Skip to main content
Top
Published in: Breast Cancer Research 2/2008

Open Access 01-04-2008 | Research article

TNK2 preserves epidermal growth factor receptor expression on the cell surface and enhances migration and invasion of human breast cancer cells

Authors: Jillian Howlin, Jeanette Rosenkvist, Tommy Andersson

Published in: Breast Cancer Research | Issue 2/2008

Login to get access

Abstract

Introduction

Amplification of the TNK2 gene in primary tumours correlates with poor prognosis. In accordance, TNK2 overexpression was shown to promote invasion of cancer cells – but the mechanism by which TNK2 mediates these effects is unresolved. TNK2 was suggested to regulate Cdc42-driven migration by activation of breast cancer antioestrogen resistance 1 (BCAR1); however, distinct from this effect is evidence for a role of TNK2 in the regulation of epidermal growth factor receptor (EGFR) endocytosis and degradation. In the present study we sought to investigate whether negative targeting of TNK2 by siRNA could be used to inhibit cancer cell invasion, to establish the contribution of its effect on the EGFR and to consequently attempt to resolve the issue of TNK2's mechanism of action.

Methods

We used siRNA to knockdown expression of TNK2 and its proposed effector BCAR1 in order to analyse the effect of this knockdown on cancer cell behaviour in vitro. We examined morphological changes using phase-contrast microscopy and immunohistochemistry. Functional parameters examined included apoptosis, proliferation, migration and invasion. We also performed flow cytometry analysis to examine EGFR cell surface expression and carried out western blot to examine the total EGFR levels.

Results

We observed that targeting of TNK2 by siRNA in breast cancer cells resulted in distinct morphological changes characterised by a stellate appearance and an absence of protrusions at membrane edges. These changes were not recapitulated upon siRNA targeting of BCAR1. We thus hypothesised that a component of the effects induced by TNK2 may be independent of BCAR1. Consistent with the idea of an alternative mechanism for TNK2, we observed that TNK2 associates with activated EGFR in breast cancer cells in a TNK2-kinase-independent manner. Furthermore, we demonstrated that TNK2 functions to maintain EGFRs on the cell surface. We could demonstrate that the main functional effect of activating these surface EGFRs in breast cancer cells is stimulation of migration. In accordance, TNK2 silencing by siRNA led to a significant reduction in cell surface EGFR and to a concomitant decrease in the migratory and invasive capacity of breast cancer cells.

Conclusion

Our data suggest that TNK2 can enhance migration and invasion of breast cancer cells via preservation of EGFR expression, notwithstanding its previously reported signalling via BCAR1, explaining its oncogenic behaviour in vitro and correlation with metastatic human breast cancer in vivo.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bossuyt V, Fadare O, Martel M, Ocal IT, Burtness B, Moinfar F, Leibl S, Tavassoli FA: Remarkably high frequency of EGFR expression in breast carcinomas with squamous differentiation. Int J Surg Pathol. 2005, 13: 319-327. 10.1177/106689690501300403.CrossRefPubMed Bossuyt V, Fadare O, Martel M, Ocal IT, Burtness B, Moinfar F, Leibl S, Tavassoli FA: Remarkably high frequency of EGFR expression in breast carcinomas with squamous differentiation. Int J Surg Pathol. 2005, 13: 319-327. 10.1177/106689690501300403.CrossRefPubMed
2.
go back to reference Mendelsohn J, Baselga J: Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol. 2003, 21: 2787-2799. 10.1200/JCO.2003.01.504.CrossRefPubMed Mendelsohn J, Baselga J: Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol. 2003, 21: 2787-2799. 10.1200/JCO.2003.01.504.CrossRefPubMed
3.
go back to reference Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, Rijn van de M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001, 98: 10869-10874. 10.1073/pnas.191367098.CrossRefPubMedPubMedCentral Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, Rijn van de M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001, 98: 10869-10874. 10.1073/pnas.191367098.CrossRefPubMedPubMedCentral
4.
go back to reference Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, Perou CM: Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol. 2006, 19: 264-271. 10.1038/modpathol.3800528.CrossRefPubMed Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, Perou CM: Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol. 2006, 19: 264-271. 10.1038/modpathol.3800528.CrossRefPubMed
5.
go back to reference Gao XP, Liu F: New agents in development for breast cancer. Curr Opin Obstet Gynecol. 2007, 19: 68-74.CrossRefPubMed Gao XP, Liu F: New agents in development for breast cancer. Curr Opin Obstet Gynecol. 2007, 19: 68-74.CrossRefPubMed
6.
go back to reference Morgillo F, Lee HY: Resistance to epidermal growth factor receptor-targeted therapy. Drug Resist Update. 2005, 8: 298-310. 10.1016/j.drup.2005.08.004.CrossRef Morgillo F, Lee HY: Resistance to epidermal growth factor receptor-targeted therapy. Drug Resist Update. 2005, 8: 298-310. 10.1016/j.drup.2005.08.004.CrossRef
7.
go back to reference Jaffe AB, Hall A: Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005, 21: 247-269. 10.1146/annurev.cellbio.21.020604.150721.CrossRefPubMed Jaffe AB, Hall A: Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005, 21: 247-269. 10.1146/annurev.cellbio.21.020604.150721.CrossRefPubMed
8.
go back to reference Schmitz AA, Govek EE, Bottner B, Van Aelst L: Rho GTPases: signaling, migration, and invasion. Exp Cell Res. 2000, 261: 1-12. 10.1006/excr.2000.5049.CrossRefPubMed Schmitz AA, Govek EE, Bottner B, Van Aelst L: Rho GTPases: signaling, migration, and invasion. Exp Cell Res. 2000, 261: 1-12. 10.1006/excr.2000.5049.CrossRefPubMed
9.
go back to reference Lin M, van Golen KL: Rho-regulatory proteins in breast cancer cell motility and invasion. Breast Cancer Res Treat. 2004, 84: 49-60. 10.1023/B:BREA.0000018424.43445.f3.CrossRefPubMed Lin M, van Golen KL: Rho-regulatory proteins in breast cancer cell motility and invasion. Breast Cancer Res Treat. 2004, 84: 49-60. 10.1023/B:BREA.0000018424.43445.f3.CrossRefPubMed
10.
go back to reference Modzelewska K, Newman LP, Desai R, Keely PJ: Ack1 mediates Cdc42-dependent cell migration and signaling to p130Cas. J Biol Chem. 2006, 281: 37527-37535. 10.1074/jbc.M604342200.CrossRefPubMed Modzelewska K, Newman LP, Desai R, Keely PJ: Ack1 mediates Cdc42-dependent cell migration and signaling to p130Cas. J Biol Chem. 2006, 281: 37527-37535. 10.1074/jbc.M604342200.CrossRefPubMed
11.
go back to reference Manser E, Leung T, Salihuddin H, Tan L, Lim L: A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. Nature. 1993, 363: 364-367. 10.1038/363364a0.CrossRefPubMed Manser E, Leung T, Salihuddin H, Tan L, Lim L: A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. Nature. 1993, 363: 364-367. 10.1038/363364a0.CrossRefPubMed
12.
go back to reference Mahajan NP, Whang YE, Mohler JL, Earp HS: Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res. 2005, 65: 10514-10523. 10.1158/0008-5472.CAN-05-1127.CrossRefPubMed Mahajan NP, Whang YE, Mohler JL, Earp HS: Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res. 2005, 65: 10514-10523. 10.1158/0008-5472.CAN-05-1127.CrossRefPubMed
13.
go back to reference Horst van der EH, Degenhardt YY, Strelow A, Slavin A, Chinn L, Orf J, Rong M, Li S, See LH, Nguyen KQ, Hoey T, Wesche H, Powers S: Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci USA. 2005, 102: 15901-15906. 10.1073/pnas.0508014102.CrossRefPubMedPubMedCentral Horst van der EH, Degenhardt YY, Strelow A, Slavin A, Chinn L, Orf J, Rong M, Li S, See LH, Nguyen KQ, Hoey T, Wesche H, Powers S: Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci USA. 2005, 102: 15901-15906. 10.1073/pnas.0508014102.CrossRefPubMedPubMedCentral
14.
go back to reference Yang W, Cerione RA: Cloning and characterization of a novel Cdc42-associated tyrosine kinase, ACK-2, from bovine brain. J Biol Chem. 1997, 272: 24819-24824. 10.1074/jbc.272.40.24819.CrossRefPubMed Yang W, Cerione RA: Cloning and characterization of a novel Cdc42-associated tyrosine kinase, ACK-2, from bovine brain. J Biol Chem. 1997, 272: 24819-24824. 10.1074/jbc.272.40.24819.CrossRefPubMed
15.
go back to reference Wu WJ, Tu S, Cerione RA: Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell. 2003, 114: 715-725. 10.1016/S0092-8674(03)00688-3.CrossRefPubMed Wu WJ, Tu S, Cerione RA: Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell. 2003, 114: 715-725. 10.1016/S0092-8674(03)00688-3.CrossRefPubMed
16.
go back to reference Galisteo ML, Yang Y, Urena J, Schlessinger J: Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci USA. 2006, 103: 9796-9801. 10.1073/pnas.0603714103.CrossRefPubMedPubMedCentral Galisteo ML, Yang Y, Urena J, Schlessinger J: Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci USA. 2006, 103: 9796-9801. 10.1073/pnas.0603714103.CrossRefPubMedPubMedCentral
17.
go back to reference Lin Q, Lo CG, Cerione RA, Yang W: The Cdc42 target ACK2 interacts with sorting nexin 9 (SH3PX1) to regulate epidermal growth factor receptor degradation. J Biol Chem. 2002, 277: 10134-10138. 10.1074/jbc.M110329200.CrossRefPubMed Lin Q, Lo CG, Cerione RA, Yang W: The Cdc42 target ACK2 interacts with sorting nexin 9 (SH3PX1) to regulate epidermal growth factor receptor degradation. J Biol Chem. 2002, 277: 10134-10138. 10.1074/jbc.M110329200.CrossRefPubMed
18.
go back to reference Teo M, Tan L, Lim L, Manser E: The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors. J Biol Chem. 2001, 276: 18392-18398. 10.1074/jbc.M008795200.CrossRefPubMed Teo M, Tan L, Lim L, Manser E: The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors. J Biol Chem. 2001, 276: 18392-18398. 10.1074/jbc.M008795200.CrossRefPubMed
19.
go back to reference Shen F, Lin Q, Gu Y, Childress C, Yang W: Activated Cdc42-associated kinase 1 is a component of EGF receptor signaling complex and regulates EGF receptor degradation. Mol Biol Cell. 2007, 18: 732-742. 10.1091/mbc.E06-02-0142.CrossRefPubMedPubMedCentral Shen F, Lin Q, Gu Y, Childress C, Yang W: Activated Cdc42-associated kinase 1 is a component of EGF receptor signaling complex and regulates EGF receptor degradation. Mol Biol Cell. 2007, 18: 732-742. 10.1091/mbc.E06-02-0142.CrossRefPubMedPubMedCentral
20.
go back to reference Hirsch DS, Shen Y, Wu WJ: Growth and motility inhibition of breast cancer cells by epidermal growth factor receptor degradation is correlated with inactivation of Cdc42. Cancer Res. 2006, 66: 3523-3530. 10.1158/0008-5472.CAN-05-1547.CrossRefPubMed Hirsch DS, Shen Y, Wu WJ: Growth and motility inhibition of breast cancer cells by epidermal growth factor receptor degradation is correlated with inactivation of Cdc42. Cancer Res. 2006, 66: 3523-3530. 10.1158/0008-5472.CAN-05-1547.CrossRefPubMed
21.
go back to reference Kato J, Kaziro Y, Satoh T: Activation of the guanine nucleotide exchange factor Dbl following ACK1-dependent tyrosine phosphorylation. Biochem Biophys Res Commun. 2000, 268: 141-147. 10.1006/bbrc.2000.2106.CrossRefPubMed Kato J, Kaziro Y, Satoh T: Activation of the guanine nucleotide exchange factor Dbl following ACK1-dependent tyrosine phosphorylation. Biochem Biophys Res Commun. 2000, 268: 141-147. 10.1006/bbrc.2000.2106.CrossRefPubMed
22.
go back to reference Malliri A, Symons M, Hennigan RF, Hurlstone AF, Lamb RF, Wheeler T, Ozanne BW: The transcription factor AP-1 is required for EGF-induced activation of rho-like GTPases, cytoskeletal rearrangements, motility, and in vitro invasion of A431 cells. J Cell Biol. 1998, 143: 1087-1099. 10.1083/jcb.143.4.1087.CrossRefPubMedPubMedCentral Malliri A, Symons M, Hennigan RF, Hurlstone AF, Lamb RF, Wheeler T, Ozanne BW: The transcription factor AP-1 is required for EGF-induced activation of rho-like GTPases, cytoskeletal rearrangements, motility, and in vitro invasion of A431 cells. J Cell Biol. 1998, 143: 1087-1099. 10.1083/jcb.143.4.1087.CrossRefPubMedPubMedCentral
23.
go back to reference Maddala R, Reddy VN, Epstein DL, Rao V: Growth factor induced activation of Rho and Rac GTPases and actin cytoskeletal reorganization in human lens epithelial cells. Mol Vis. 2003, 9: 329-336.PubMed Maddala R, Reddy VN, Epstein DL, Rao V: Growth factor induced activation of Rho and Rac GTPases and actin cytoskeletal reorganization in human lens epithelial cells. Mol Vis. 2003, 9: 329-336.PubMed
24.
go back to reference Davidson NE, Gelmann EP, Lippman ME, Dickson RB: Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol Endocrinol. 1987, 1: 216-223.CrossRefPubMed Davidson NE, Gelmann EP, Lippman ME, Dickson RB: Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol Endocrinol. 1987, 1: 216-223.CrossRefPubMed
25.
go back to reference Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS: Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006, 366: 2-16. 10.1016/j.gene.2005.10.018.CrossRefPubMed Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS: Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006, 366: 2-16. 10.1016/j.gene.2005.10.018.CrossRefPubMed
26.
go back to reference Bos M, Mendelsohn J, Kim YM, Albanell J, Fry DW, Baselga J: PD153035, a tyrosine kinase inhibitor, prevents epidermal growth factor receptor activation and inhibits growth of cancer cells in a receptor number-dependent manner. Clin Cancer Res. 1997, 3: 2099-2106.PubMed Bos M, Mendelsohn J, Kim YM, Albanell J, Fry DW, Baselga J: PD153035, a tyrosine kinase inhibitor, prevents epidermal growth factor receptor activation and inhibits growth of cancer cells in a receptor number-dependent manner. Clin Cancer Res. 1997, 3: 2099-2106.PubMed
27.
go back to reference Gronowski AM, Bertics PJ: Modulation of epidermal growth factor receptor interaction with the detergent-insoluble cytoskeleton and its effects on receptor tyrosine kinase activity. Endocrinology. 1995, 136: 2198-2205. 10.1210/en.136.5.2198.PubMed Gronowski AM, Bertics PJ: Modulation of epidermal growth factor receptor interaction with the detergent-insoluble cytoskeleton and its effects on receptor tyrosine kinase activity. Endocrinology. 1995, 136: 2198-2205. 10.1210/en.136.5.2198.PubMed
28.
go back to reference den Hartigh JC, en Henegouwen van Bergen PM, Verkleij AJ, Boonstra J: The EGF receptor is an actin-binding protein. J Cell Biol. 1992, 119: 349-355. 10.1083/jcb.119.2.349.CrossRefPubMed den Hartigh JC, en Henegouwen van Bergen PM, Verkleij AJ, Boonstra J: The EGF receptor is an actin-binding protein. J Cell Biol. 1992, 119: 349-355. 10.1083/jcb.119.2.349.CrossRefPubMed
29.
go back to reference Wiegant FA, Blok FJ, Defize LH, Linnemans WA, Verkley AJ, Boonstra J: Epidermal growth factor receptors associated to cytoskeletal elements of epidermoid carcinoma (A431) cells. J Cell Biol. 1986, 103: 87-94. 10.1083/jcb.103.1.87.CrossRefPubMed Wiegant FA, Blok FJ, Defize LH, Linnemans WA, Verkley AJ, Boonstra J: Epidermal growth factor receptors associated to cytoskeletal elements of epidermoid carcinoma (A431) cells. J Cell Biol. 1986, 103: 87-94. 10.1083/jcb.103.1.87.CrossRefPubMed
30.
go back to reference Nur EKMS, Kamal JM, Qureshi MM, Maruta H: The CDC42-specific inhibitor derived from ACK-1 blocks v-Ha-Ras-induced transformation. Oncogene. 1999, 18: 7787-7793. 10.1038/sj.onc.1203215.CrossRef Nur EKMS, Kamal JM, Qureshi MM, Maruta H: The CDC42-specific inhibitor derived from ACK-1 blocks v-Ha-Ras-induced transformation. Oncogene. 1999, 18: 7787-7793. 10.1038/sj.onc.1203215.CrossRef
31.
go back to reference Nur-e-Kamal MS, Qureshi MM, Kamal JM, Montague W, Maruta H: Construction of a cell-permeable CDC42 binding fragment of ACK that inhibits v-Ha-Ras transformation. Ann N Y Acad Sci. 1999, 886: 285-288. 10.1111/j.1749-6632.1999.tb09438.x.CrossRefPubMed Nur-e-Kamal MS, Qureshi MM, Kamal JM, Montague W, Maruta H: Construction of a cell-permeable CDC42 binding fragment of ACK that inhibits v-Ha-Ras transformation. Ann N Y Acad Sci. 1999, 886: 285-288. 10.1111/j.1749-6632.1999.tb09438.x.CrossRefPubMed
Metadata
Title
TNK2 preserves epidermal growth factor receptor expression on the cell surface and enhances migration and invasion of human breast cancer cells
Authors
Jillian Howlin
Jeanette Rosenkvist
Tommy Andersson
Publication date
01-04-2008
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 2/2008
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr2087

Other articles of this Issue 2/2008

Breast Cancer Research 2/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine