Skip to main content
Top
Published in: Breast Cancer Research 5/2008

Open Access 01-10-2008 | Research article

Targeting aspartate aminotransferase in breast cancer

Authors: Joshua Marshall Thornburg, Kristin K Nelson, Brian F Clem, Andrew N Lane, Sengodagounder Arumugam, Allan Simmons, John W Eaton, Sucheta Telang, Jason Chesney

Published in: Breast Cancer Research | Issue 5/2008

Login to get access

Abstract

Introduction

Glycolysis is increased in breast adenocarcinoma cells relative to adjacent normal cells in order to produce the ATP and anabolic precursors required for survival, growth and invasion. Glycolysis also serves as a key source of the reduced form of cytoplasmic nicotinamide adenine dinucleotide (NADH) necessary for the shuttling of electrons into mitochondria for electron transport. Lactate dehydrogenase (LDH) regulates glycolytic flux by converting pyruvate to lactate and has been found to be highly expressed in breast tumours. Aspartate aminotransferase (AAT) functions in tandem with malate dehydrogenase to transfer electrons from NADH across the inner mitochondrial membrane. Oxamate is an inhibitor of both LDH and AAT, and we hypothesised that oxamate may disrupt the metabolism and growth of breast adenocarcinoma cells.

Methods

We examined the effects of oxamate and the AAT inhibitor amino oxyacetate (AOA) on 13C-glucose utilisation, oxygen consumption, NADH and ATP in MDA-MB-231 cells. We then determined the effects of oxamate and AOA on normal human mammary epithelial cells and MDA-MB-231 breast adenocarcinoma cell proliferation, and on the growth of MDA-MB-231 cells as tumours in athymic BALB/c female mice. We ectopically expressed AAT in MDA-MB-231 cells and examined the consequences on the cytostatic effects of oxamate. Finally, we examined the effect of AAT-specific siRNA transfection on MDA-MB-231 cell proliferation.

Results

We found that oxamate did not attenuate cellular lactate production as predicted by its LDH inhibitory activity, but did have an anti-metabolic effect that was similar to AAT inhibition with AOA. Specifically, we found that oxamate and AOA decreased the flux of 13C-glucose-derived carbons into glutamate and uridine, both products of the mitochondrial tricarboxylic acid cycle, as well as oxygen consumption, a measure of electron transport chain activity. Oxamate and AOA also selectively suppressed the proliferation of MDA-MB-231 cells relative to normal human mammary epithelial cells and decreased the growth of MDA-MB-231 breast tumours in athymic mice. Importantly, we found that ectopic expression of AAT in MDA-MB-231 cells conferred resistance to the anti-proliferative effects of oxamate and that siRNA silencing of AAT decreased MDA-MB-231 cell proliferation.

Conclusions

We conclude that AAT may be a valid molecular target for the development of anti-neoplastic agents.
Appendix
Available only for authorised users
Literature
1.
go back to reference Avril N, Menzel M, Dose J, Schelling M, Weber W, Janicke F, Nathrath W, Schwaiger M: Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med. 2001, 42: 9-16.PubMed Avril N, Menzel M, Dose J, Schelling M, Weber W, Janicke F, Nathrath W, Schwaiger M: Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med. 2001, 42: 9-16.PubMed
2.
go back to reference Deming SL, Nass SJ, Dickson RB, Trock BJ: C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br J Cancer. 2000, 83: 1688-1695. 10.1054/bjoc.2000.1522.CrossRefPubMedPubMedCentral Deming SL, Nass SJ, Dickson RB, Trock BJ: C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br J Cancer. 2000, 83: 1688-1695. 10.1054/bjoc.2000.1522.CrossRefPubMedPubMedCentral
3.
go back to reference Lewis BC, Prescott JE, Campbell SE, Shim H, Orlowski RZ, Dang CV: Tumor induction by the c-Myc target genes rcl and lactate dehydrogenase A. Cancer Res. 2000, 60: 6178-6183.PubMed Lewis BC, Prescott JE, Campbell SE, Shim H, Orlowski RZ, Dang CV: Tumor induction by the c-Myc target genes rcl and lactate dehydrogenase A. Cancer Res. 2000, 60: 6178-6183.PubMed
4.
go back to reference Gallagher SM, Castorino JJ, Wang D, Philp NJ: Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res. 2007, 67: 4182-4189. 10.1158/0008-5472.CAN-06-3184.CrossRefPubMed Gallagher SM, Castorino JJ, Wang D, Philp NJ: Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res. 2007, 67: 4182-4189. 10.1158/0008-5472.CAN-06-3184.CrossRefPubMed
5.
go back to reference Voet D, Voet J: Metabolism: Glycolysis. Biochemistry. 1995, Wiley and Sons, USA, 444-476. Second Voet D, Voet J: Metabolism: Glycolysis. Biochemistry. 1995, Wiley and Sons, USA, 444-476. Second
6.
go back to reference Balinsky D, Platz CE, Lewis JW: Isozyme patterns of normal, benign, and malignant human breast tissues. Cancer Res. 1983, 43: 5895-5901.PubMed Balinsky D, Platz CE, Lewis JW: Isozyme patterns of normal, benign, and malignant human breast tissues. Cancer Res. 1983, 43: 5895-5901.PubMed
7.
go back to reference Hilf R, Rector WD, Orlando RA: Multiple molecular forms of lactate dehydrogenase and glucose 6-phosphate dehydrogenase in normal and abnormal human breast tissues. Cancer. 1976, 37: 1825-1830. 10.1002/1097-0142(197604)37:4<1825::AID-CNCR2820370429>3.0.CO;2-V.CrossRefPubMed Hilf R, Rector WD, Orlando RA: Multiple molecular forms of lactate dehydrogenase and glucose 6-phosphate dehydrogenase in normal and abnormal human breast tissues. Cancer. 1976, 37: 1825-1830. 10.1002/1097-0142(197604)37:4<1825::AID-CNCR2820370429>3.0.CO;2-V.CrossRefPubMed
8.
go back to reference Bos R, van Diest PJ, Groep van der P, Shvarts A, Greijer AE, Wall van der E: Expression of hypoxia-inducible factor-1alpha and cell cycle proteins in invasive breast cancer are estrogen receptor related. Breast Cancer Res. 2004, 6: R450-459. 10.1186/bcr813.CrossRefPubMedPubMedCentral Bos R, van Diest PJ, Groep van der P, Shvarts A, Greijer AE, Wall van der E: Expression of hypoxia-inducible factor-1alpha and cell cycle proteins in invasive breast cancer are estrogen receptor related. Breast Cancer Res. 2004, 6: R450-459. 10.1186/bcr813.CrossRefPubMedPubMedCentral
9.
go back to reference Semenza GL, Roth PH, Fang HM, Wang GL: Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994, 269: 23757-23763.PubMed Semenza GL, Roth PH, Fang HM, Wang GL: Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994, 269: 23757-23763.PubMed
10.
go back to reference Nagai MA, Sonohara S, Brentani MM: Estrogen control of lactate dehydrogenase isoenzyme-5 in human breast cancer. Int J Cancer. 1988, 41: 10-16. 10.1002/ijc.2910410104.CrossRefPubMed Nagai MA, Sonohara S, Brentani MM: Estrogen control of lactate dehydrogenase isoenzyme-5 in human breast cancer. Int J Cancer. 1988, 41: 10-16. 10.1002/ijc.2910410104.CrossRefPubMed
11.
go back to reference Nagy I, Hirka G, Kurcz M, Anda E, Baranyai P: The role of estrogens in the regulation of lactate dehydrogenase activity and its submolecular organization in rat anterior pituitary. Endokrinologie. 1978, 71: 1-12.PubMed Nagy I, Hirka G, Kurcz M, Anda E, Baranyai P: The role of estrogens in the regulation of lactate dehydrogenase activity and its submolecular organization in rat anterior pituitary. Endokrinologie. 1978, 71: 1-12.PubMed
12.
go back to reference Markert CL, Shaklee JB, Whitt GS: Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science. 1975, 189: 102-114. 10.1126/science.1138367.CrossRefPubMed Markert CL, Shaklee JB, Whitt GS: Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science. 1975, 189: 102-114. 10.1126/science.1138367.CrossRefPubMed
13.
go back to reference Goldberg EB, Colowick SP: The role of glycolysis in the growth of tumor cells. 3. Lactic dehydrogenase as the site of action of oxamate on the growth of cultured cells. J Biol Chem. 1965, 240: 2786-2790.PubMed Goldberg EB, Colowick SP: The role of glycolysis in the growth of tumor cells. 3. Lactic dehydrogenase as the site of action of oxamate on the growth of cultured cells. J Biol Chem. 1965, 240: 2786-2790.PubMed
14.
go back to reference Goldberg EB, Nitowsky HM, Colowick SP: The role of glycolysis in the growth of tumor cells. Iv. The basis of glucose toxicity in oxamate-treated, cultured cells. J Biol Chem. 1965, 240: 2791-2796.PubMed Goldberg EB, Nitowsky HM, Colowick SP: The role of glycolysis in the growth of tumor cells. Iv. The basis of glucose toxicity in oxamate-treated, cultured cells. J Biol Chem. 1965, 240: 2791-2796.PubMed
15.
go back to reference Papaconstantinou J, Colowick SP: Published abstract. Federation Proc. 1957, 16: 230- Papaconstantinou J, Colowick SP: Published abstract. Federation Proc. 1957, 16: 230-
16.
go back to reference Papaconstantinou J, Colowick SP: The role of glycolysis in the growth of tumor cells. II. The effect of oxamic acid on the growth of HeLa cells in tissue culture. J Biol Chem. 1961, 236: 285-288.PubMed Papaconstantinou J, Colowick SP: The role of glycolysis in the growth of tumor cells. II. The effect of oxamic acid on the growth of HeLa cells in tissue culture. J Biol Chem. 1961, 236: 285-288.PubMed
17.
go back to reference Cederbaum AI, Lieber CS, Beattie DS, Rubin E: Characterization of shuttle mechanisms for the transport of reducing equivalents into mitochondria. Arch Biochem Biophys. 1973, 158: 763-781. 10.1016/0003-9861(73)90571-7.CrossRefPubMed Cederbaum AI, Lieber CS, Beattie DS, Rubin E: Characterization of shuttle mechanisms for the transport of reducing equivalents into mitochondria. Arch Biochem Biophys. 1973, 158: 763-781. 10.1016/0003-9861(73)90571-7.CrossRefPubMed
18.
go back to reference Greenhouse WV, Lehninger AL: Occurrence of the malate-aspartate shuttle in various tumor types. Cancer Res. 1976, 36: 1392-1396.PubMed Greenhouse WV, Lehninger AL: Occurrence of the malate-aspartate shuttle in various tumor types. Cancer Res. 1976, 36: 1392-1396.PubMed
19.
go back to reference Lopez-Alarcon L, Eboli ML: Oxidation of reduced cytosolic nicotinamide adenine dinucleotide by the malate-aspartate shuttle in the K-562 human leukemia cell line. Cancer Res. 1986, 46: 5589-5591.PubMed Lopez-Alarcon L, Eboli ML: Oxidation of reduced cytosolic nicotinamide adenine dinucleotide by the malate-aspartate shuttle in the K-562 human leukemia cell line. Cancer Res. 1986, 46: 5589-5591.PubMed
20.
go back to reference Ramanathan A, Wang C, Schreiber SL: Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA. 2005, 102: 5992-5997. 10.1073/pnas.0502267102.CrossRefPubMedPubMedCentral Ramanathan A, Wang C, Schreiber SL: Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA. 2005, 102: 5992-5997. 10.1073/pnas.0502267102.CrossRefPubMedPubMedCentral
21.
go back to reference Czerniak B, Chen R, Tuziak T, Markiewski M, Kram A, Gorczyca W, Deitch D, Herz F, Koss LG: Expression of ras oncogene p21 protein in relation to regional spread of human breast carcinomas. Cancer. 1989, 63: 2008-2013. 10.1002/1097-0142(19890515)63:10<2008::AID-CNCR2820631024>3.0.CO;2-D.CrossRefPubMed Czerniak B, Chen R, Tuziak T, Markiewski M, Kram A, Gorczyca W, Deitch D, Herz F, Koss LG: Expression of ras oncogene p21 protein in relation to regional spread of human breast carcinomas. Cancer. 1989, 63: 2008-2013. 10.1002/1097-0142(19890515)63:10<2008::AID-CNCR2820631024>3.0.CO;2-D.CrossRefPubMed
22.
go back to reference Desai KV, Xiao N, Wang W, Gangi L, Greene J, Powell JI, Dickson R, Furth P, Hunter K, Kucherlapati R, Simon R, Liu ET, Green JE: Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci USA. 2002, 99: 6967-6972. 10.1073/pnas.102172399.CrossRefPubMedPubMedCentral Desai KV, Xiao N, Wang W, Gangi L, Greene J, Powell JI, Dickson R, Furth P, Hunter K, Kucherlapati R, Simon R, Liu ET, Green JE: Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci USA. 2002, 99: 6967-6972. 10.1073/pnas.102172399.CrossRefPubMedPubMedCentral
23.
go back to reference Miyakis S, Sourvinos G, Spandidos DA: Differential expression and mutation of the ras family genes in human breast cancer. Biochem Biophys Res Commun. 1998, 251: 609-612. 10.1006/bbrc.1998.9527.CrossRefPubMed Miyakis S, Sourvinos G, Spandidos DA: Differential expression and mutation of the ras family genes in human breast cancer. Biochem Biophys Res Commun. 1998, 251: 609-612. 10.1006/bbrc.1998.9527.CrossRefPubMed
24.
go back to reference Walker RA, Wilkinson N: p21 ras protein expression in benign and malignant human breast. J Pathol. 1988, 156: 147-153. 10.1002/path.1711560209.CrossRefPubMed Walker RA, Wilkinson N: p21 ras protein expression in benign and malignant human breast. J Pathol. 1988, 156: 147-153. 10.1002/path.1711560209.CrossRefPubMed
25.
go back to reference Watson DM, Elton RA, Jack WJ, Dixon JM, Chetty U, Miller WR: The H-ras oncogene product p21 and prognosis in human breast cancer. Breast Cancer Res Treat. 1991, 17: 161-169. 10.1007/BF01806365.CrossRefPubMed Watson DM, Elton RA, Jack WJ, Dixon JM, Chetty U, Miller WR: The H-ras oncogene product p21 and prognosis in human breast cancer. Breast Cancer Res Treat. 1991, 17: 161-169. 10.1007/BF01806365.CrossRefPubMed
26.
go back to reference Taetle R, Rosen F, Abramson I, Venditti J, Howell S: Use of nude mouse xenografts as preclinical drug screens: in vivo activity of established chemotherapeutic agents against melanoma and ovarian carcinoma xenografts. Cancer Treat Rep. 1987, 71: 297-304.PubMed Taetle R, Rosen F, Abramson I, Venditti J, Howell S: Use of nude mouse xenografts as preclinical drug screens: in vivo activity of established chemotherapeutic agents against melanoma and ovarian carcinoma xenografts. Cancer Treat Rep. 1987, 71: 297-304.PubMed
27.
go back to reference Wilkinson JH, Walter SJ: Oxamate as a differential inhibitor of lactate dehydrogenase isoenzymes. Enzyme. 1972, 13: 170-176.PubMed Wilkinson JH, Walter SJ: Oxamate as a differential inhibitor of lactate dehydrogenase isoenzymes. Enzyme. 1972, 13: 170-176.PubMed
28.
go back to reference Rej R: Measurement of aspartate aminotransferase activity: effects of oxamate. Clin Chem. 1979, 25: 555-559.PubMed Rej R: Measurement of aspartate aminotransferase activity: effects of oxamate. Clin Chem. 1979, 25: 555-559.PubMed
29.
go back to reference Cooper AJL, Meister A: Transaminases. 1985, New York: John Wiley and Sons Cooper AJL, Meister A: Transaminases. 1985, New York: John Wiley and Sons
30.
go back to reference Fitzpatrick SM, Cooper AJ, Duffy TE: Use of beta-methylene-D, L-aspartate to assess the role of aspartate aminotransferase in cerebral oxidative metabolism. J Neurochem. 1983, 41: 1370-1383. 10.1111/j.1471-4159.1983.tb00835.x.CrossRefPubMed Fitzpatrick SM, Cooper AJ, Duffy TE: Use of beta-methylene-D, L-aspartate to assess the role of aspartate aminotransferase in cerebral oxidative metabolism. J Neurochem. 1983, 41: 1370-1383. 10.1111/j.1471-4159.1983.tb00835.x.CrossRefPubMed
31.
go back to reference McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U: Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol. 2006, 71: 399-407. 10.1016/j.bcp.2005.10.011.CrossRefPubMed McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U: Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol. 2006, 71: 399-407. 10.1016/j.bcp.2005.10.011.CrossRefPubMed
32.
go back to reference Yu AC, Schousboe A, Hertz L: Metabolic fate of 14C-labeled glutamate in astrocytes in primary cultures. J Neurochem. 1982, 39: 954-960. 10.1111/j.1471-4159.1982.tb11482.x.CrossRefPubMed Yu AC, Schousboe A, Hertz L: Metabolic fate of 14C-labeled glutamate in astrocytes in primary cultures. J Neurochem. 1982, 39: 954-960. 10.1111/j.1471-4159.1982.tb11482.x.CrossRefPubMed
33.
go back to reference Arai T, Ogawa T, Nakamura M, Hosoya M, Ohnishi Y: Changes in hepatic enzyme activities in transgenic mice carrying human prototype c-Ha-ras gene treated with diethylnitrosamine. J Vet Med Sci. 2002, 64: 1065-1067. 10.1292/jvms.64.1065.CrossRefPubMed Arai T, Ogawa T, Nakamura M, Hosoya M, Ohnishi Y: Changes in hepatic enzyme activities in transgenic mice carrying human prototype c-Ha-ras gene treated with diethylnitrosamine. J Vet Med Sci. 2002, 64: 1065-1067. 10.1292/jvms.64.1065.CrossRefPubMed
34.
go back to reference Chiaretti B, Casciaro A, Minotti G, Eboli ML, Galeotti T: Quantitative evaluation of the activity of the malate-aspartate shuttle in Ehrlich ascites tumor cells. Cancer Res. 1979, 39: 2195-2199.PubMed Chiaretti B, Casciaro A, Minotti G, Eboli ML, Galeotti T: Quantitative evaluation of the activity of the malate-aspartate shuttle in Ehrlich ascites tumor cells. Cancer Res. 1979, 39: 2195-2199.PubMed
35.
go back to reference Jager J, Moser M, Sauder U, Jansonius JN: Crystal structures of Escherichia coli aspartate aminotransferase in two conformations. Comparison of an unliganded open and two liganded closed forms. J Mol Biol. 1994, 239: 285-305. 10.1006/jmbi.1994.1368.CrossRefPubMed Jager J, Moser M, Sauder U, Jansonius JN: Crystal structures of Escherichia coli aspartate aminotransferase in two conformations. Comparison of an unliganded open and two liganded closed forms. J Mol Biol. 1994, 239: 285-305. 10.1006/jmbi.1994.1368.CrossRefPubMed
36.
go back to reference Kamitori S, Okamoto A, Hirotsu K, Higuchi T, Kuramitsu S, Kagamiyama H, Matsuura Y, Katsube Y: Three-dimensional structures of aspartate aminotransferase from Escherichia coli and its mutant enzyme at 2.5 A resolution. J Biochem. 1990, 108: 175-184.PubMed Kamitori S, Okamoto A, Hirotsu K, Higuchi T, Kuramitsu S, Kagamiyama H, Matsuura Y, Katsube Y: Three-dimensional structures of aspartate aminotransferase from Escherichia coli and its mutant enzyme at 2.5 A resolution. J Biochem. 1990, 108: 175-184.PubMed
37.
go back to reference Okamoto A, Higuchi T, Hirotsu K, Kuramitsu S, Kagamiyama H: X-ray crystallographic study of pyridoxal 5'-phosphate-type aspartate aminotransferases from Escherichia coli in open and closed form. J Biochem. 1994, 116: 95-107.PubMed Okamoto A, Higuchi T, Hirotsu K, Kuramitsu S, Kagamiyama H: X-ray crystallographic study of pyridoxal 5'-phosphate-type aspartate aminotransferases from Escherichia coli in open and closed form. J Biochem. 1994, 116: 95-107.PubMed
38.
go back to reference Smith DL, Almo SC, Toney MD, Ringe D: 2.8-A-resolution crystal structure of an active-site mutant of aspartate aminotransferase from Escherichia coli. Biochemistry. 1989, 28: 8161-8167. 10.1021/bi00446a030.CrossRefPubMed Smith DL, Almo SC, Toney MD, Ringe D: 2.8-A-resolution crystal structure of an active-site mutant of aspartate aminotransferase from Escherichia coli. Biochemistry. 1989, 28: 8161-8167. 10.1021/bi00446a030.CrossRefPubMed
39.
go back to reference Borisov VV, Borisova SN, Kachalova GS, Sosfenov NI, Vainshtein BK, Torchinsky YM, Braunstein AE: Three-dimensional structure at 5 A resolution of cytosolic aspartate transaminase from chicken heart. J Mol Biol. 1978, 125: 275-292. 10.1016/0022-2836(78)90403-5.CrossRefPubMed Borisov VV, Borisova SN, Kachalova GS, Sosfenov NI, Vainshtein BK, Torchinsky YM, Braunstein AE: Three-dimensional structure at 5 A resolution of cytosolic aspartate transaminase from chicken heart. J Mol Biol. 1978, 125: 275-292. 10.1016/0022-2836(78)90403-5.CrossRefPubMed
40.
go back to reference Borisov VV, Borisova SN, Kachalova GS, Sosfenov NI, Voronova AA: [X-ray-structural study of aspartate transaminase at 5 A resolution]. Dokl Akad Nauk SSSR. 1977, 235: 212-215.PubMed Borisov VV, Borisova SN, Kachalova GS, Sosfenov NI, Voronova AA: [X-ray-structural study of aspartate transaminase at 5 A resolution]. Dokl Akad Nauk SSSR. 1977, 235: 212-215.PubMed
41.
go back to reference Braunshtein AE, Arutiunian EG, Malashkevich VN, Kochkina VM, Torchinskii Iu M: [Cytosol aspartate aminotransferase from the chicken heart: three-dimensional structure at 2.8 angstroms resolution and the characteristic conformation of various enzyme forms]. Mol Biol (Mosk). 1985, 19: 196-208. Braunshtein AE, Arutiunian EG, Malashkevich VN, Kochkina VM, Torchinskii Iu M: [Cytosol aspartate aminotransferase from the chicken heart: three-dimensional structure at 2.8 angstroms resolution and the characteristic conformation of various enzyme forms]. Mol Biol (Mosk). 1985, 19: 196-208.
42.
go back to reference Ford GC, Eichele G, Jansonius JN: Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase. Proc Natl Acad Sci USA. 1980, 77: 2559-2563. 10.1073/pnas.77.5.2559.CrossRefPubMedPubMedCentral Ford GC, Eichele G, Jansonius JN: Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase. Proc Natl Acad Sci USA. 1980, 77: 2559-2563. 10.1073/pnas.77.5.2559.CrossRefPubMedPubMedCentral
43.
go back to reference Arnone A, Rogers PH, Hyde CC, Makinen MW, Feldhaus R, Metzler CM, Metzler DE: Crystallographic and chemical studies on cytosolic aspartate aminotransferase. Prog Clin Biol Res. 1984, 144B: 171-193.PubMed Arnone A, Rogers PH, Hyde CC, Makinen MW, Feldhaus R, Metzler CM, Metzler DE: Crystallographic and chemical studies on cytosolic aspartate aminotransferase. Prog Clin Biol Res. 1984, 144B: 171-193.PubMed
44.
go back to reference Jeffery CJ, Barry T, Doonan S, Petsko GA, Ringe D: Crystal structure of Saccharomyces cerevisiae cytosolic aspartate aminotransferase. Protein Sci. 1998, 7: 1380-1387.CrossRefPubMedPubMedCentral Jeffery CJ, Barry T, Doonan S, Petsko GA, Ringe D: Crystal structure of Saccharomyces cerevisiae cytosolic aspartate aminotransferase. Protein Sci. 1998, 7: 1380-1387.CrossRefPubMedPubMedCentral
45.
go back to reference Chesney J, Telang S, Yalcin A, Clem A, Wallis N, Bucala R: Targeted disruption of inducible 6-phosphofructo-2-kinase results in embryonic lethality. Biochem Biophys Res Commun. 2005, 331: 139-146. 10.1016/j.bbrc.2005.02.193.CrossRefPubMed Chesney J, Telang S, Yalcin A, Clem A, Wallis N, Bucala R: Targeted disruption of inducible 6-phosphofructo-2-kinase results in embryonic lethality. Biochem Biophys Res Commun. 2005, 331: 139-146. 10.1016/j.bbrc.2005.02.193.CrossRefPubMed
46.
go back to reference Mori N, Glunde K, Takagi T, Raman V, Bhujwalla ZM: Choline kinase down-regulation increases the effect of 5-fluorouracil in breast cancer cells. Cancer Res. 2007, 67: 11284-11290. 10.1158/0008-5472.CAN-07-2728.CrossRefPubMed Mori N, Glunde K, Takagi T, Raman V, Bhujwalla ZM: Choline kinase down-regulation increases the effect of 5-fluorouracil in breast cancer cells. Cancer Res. 2007, 67: 11284-11290. 10.1158/0008-5472.CAN-07-2728.CrossRefPubMed
47.
go back to reference Telang S, Yalcin A, Clem AL, Bucala R, Lane AN, Eaton JW, Chesney J: Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene. 2006, 25: 7225-7234. 10.1038/sj.onc.1209709.CrossRefPubMed Telang S, Yalcin A, Clem AL, Bucala R, Lane AN, Eaton JW, Chesney J: Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene. 2006, 25: 7225-7234. 10.1038/sj.onc.1209709.CrossRefPubMed
48.
go back to reference Wu G, Aoyama C, Young SG, Vance DE: Early embryonic lethality caused by disruption of the gene for choline kinase alpha, the first enzyme in phosphatidylcholine biosynthesis. J Biol Chem. 2008, 283: 1456-1462. 10.1074/jbc.M708766200.CrossRefPubMed Wu G, Aoyama C, Young SG, Vance DE: Early embryonic lethality caused by disruption of the gene for choline kinase alpha, the first enzyme in phosphatidylcholine biosynthesis. J Biol Chem. 2008, 283: 1456-1462. 10.1074/jbc.M708766200.CrossRefPubMed
Metadata
Title
Targeting aspartate aminotransferase in breast cancer
Authors
Joshua Marshall Thornburg
Kristin K Nelson
Brian F Clem
Andrew N Lane
Sengodagounder Arumugam
Allan Simmons
John W Eaton
Sucheta Telang
Jason Chesney
Publication date
01-10-2008
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 5/2008
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr2154

Other articles of this Issue 5/2008

Breast Cancer Research 5/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine