Skip to main content
Top
Published in: Breast Cancer Research 2/2008

01-05-2008 | Poster presentation

Modelling estrogen receptor alpha-positive breast cancer by transformation of normal human mammary epithelial cells

Authors: X Schmidt, S Duss, RD Iggo

Published in: Breast Cancer Research | Special Issue 2/2008

Login to get access

Excerpt

Two-thirds of breast cancers express estrogen receptor alpha (ERα) and are estrogen-dependent for growth, yet the unavailability of accurate in vivo models has long impeded the characterisation of critical events that lead to the development of these luminal subtypes of the disease. Previously, our group successfully created an ERα-positive breast cancer model by quantitative transformation of normal human mammary epithelial cells (HMECs) derived from reduction mammoplasties. HMECs were grown as mammospheres in suspension to enrich for progenitor cells, which were then transformed using lentiviral vectors encoding ERα and TERT as well as the polycomb gene BMI1 and MYC, both of which have been implicated in ERα-positive breast cancer. Injection of transformed HMECs into mammary fad pads of NOD/SCID mice resulted in the formation of estrogen-dependent tumours that metastasised to multiple organs [1], confirming the creation of a model that mirrors the characteristics of human estrogen-dependent breast cancer. Somewhat surprisingly, we observed islands of squamous differentiation in the tumours that formed in the NOD/SCID mice, whereas the large majority of human breast tumours are adenocarcinomas. To address this discrepancy, we are currently testing a combination of our established protocol with new HMECs in vitro culture conditions that have recently been shown to abrogate the squamous phenotype of the resulting tumours in mice [2]. Our model system is a powerful tool for the in vivo characterisation of candidate genes that have been implicated in development of ERα-positive breast cancer. Genes of interest include TNRC9, which has recently been identified in genome-wide association studies as a potential novel breast cancer susceptibility gene [3], as well as TBX3, which is known to play a role in mammary gland development as well as breast tumourigenesis. We are currently testing these genes in our model using overexpression and knockdown approaches. …
Literature
1.
go back to reference Duss S, André S, Nicoulaz AL, Fiche M, Bonnefoi H, Brisken C, Iggo RD: An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Res. 2007, 9: R38-10.1186/bcr1734.CrossRefPubMedPubMedCentral Duss S, André S, Nicoulaz AL, Fiche M, Bonnefoi H, Brisken C, Iggo RD: An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Res. 2007, 9: R38-10.1186/bcr1734.CrossRefPubMedPubMedCentral
2.
go back to reference Ince TA, Richardson AL, Bell GW, Saitoh M, Godar S, Karnoub AE, Iglehart JD, Weinberg RA: Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell. 2007, 12: 160-170. 10.1016/j.ccr.2007.06.013.CrossRefPubMed Ince TA, Richardson AL, Bell GW, Saitoh M, Godar S, Karnoub AE, Iglehart JD, Weinberg RA: Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell. 2007, 12: 160-170. 10.1016/j.ccr.2007.06.013.CrossRefPubMed
3.
go back to reference Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, et al: Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007, 447: 1087-1093. 10.1038/nature05887.CrossRefPubMedPubMedCentral Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, et al: Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007, 447: 1087-1093. 10.1038/nature05887.CrossRefPubMedPubMedCentral
Metadata
Title
Modelling estrogen receptor alpha-positive breast cancer by transformation of normal human mammary epithelial cells
Authors
X Schmidt
S Duss
RD Iggo
Publication date
01-05-2008
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue Special Issue 2/2008
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr1907

Other articles of this Special Issue 2/2008

Breast Cancer Research 2/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine