Skip to main content
Top
Published in: Breast Cancer Research 2/2006

Open Access 01-04-2006 | Research article

Type I insulin-like growth factor receptor over-expression induces proliferation and anti-apoptotic signaling in a three-dimensional culture model of breast epithelial cells

Authors: Gina M Yanochko, Walter Eckhart

Published in: Breast Cancer Research | Issue 2/2006

Login to get access

Abstract

Introduction

Activation of the type I insulin-like growth factor receptor (IGFIR) promotes proliferation and inhibits apoptosis in a variety of cell types. Transgenic mice expressing a constitutively active IGFIR or IGF-I develop mammary tumors and increased levels of IGFIR have been detected in primary breast cancers. However, the contribution of IGFIR activation in promoting breast cancer progression remains unknown. Mammary epithelial cell lines grown in three-dimensional cultures form acinar structures that mimic the round, polarized, hollow and growth-arrested features of mammary alveoli. We used this system to determine how proliferation and survival signaling by IGFIR activation affects breast epithelial cell biology and contributes to breast cancer progression.

Methods

Pooled, stable MCF-10A breast epithelial cells expressing wild-type IGFIR or kinase-dead IGFIR (K1003A) were generated using retroviral-mediated gene transfer. The effects of over-expression of wild-type or kinase-dead IGFIR on breast epithelial cell biology were analyzed by confocal microscopy of three-dimensional cultures. The contribution of signaling pathways downstream of IGFIR activation to proliferation and apoptosis were determined by pharmacological inhibition of phosphatidylinositol 3' kinase (PI3K) with LY294002, MAP kinase kinase (MEK) with UO126 and mammalian target of rapamycin (mTOR) with rapamycin.

Results

We found that MCF-10A cells over-expressing the IGFIR formed large, misshapen acinar structures with filled lumina and disrupted apico-basal polarization. This phenotype was ligand-dependent, occurring with IGF-I or supraphysiological doses of insulin, and did not occur in cells over-expressing the kinase-dead receptor. We observed increased proliferation, decreased apoptosis and increased phosphorylation of Ser473 of Akt and Ser2448 of mTOR throughout IGFIR structures. Inhibition of PI3K with LY294002 or MEK with UO126 prevented the development of acinar structures from IGFIR-expressing but not control cells. The mTOR inhibitor rapamycin failed to prevent IGFIR-induced hyperproliferation and survival signaling.

Conclusion

Increased proliferation and survival signaling as well as loss of apico-basal polarity by IGFIR activation in mammary epithelial cells may promote early lesions of breast cancer. Three-dimensional cultures of MCF-10A cells over-expressing the IGFIR are a useful model with which to study the role of IGFIR signaling in breast cancer progression and for characterizing the effects of chemotherapeutics targeted to IGFIR signaling.
Appendix
Available only for authorised users
Literature
1.
go back to reference Párrizas M, Saltiel AR, LeRoith D: Insulin-like growth factor I inhibits apoptosis using the phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways. J Biol Chem. 1997, 272: 154-161. 10.1074/jbc.272.1.154.CrossRefPubMed Párrizas M, Saltiel AR, LeRoith D: Insulin-like growth factor I inhibits apoptosis using the phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways. J Biol Chem. 1997, 272: 154-161. 10.1074/jbc.272.1.154.CrossRefPubMed
2.
go back to reference Burtscher I, Christofori G: The IGF/IGF-1 receptor signaling pathway as a potential target for cancer therapy. Drug Resist Update. 1999, 2: 3-8. 10.1054/drup.1998.0061.CrossRef Burtscher I, Christofori G: The IGF/IGF-1 receptor signaling pathway as a potential target for cancer therapy. Drug Resist Update. 1999, 2: 3-8. 10.1054/drup.1998.0061.CrossRef
3.
go back to reference Bonnette SG, Hadsell DL: Targeted disruption of the IGF-I receptor gene decreases cellular proliferation in mammary terminal end buds. Endocrinology. 2001, 142: 4937-4945. 10.1210/en.142.11.4937.CrossRefPubMed Bonnette SG, Hadsell DL: Targeted disruption of the IGF-I receptor gene decreases cellular proliferation in mammary terminal end buds. Endocrinology. 2001, 142: 4937-4945. 10.1210/en.142.11.4937.CrossRefPubMed
4.
go back to reference Ruan W, Kleinberg DL: Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology. 1999, 140: 5075-5081. 10.1210/en.140.11.5075.PubMed Ruan W, Kleinberg DL: Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology. 1999, 140: 5075-5081. 10.1210/en.140.11.5075.PubMed
5.
go back to reference Richards RG, Klotz DM, Walker MP, Diaugustine RP: Mammary gland branching morphogenesis is diminished in mice with a deficiency of insulin-like growth factor-I (IGF-I), but not in mice with a liver-specific deletion of IGF-I. Endocrinology. 2004, 145: 3106-3110. 10.1210/en.2003-1112.CrossRefPubMed Richards RG, Klotz DM, Walker MP, Diaugustine RP: Mammary gland branching morphogenesis is diminished in mice with a deficiency of insulin-like growth factor-I (IGF-I), but not in mice with a liver-specific deletion of IGF-I. Endocrinology. 2004, 145: 3106-3110. 10.1210/en.2003-1112.CrossRefPubMed
6.
go back to reference Cullen KJ, Yee D, Sly WS, Perdue J, Hampton B, Lippman ME, Rosen N: Insulin-like growth factor receptor expression and function in human breast cancer. Cancer Res. 1990, 50: 48-53.PubMed Cullen KJ, Yee D, Sly WS, Perdue J, Hampton B, Lippman ME, Rosen N: Insulin-like growth factor receptor expression and function in human breast cancer. Cancer Res. 1990, 50: 48-53.PubMed
7.
go back to reference Carboni JM, Lee AV, Hadsell DL, Rowley BR, Lee FY, Bol DK, Camuso AE, Gottardis M, Greer AF, Ho CP, et al: Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res. 2005, 65: 3781-3787. 10.1158/0008-5472.CAN-04-4602.CrossRefPubMed Carboni JM, Lee AV, Hadsell DL, Rowley BR, Lee FY, Bol DK, Camuso AE, Gottardis M, Greer AF, Ho CP, et al: Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res. 2005, 65: 3781-3787. 10.1158/0008-5472.CAN-04-4602.CrossRefPubMed
8.
go back to reference Hadsell DL, Greenberg NM, Fligger JM, Baumrucker CR, Rosen JM: Targeted Expression of des(1–3) Human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology. 1996, 137: 321-330. 10.1210/en.137.1.321.PubMed Hadsell DL, Greenberg NM, Fligger JM, Baumrucker CR, Rosen JM: Targeted Expression of des(1–3) Human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology. 1996, 137: 321-330. 10.1210/en.137.1.321.PubMed
9.
go back to reference Hadsell DL, Murphy KL, Bonnette SG, Reece N, Laurcirica R, Rosen JM: Cooperative interaction between mutant p53 and des(1–3)IGF-I accelerates mammary tumorigenesis. Oncogene. 2000, 19: 889-898. 10.1038/sj.onc.1203386.CrossRefPubMed Hadsell DL, Murphy KL, Bonnette SG, Reece N, Laurcirica R, Rosen JM: Cooperative interaction between mutant p53 and des(1–3)IGF-I accelerates mammary tumorigenesis. Oncogene. 2000, 19: 889-898. 10.1038/sj.onc.1203386.CrossRefPubMed
10.
go back to reference Yee D, Lee AV: Crosstalk between the insulin-like growth factors and estrogens in breast cancer. J Mammary Gland Biol Neoplasia. 2000, 5: 107-115. 10.1023/A:1009575518338.CrossRefPubMed Yee D, Lee AV: Crosstalk between the insulin-like growth factors and estrogens in breast cancer. J Mammary Gland Biol Neoplasia. 2000, 5: 107-115. 10.1023/A:1009575518338.CrossRefPubMed
11.
go back to reference Werner H, Karnieli E, Rauscher FJ, LeRoith D: Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natl Acad Sci USA. 1996, 93: 8318-8323. 10.1073/pnas.93.16.8318.CrossRefPubMedPubMedCentral Werner H, Karnieli E, Rauscher FJ, LeRoith D: Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natl Acad Sci USA. 1996, 93: 8318-8323. 10.1073/pnas.93.16.8318.CrossRefPubMedPubMedCentral
12.
go back to reference Werner H, Roberts CT: The IGFI receptor gene: a molecular target for disrupted transcription factors. Genes Chromosomes Cancer. 2003, 36: 113-120. 10.1002/gcc.10157.CrossRefPubMed Werner H, Roberts CT: The IGFI receptor gene: a molecular target for disrupted transcription factors. Genes Chromosomes Cancer. 2003, 36: 113-120. 10.1002/gcc.10157.CrossRefPubMed
13.
go back to reference Salatino M, Schillaci R, Proietti CJ, Carnevale R, Frahm I, Molinolo AA, Iribarren A, Charreau EH, Elizalde PV: Inhibition of in vivo breast cancer growth by antisense oligodeoxynucleotides to type I insulin-like growth factor receptor mRNA involves activation of ErbBs, PI-3K/Akt and p42/p44 MAPK signaling pathways but not modulation of progesterone activity. Oncogene. 2004, 23: 5161-5174. 10.1038/sj.onc.1207659.CrossRefPubMed Salatino M, Schillaci R, Proietti CJ, Carnevale R, Frahm I, Molinolo AA, Iribarren A, Charreau EH, Elizalde PV: Inhibition of in vivo breast cancer growth by antisense oligodeoxynucleotides to type I insulin-like growth factor receptor mRNA involves activation of ErbBs, PI-3K/Akt and p42/p44 MAPK signaling pathways but not modulation of progesterone activity. Oncogene. 2004, 23: 5161-5174. 10.1038/sj.onc.1207659.CrossRefPubMed
14.
go back to reference Dunn SE, Ehrlich M, Sharp NJH, Reiss K, Solomon G, Hawkins R, Baserga R, Barrett JC: A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res. 1998, 58: 3353-3361.PubMed Dunn SE, Ehrlich M, Sharp NJH, Reiss K, Solomon G, Hawkins R, Baserga R, Barrett JC: A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res. 1998, 58: 3353-3361.PubMed
15.
go back to reference Goodwin PJ, Ennish M, Pritchard KI, Trudeau ME, Koo J, Hartwick W, Hoffman B, Hood N: Insulin-like growth factor binding proteins 1 and 3 and breast cancer outcomes. Breast Cancer Res Treat. 2002, 74: 65-76. 10.1023/A:1016075709022.CrossRefPubMed Goodwin PJ, Ennish M, Pritchard KI, Trudeau ME, Koo J, Hartwick W, Hoffman B, Hood N: Insulin-like growth factor binding proteins 1 and 3 and breast cancer outcomes. Breast Cancer Res Treat. 2002, 74: 65-76. 10.1023/A:1016075709022.CrossRefPubMed
16.
go back to reference Toniolo P, Bruning PF, Akhmedkhanov A, Bonfrer JM, Koenig KL, Lukanova A, Shore RE, Zeleniuch-Jacquotte A: Serum insulin-like growth factor-I and breast cancer. Int J Cancer. 2000, 88: 828-832. 10.1002/1097-0215(20001201)88:5<828::AID-IJC22>3.0.CO;2-8.CrossRefPubMed Toniolo P, Bruning PF, Akhmedkhanov A, Bonfrer JM, Koenig KL, Lukanova A, Shore RE, Zeleniuch-Jacquotte A: Serum insulin-like growth factor-I and breast cancer. Int J Cancer. 2000, 88: 828-832. 10.1002/1097-0215(20001201)88:5<828::AID-IJC22>3.0.CO;2-8.CrossRefPubMed
17.
go back to reference Papa V, Gliozzo B, Clark GM, McGuire WL, Moore D, Fujita-Yamaguchi Y, Vigneri R, Goldfine ID, Pezzino V: Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer. Cancer Res. 1993, 53: 3736-3740. Papa V, Gliozzo B, Clark GM, McGuire WL, Moore D, Fujita-Yamaguchi Y, Vigneri R, Goldfine ID, Pezzino V: Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer. Cancer Res. 1993, 53: 3736-3740.
18.
go back to reference Resnik JL, Reichart DB, Huey K, Webster NJG, Seely BL: Elevated insulin-like growth factor I receptor autophosphorylation and kinase activity in human breast cancer. Cancer Res. 1998, 58: 1159-1164.PubMed Resnik JL, Reichart DB, Huey K, Webster NJG, Seely BL: Elevated insulin-like growth factor I receptor autophosphorylation and kinase activity in human breast cancer. Cancer Res. 1998, 58: 1159-1164.PubMed
19.
go back to reference Berns EMJJ, Klijn JGM, van Staveren IL, Portengen H, Foekens JA: Sporadic amplification of the insulin-like growth factor 1 receptor gene in human breast tumors. Cancer Res. 1992, 52: 1036-1039.PubMed Berns EMJJ, Klijn JGM, van Staveren IL, Portengen H, Foekens JA: Sporadic amplification of the insulin-like growth factor 1 receptor gene in human breast tumors. Cancer Res. 1992, 52: 1036-1039.PubMed
20.
go back to reference Kaleko M, Rutter WJ, Miller D: Overexpression of the human insulin-like growth factor I receptor promotes ligand-dependent neoplastic transformation. Mol Cell Biol. 1990, 10: 464-473.CrossRefPubMedPubMedCentral Kaleko M, Rutter WJ, Miller D: Overexpression of the human insulin-like growth factor I receptor promotes ligand-dependent neoplastic transformation. Mol Cell Biol. 1990, 10: 464-473.CrossRefPubMedPubMedCentral
21.
go back to reference Jerome L, Shiry L, Leyland-Jones B: Deregulation of the IGF axis in cancer: epidemiological evidence and potential therapeutic interventions. Endocr Relat Cancer. 2003, 10: 561-578. 10.1677/erc.0.0100561.CrossRefPubMed Jerome L, Shiry L, Leyland-Jones B: Deregulation of the IGF axis in cancer: epidemiological evidence and potential therapeutic interventions. Endocr Relat Cancer. 2003, 10: 561-578. 10.1677/erc.0.0100561.CrossRefPubMed
22.
go back to reference Sachdev D, Yee D: The IGF system and breast cancer. Endocr Relat Cancer. 2001, 8: 197-209. 10.1677/erc.0.0080197.CrossRefPubMed Sachdev D, Yee D: The IGF system and breast cancer. Endocr Relat Cancer. 2001, 8: 197-209. 10.1677/erc.0.0080197.CrossRefPubMed
23.
go back to reference Debnath J, Brugge JS: Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer. 2005, 5: 675-688. 10.1038/nrc1695.CrossRefPubMed Debnath J, Brugge JS: Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer. 2005, 5: 675-688. 10.1038/nrc1695.CrossRefPubMed
24.
go back to reference Nelson CM, Bissell MJ: Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin Cancer Biol. 2005, 15: 342-352. 10.1016/j.semcancer.2005.05.001.CrossRefPubMedPubMedCentral Nelson CM, Bissell MJ: Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin Cancer Biol. 2005, 15: 342-352. 10.1016/j.semcancer.2005.05.001.CrossRefPubMedPubMedCentral
25.
go back to reference Xian W, Schwertfeger KL, Vargo-Gogola T, Rosen JM: Pleiotropic effects of FGFRI on cell proliferation, survival, and migration in a 3D mammary epithelial cell model. J Cell Biol. 2005, 171: 663-673. 10.1083/jcb.200505098.CrossRefPubMedPubMedCentral Xian W, Schwertfeger KL, Vargo-Gogola T, Rosen JM: Pleiotropic effects of FGFRI on cell proliferation, survival, and migration in a 3D mammary epithelial cell model. J Cell Biol. 2005, 171: 663-673. 10.1083/jcb.200505098.CrossRefPubMedPubMedCentral
26.
go back to reference Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N, Natesan S, Brugge JS: Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol. 2005, 171: 1023-1024. 10.1083/jcb.200505087.CrossRefPubMedPubMedCentral Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N, Natesan S, Brugge JS: Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol. 2005, 171: 1023-1024. 10.1083/jcb.200505087.CrossRefPubMedPubMedCentral
27.
go back to reference Arbet-Engels C, Janknecht R, Eckhart W: Role of focal adhesion kinase in MAP kinase activation by insulin-like growth factor-I or insulin. FEBS Lett. 1999, 454: 252-256. 10.1016/S0014-5793(99)00815-7.CrossRefPubMed Arbet-Engels C, Janknecht R, Eckhart W: Role of focal adhesion kinase in MAP kinase activation by insulin-like growth factor-I or insulin. FEBS Lett. 1999, 454: 252-256. 10.1016/S0014-5793(99)00815-7.CrossRefPubMed
28.
go back to reference Debnath J, Muthuswamy SK, Brugge JS: Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003, 30: 256-268. 10.1016/S1046-2023(03)00032-X.CrossRefPubMed Debnath J, Muthuswamy SK, Brugge JS: Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003, 30: 256-268. 10.1016/S1046-2023(03)00032-X.CrossRefPubMed
29.
go back to reference Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS: ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol. 2001, 3: 785-792. 10.1038/ncb0901-785.CrossRefPubMedPubMedCentral Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS: ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol. 2001, 3: 785-792. 10.1038/ncb0901-785.CrossRefPubMedPubMedCentral
30.
go back to reference Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS: The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell. 2002, 111: 29-40. 10.1016/S0092-8674(02)01001-2.CrossRefPubMed Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS: The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell. 2002, 111: 29-40. 10.1016/S0092-8674(02)01001-2.CrossRefPubMed
31.
go back to reference Mills KR, Reginato M, Debnath J, Queenan B, Brugge JS: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc Natl Acad Sci USA. 2004, 101: 3438-3443. 10.1073/pnas.0400443101.CrossRefPubMedPubMedCentral Mills KR, Reginato M, Debnath J, Queenan B, Brugge JS: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc Natl Acad Sci USA. 2004, 101: 3438-3443. 10.1073/pnas.0400443101.CrossRefPubMedPubMedCentral
32.
go back to reference Kato H, Faria TN, Stannard B, Roberts CT, Le Roith D: Role of tyrosine kinase activity in signal transduction by the insulin-like growth factor-I (IGF-I) receptor. J Biol Chem. 1993, 268: 2655-2661.PubMed Kato H, Faria TN, Stannard B, Roberts CT, Le Roith D: Role of tyrosine kinase activity in signal transduction by the insulin-like growth factor-I (IGF-I) receptor. J Biol Chem. 1993, 268: 2655-2661.PubMed
33.
go back to reference Steele-Perkins G, Turner J, Edman JC, Hari J, Pierce SB, Stover C, Rutter WJ, Roth RA: Expression and characterization of a functional human insulin-like growth factor I receptor. J Biol Chem. 1988, 263: 11486-11492.PubMed Steele-Perkins G, Turner J, Edman JC, Hari J, Pierce SB, Stover C, Rutter WJ, Roth RA: Expression and characterization of a functional human insulin-like growth factor I receptor. J Biol Chem. 1988, 263: 11486-11492.PubMed
34.
go back to reference Kjeldsen T, Anderson AS, Wiberg FC, Rasmussen JS, Schaffer L, Balschmidt P, Moller KB, Moller NPH: The ligand specificities of the insulin receptor and the insulin-like growth factor I receptor reside in different regions of a common binding site. Proc Natl Acad Sci USA. 1991, 88: 4404-4408. 10.1073/pnas.88.10.4404.CrossRefPubMedPubMedCentral Kjeldsen T, Anderson AS, Wiberg FC, Rasmussen JS, Schaffer L, Balschmidt P, Moller KB, Moller NPH: The ligand specificities of the insulin receptor and the insulin-like growth factor I receptor reside in different regions of a common binding site. Proc Natl Acad Sci USA. 1991, 88: 4404-4408. 10.1073/pnas.88.10.4404.CrossRefPubMedPubMedCentral
35.
go back to reference Wrobel CN, Debnath J, Lin E, Beausoleil S, Roussel MF, Brugge JS: Autocrine CSF-1R activation promotes Src-dependent disruption of mammary epithelial architecture. J Cell Biol. 2004, 165: 263-273. 10.1083/jcb.200309102.CrossRefPubMedPubMedCentral Wrobel CN, Debnath J, Lin E, Beausoleil S, Roussel MF, Brugge JS: Autocrine CSF-1R activation promotes Src-dependent disruption of mammary epithelial architecture. J Cell Biol. 2004, 165: 263-273. 10.1083/jcb.200309102.CrossRefPubMedPubMedCentral
36.
go back to reference Zhu T, Starling-Emerald B, Zhang X, Lee K-O, Gluckman PD, Mertani HC, Lobie PE: Oncogenic transformation of human mammary epithelial cells by autocrine human growth hormone. Cancer Res. 2005, 65: 317-324.PubMed Zhu T, Starling-Emerald B, Zhang X, Lee K-O, Gluckman PD, Mertani HC, Lobie PE: Oncogenic transformation of human mammary epithelial cells by autocrine human growth hormone. Cancer Res. 2005, 65: 317-324.PubMed
37.
go back to reference Brazil DP, Hemmings BA: Ten years of protein kinase B signaling: a hard Akt to follow. Trends Biochem Sci. 2001, 26: 657-664. 10.1016/S0968-0004(01)01958-2.CrossRefPubMed Brazil DP, Hemmings BA: Ten years of protein kinase B signaling: a hard Akt to follow. Trends Biochem Sci. 2001, 26: 657-664. 10.1016/S0968-0004(01)01958-2.CrossRefPubMed
38.
go back to reference Nicholson KM, Anderson NG: The protein kinase B/Akt signaling pathway in human malignancy. Cell Signal. 2002, 14: 381-395. 10.1016/S0898-6568(01)00271-6.CrossRefPubMed Nicholson KM, Anderson NG: The protein kinase B/Akt signaling pathway in human malignancy. Cell Signal. 2002, 14: 381-395. 10.1016/S0898-6568(01)00271-6.CrossRefPubMed
39.
go back to reference Song G, Ouyang G, Bao S: The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005, 9: 59-71.CrossRefPubMed Song G, Ouyang G, Bao S: The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005, 9: 59-71.CrossRefPubMed
40.
go back to reference Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT: A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 2000, 60: 3504-3513.PubMed Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT: A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 2000, 60: 3504-3513.PubMed
41.
go back to reference Navé BT, Ouwens DM, Withers DJ, Alessi DR, Shepherd PR: Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999, 344: 427-431. 10.1042/0264-6021:3440427.CrossRefPubMedPubMedCentral Navé BT, Ouwens DM, Withers DJ, Alessi DR, Shepherd PR: Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999, 344: 427-431. 10.1042/0264-6021:3440427.CrossRefPubMedPubMedCentral
42.
go back to reference Chiang GG, Abraham RT: Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J Biol Chem. 2005, 280: 25485-25490. 10.1074/jbc.M501707200.CrossRefPubMed Chiang GG, Abraham RT: Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J Biol Chem. 2005, 280: 25485-25490. 10.1074/jbc.M501707200.CrossRefPubMed
43.
go back to reference Holz MK, Blenis J: Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J Biol Chem. 2005, 280: 26089-26093. 10.1074/jbc.M504045200.CrossRefPubMed Holz MK, Blenis J: Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J Biol Chem. 2005, 280: 26089-26093. 10.1074/jbc.M504045200.CrossRefPubMed
44.
go back to reference Liu H, Radisky DC, Wang F, Bissell MJ: Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. J Cell Biol. 2004, 164: 603-612. 10.1083/jcb.200306090.CrossRefPubMedPubMedCentral Liu H, Radisky DC, Wang F, Bissell MJ: Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. J Cell Biol. 2004, 164: 603-612. 10.1083/jcb.200306090.CrossRefPubMedPubMedCentral
45.
go back to reference Reginato MJ, Mills KR, Becker EBE, Lynch DK, Bonni A, Muthuswamy SK, Brugge JS: Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes. Mol Cell Biol. 2005, 25: 4591-4601. 10.1128/MCB.25.11.4591-4601.2005.CrossRefPubMedPubMedCentral Reginato MJ, Mills KR, Becker EBE, Lynch DK, Bonni A, Muthuswamy SK, Brugge JS: Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes. Mol Cell Biol. 2005, 25: 4591-4601. 10.1128/MCB.25.11.4591-4601.2005.CrossRefPubMedPubMedCentral
46.
go back to reference Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, et al: Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998, 273: 18623-18632. 10.1074/jbc.273.29.18623.CrossRefPubMed Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, et al: Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998, 273: 18623-18632. 10.1074/jbc.273.29.18623.CrossRefPubMed
47.
go back to reference Debnath J, Walker SJ, Brugge JS: Akt activation disrupts mammary acinar architecture and enhances proliferation in an mTOR-dependent manner. J Cell Biol. 2003, 163: 315-326. 10.1083/jcb.200304159.CrossRefPubMedPubMedCentral Debnath J, Walker SJ, Brugge JS: Akt activation disrupts mammary acinar architecture and enhances proliferation in an mTOR-dependent manner. J Cell Biol. 2003, 163: 315-326. 10.1083/jcb.200304159.CrossRefPubMedPubMedCentral
48.
go back to reference Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham R: Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. 1995, 270: 815-822. 10.1074/jbc.270.2.815.CrossRefPubMed Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham R: Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. 1995, 270: 815-822. 10.1074/jbc.270.2.815.CrossRefPubMed
49.
go back to reference Polyak K: On the birth of breast cancer. Biochim Biophys Acta. 2001, 1552: 1-13.PubMed Polyak K: On the birth of breast cancer. Biochim Biophys Acta. 2001, 1552: 1-13.PubMed
50.
go back to reference Hanahan D, Weinberg RA: The hallmarks of Cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed Hanahan D, Weinberg RA: The hallmarks of Cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed
51.
go back to reference Ruan W, Newman CB, Kleinberg DL: Intact and amino-terminally shortened forms of insulin-like growth factor I induce mammary gland differentiation and development. Proc Natl Acad Sci USA. 1992, 89: 10872-10876. 10.1073/pnas.89.22.10872.CrossRefPubMedPubMedCentral Ruan W, Newman CB, Kleinberg DL: Intact and amino-terminally shortened forms of insulin-like growth factor I induce mammary gland differentiation and development. Proc Natl Acad Sci USA. 1992, 89: 10872-10876. 10.1073/pnas.89.22.10872.CrossRefPubMedPubMedCentral
52.
go back to reference Kleinberg DL: Role of IGF-I in normal mammary development. Breast Cancer Res Treat. 1998, 47: 201-208. 10.1023/A:1005998832636.CrossRefPubMed Kleinberg DL: Role of IGF-I in normal mammary development. Breast Cancer Res Treat. 1998, 47: 201-208. 10.1023/A:1005998832636.CrossRefPubMed
53.
go back to reference Allan GJ, Tonner E, Barber MC, Travers MT, Shand JH, Vernon RG, Kelly PA, Binart N, Flint DJ: Growth hormone, acting in part through the insulin-like growth factor axis, rescues developmental, but not metabolic, activity in the mammary gland of mice expressing a single allele of the prolactin receptor. Endocrinology. 2002, 143: 4310-4319. 10.1210/en.2001-211191.CrossRefPubMed Allan GJ, Tonner E, Barber MC, Travers MT, Shand JH, Vernon RG, Kelly PA, Binart N, Flint DJ: Growth hormone, acting in part through the insulin-like growth factor axis, rescues developmental, but not metabolic, activity in the mammary gland of mice expressing a single allele of the prolactin receptor. Endocrinology. 2002, 143: 4310-4319. 10.1210/en.2001-211191.CrossRefPubMed
54.
go back to reference Guvakova MA, Surmacz E: Overexpressed IGF-I Receptors reduce estrogen growth requirements, enhance survival, and promote E-cadherin mediated cell-cell adhesion in human breast cancer cells. Exp Cell Res. 1997, 231: 149-162. 10.1006/excr.1996.3457.CrossRefPubMed Guvakova MA, Surmacz E: Overexpressed IGF-I Receptors reduce estrogen growth requirements, enhance survival, and promote E-cadherin mediated cell-cell adhesion in human breast cancer cells. Exp Cell Res. 1997, 231: 149-162. 10.1006/excr.1996.3457.CrossRefPubMed
55.
go back to reference Weinsten IB: Addiction to oncogenes-the Achilles heal of cancer. Science. 2002, 297: 63-64. 10.1126/science.1073096.CrossRef Weinsten IB: Addiction to oncogenes-the Achilles heal of cancer. Science. 2002, 297: 63-64. 10.1126/science.1073096.CrossRef
56.
go back to reference Aoki K, Yoshida T., Matsumoto N, Ide H, Sugimura T, Terada M: Suppression of Ki-ras p21 levels leading to growth inhibition of pancreatic cancer cell lines with Ki-ras mutation but not those without Ki-ras mutation. Mol Carcinog. 1997, 20: 251-258. 10.1002/(SICI)1098-2744(199710)20:2<251::AID-MC12>3.0.CO;2-9.CrossRefPubMed Aoki K, Yoshida T., Matsumoto N, Ide H, Sugimura T, Terada M: Suppression of Ki-ras p21 levels leading to growth inhibition of pancreatic cancer cell lines with Ki-ras mutation but not those without Ki-ras mutation. Mol Carcinog. 1997, 20: 251-258. 10.1002/(SICI)1098-2744(199710)20:2<251::AID-MC12>3.0.CO;2-9.CrossRefPubMed
57.
go back to reference Solit DB, Garraway CA, Pratilas CA, Sawaik A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, et al: BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2005, 439: 358-362. 10.1038/nature04304.CrossRefPubMedPubMedCentral Solit DB, Garraway CA, Pratilas CA, Sawaik A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, et al: BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2005, 439: 358-362. 10.1038/nature04304.CrossRefPubMedPubMedCentral
58.
go back to reference Isakoff SJ, Engelman JA, Irie HY, Luo J, Brachmann SM, Pearline RV, Cantley LC, Brugge JS: Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res. 2005, 65: 10992-11000. 10.1158/0008-5472.CAN-05-2612.CrossRefPubMed Isakoff SJ, Engelman JA, Irie HY, Luo J, Brachmann SM, Pearline RV, Cantley LC, Brugge JS: Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res. 2005, 65: 10992-11000. 10.1158/0008-5472.CAN-05-2612.CrossRefPubMed
59.
go back to reference Hay N: The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 2005, 8: 179-183. 10.1016/j.ccr.2005.08.008.CrossRefPubMed Hay N: The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 2005, 8: 179-183. 10.1016/j.ccr.2005.08.008.CrossRefPubMed
60.
go back to reference Harrington LS, Findlay GM, Lamb RF: Restraining PI3K: mTOR signaling goes back to the membrane. Trends Biochem Sci. 2005, 30: 35-42. 10.1016/j.tibs.2004.11.003.CrossRefPubMed Harrington LS, Findlay GM, Lamb RF: Restraining PI3K: mTOR signaling goes back to the membrane. Trends Biochem Sci. 2005, 30: 35-42. 10.1016/j.tibs.2004.11.003.CrossRefPubMed
61.
go back to reference Sawyers CL: Will mTOR inhibitors make it as cancer drugs?. Cancer Cell. 2003, 4: 343-348. 10.1016/S1535-6108(03)00275-7.CrossRefPubMed Sawyers CL: Will mTOR inhibitors make it as cancer drugs?. Cancer Cell. 2003, 4: 343-348. 10.1016/S1535-6108(03)00275-7.CrossRefPubMed
62.
go back to reference Bjornsti M-A, Houghton PJ: The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004, 4: 335-348. 10.1038/nrc1362.CrossRefPubMed Bjornsti M-A, Houghton PJ: The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004, 4: 335-348. 10.1038/nrc1362.CrossRefPubMed
63.
go back to reference Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human Breast Cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987, 235: 177-182.CrossRefPubMed Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human Breast Cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987, 235: 177-182.CrossRefPubMed
64.
go back to reference Andrechek ER, White D, Muller WJ: Targeted disruption of ErbB2/Neu in the mammary epithelium results in impaired ductal outgrowth. Oncogene. 2005, 24: 932-937. 10.1038/sj.onc.1208230.CrossRefPubMed Andrechek ER, White D, Muller WJ: Targeted disruption of ErbB2/Neu in the mammary epithelium results in impaired ductal outgrowth. Oncogene. 2005, 24: 932-937. 10.1038/sj.onc.1208230.CrossRefPubMed
65.
go back to reference Osborne C, Wilson P, Tripathy D: Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist. 2004, 9: 361-377. 10.1634/theoncologist.9-4-361.CrossRefPubMed Osborne C, Wilson P, Tripathy D: Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist. 2004, 9: 361-377. 10.1634/theoncologist.9-4-361.CrossRefPubMed
66.
go back to reference Ingvarsson S: Molecular genetics of breast cancer progression. Semin Cancer Biol. 1999, 9: 277-288. 10.1006/scbi.1999.0124.CrossRefPubMed Ingvarsson S: Molecular genetics of breast cancer progression. Semin Cancer Biol. 1999, 9: 277-288. 10.1006/scbi.1999.0124.CrossRefPubMed
67.
go back to reference Veronesi U, Boyle P, Goldhirsch A, Orecchia R, Viale G: Breast cancer. Lancet. 2005, 365: 1727-1741. 10.1016/S0140-6736(05)66546-4.CrossRefPubMed Veronesi U, Boyle P, Goldhirsch A, Orecchia R, Viale G: Breast cancer. Lancet. 2005, 365: 1727-1741. 10.1016/S0140-6736(05)66546-4.CrossRefPubMed
Metadata
Title
Type I insulin-like growth factor receptor over-expression induces proliferation and anti-apoptotic signaling in a three-dimensional culture model of breast epithelial cells
Authors
Gina M Yanochko
Walter Eckhart
Publication date
01-04-2006
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 2/2006
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr1392

Other articles of this Issue 2/2006

Breast Cancer Research 2/2006 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine