2005.10.021.CrossRefPubMed
17.
go back to reference Yajima H, Kobayashi Y, Kanaya T, Horino Y: Identification of peroxisome-proliferator responsive element in the mouse HSL gene. Biochem Biophys Res Commun. 2007, 352: 526-531. 10.1016/j.bbrc.2006.11.054.CrossRefPubMed Yajima H, Kobayashi Y, Kanaya T, Horino Y: Identification of peroxisome-proliferator responsive element in the mouse HSL gene. Biochem Biophys Res Commun. 2007, 352: 526-531. 10.1016/j.bbrc.2006.11.054.CrossRefPubMed
18.
go back to reference Kershaw EE, Schupp M, Guan HP, Gardner NP, Lazar MA, Flier JS: PPARgamma regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. Am J Physiol Endocrinol Metab. 2007, 293: E1736-E1745. 10.1152/ajpendo.00122.2007.CrossRefPubMedPubMedCentral Kershaw EE, Schupp M, Guan HP, Gardner NP, Lazar MA, Flier JS: PPARgamma regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. Am J Physiol Endocrinol Metab. 2007, 293: E1736-E1745. 10.1152/ajpendo.00122.2007.CrossRefPubMedPubMedCentral
20.
go back to reference Kim JW, Dang CV: Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 2006, 66: 8927-8930. 10.1158/0008-5472.CAN-06-1501.CrossRefPubMed Kim JW, Dang CV: Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 2006, 66: 8927-8930. 10.1158/0008-5472.CAN-06-1501.CrossRefPubMed
21.
go back to reference Menendez JA, Colomer R, Lupu R: Why does tumor-associated fatty acid synthase (oncogenic antigen-519) ignore dietary fatty acids?. Med Hypotheses. 2005, 64: 342-349. 10.1016/j.mehy.2004.07.022.CrossRefPubMed Menendez JA, Colomer R, Lupu R: Why does tumor-associated fatty acid synthase (oncogenic antigen-519) ignore dietary fatty acids?. Med Hypotheses. 2005, 64: 342-349. 10.1016/j.mehy.2004.07.022.CrossRefPubMed
22.
go back to reference Menendez JA, Lupu R: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007, 7: 763-777. 10.1038/nrc2222.CrossRefPubMed Menendez JA, Lupu R: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007, 7: 763-777. 10.1038/nrc2222.CrossRefPubMed
23.
go back to reference Menendez JA, Vellon L, Mehmi I, Oza BP, Ropero S, Colomer R, Lupu R: Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc Natl Acad Sci USA. 2004, 101: 10715-10720. 10.1073/pnas.0403390101.CrossRefPubMedPubMedCentral Menendez JA, Vellon L, Mehmi I, Oza BP, Ropero S, Colomer R, Lupu R: Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc Natl Acad Sci USA. 2004, 101: 10715-10720. 10.1073/pnas.0403390101.CrossRefPubMedPubMedCentral
24.
go back to reference Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW: Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell. 2006, 10: 529-541. 10.1016/j.ccr.2006.10.009.CrossRefPubMed Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW: Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell. 2006, 10: 529-541. 10.1016/j.ccr.2006.10.009.CrossRefPubMed
25.
go back to reference de Vries JE, Vork MM, Roemen TH, de Jong YF, Cleutjens JP, Vusse van der GJ, van Bilsen M: Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res. 1997, 38: 1384-1394.PubMed de Vries JE, Vork MM, Roemen TH, de Jong YF, Cleutjens JP, Vusse van der GJ, van Bilsen M: Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res. 1997, 38: 1384-1394.PubMed
26.
go back to reference Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG: Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001, 50: 1771-1777. 10.2337/diabetes.50.8.1771.CrossRefPubMed Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG: Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001, 50: 1771-1777. 10.2337/diabetes.50.8.1771.CrossRefPubMed
27.
go back to reference Menendez JA, Lupu R: Mediterranean dietary traditions for the molecular treatment of human cancer: anti-oncogenic actions of the main olive oil's monounsaturated fatty acid oleic acid (18:1n-9). Curr Pharm Biotechnol. 2006, 7: 495-502. 10.2174/138920106779116900.CrossRefPubMed Menendez JA, Lupu R: Mediterranean dietary traditions for the molecular treatment of human cancer: anti-oncogenic actions of the main olive oil's monounsaturated fatty acid oleic acid (18:1n-9). Curr Pharm Biotechnol. 2006, 7: 495-502. 10.2174/138920106779116900.CrossRefPubMed
28.
go back to reference Menendez JA, Papadimitropoulou A, Vellon L, Lupu R: A genomic explanation connecting 'Mediterranean diet', olive oil and cancer: oleic acid, the main monounsaturated fatty acid of olive oil, induces formation of inhibitory 'PEA3 transcription factor-PEA3 DNA binding site' complexes at the Her-2/neu (erbB-2) oncogene promoter in breast, ovarian and stomach cancer cells. Eur J Cancer. 2006, 42: 2425-2432. 10.1016/j.ejca.2005.10.016.CrossRefPubMed Menendez JA, Papadimitropoulou A, Vellon L, Lupu R: A genomic explanation connecting 'Mediterranean diet', olive oil and cancer: oleic acid, the main monounsaturated fatty acid of olive oil, induces formation of inhibitory 'PEA3 transcription factor-PEA3 DNA binding site' complexes at the Her-2/neu (erbB-2) oncogene promoter in breast, ovarian and stomach cancer cells. Eur J Cancer. 2006, 42: 2425-2432. 10.1016/j.ejca.2005.10.016.CrossRefPubMed
29.
go back to reference Menendez JA, Lupu R, Colomer R: Exogenous supplementation with omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA; 22:6n-3) synergistically enhances taxane cytotoxicity and downregulates Her-2/neu (c-erbB-2) oncogene expression in human breast cancer cells. Eur J Cancer Prev. 2005, 14: 263-270. 10.1097/00008469-200506000-00011.CrossRefPubMed Menendez JA, Lupu R, Colomer R: Exogenous supplementation with omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA; 22:6n-3) synergistically enhances taxane cytotoxicity and downregulates Her-2/neu (c-erbB-2) oncogene expression in human breast cancer cells. Eur J Cancer Prev. 2005, 14: 263-270. 10.1097/00008469-200506000-00011.CrossRefPubMed
30.
go back to reference Menendez JA, Vellon L, Colomer R, Lupu R: Effect of gamma-linolenic acid on the transcriptional activity of the Her-2/neu (erbB-2) oncogene. J Natl Cancer Inst. 2005, 97: 1611-1615.CrossRefPubMed Menendez JA, Vellon L, Colomer R, Lupu R: Effect of gamma-linolenic acid on the transcriptional activity of the Her-2/neu (erbB-2) oncogene. J Natl Cancer Inst. 2005, 97: 1611-1615.CrossRefPubMed
31.
go back to reference Desvergne B, Wahli W: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 1999, 20: 649-688. 10.1210/er.20.5.649.PubMed Desvergne B, Wahli W: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 1999, 20: 649-688. 10.1210/er.20.5.649.PubMed
Metadata
Title
Peroxisome proliferator-activated receptor-γ protects ERBB2-positive breast cancer cells from palmitate toxicity
Authors
Antonis Kourtidis
Rekha Srinivasaiah
Richard D Carkner
M Julia Brosnan
Douglas S Conklin
Publication date
01-04-2009
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 2/2009
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr2240

Other articles of this Issue 2/2009

Breast Cancer Research 2/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine