Skip to main content
Top
Published in: Breast Cancer Research 4/2005

Open Access 01-08-2005 | Research article

Effects of milk fermented by Lactobacillus helveticusR389 on a murine breast cancer model

Authors: Alejandra de Moreno de LeBlanc, Chantal Matar, Nicole LeBlanc, Gabriela Perdigón

Published in: Breast Cancer Research | Issue 4/2005

Login to get access

Abstract

Introduction

Antitumour activity is one of the health-promoting effects attributed to the lactic acid bacteria and their products of fermentation. Previous studies in mice demonstrated that bioactive compounds released in milk fermented by Lactobacillus helveticus R389 contribute to its immunoenhancing and antitumour properties. The aim of the present work was to study the effects of the consumption of milk fermented by L. helveticus R389 or its proteolytic-deficient variant, L. helveticus L89, on a murine hormone-dependent breast cancer model.

Methods

Mice were fed with milk fermented by L. helveticus R389 or L. helveticus L89, during 2 or 7 days. The tumour control group received no special feeding. At the end of the feeding period, the mice were challenged by a subcutaneous injection of tumour cells in the mammary gland. Four days post-injection, the mice received fermented milk on a cyclical basis. The rate of tumour development and the cytokines in serum, mammary gland tissue and tumour-isolated cells were monitored. Bcl-2-positive cells in mammary glands and cellular apoptosis in tumour tissue were also studied.

Results

Seven days of cyclical administration of milk fermented by either bacterial strain delayed or stopped the tumour development. Cytokines demonstrated that L. helveticus R389 modulated the immune response challenged by the tumour. IL-10 and IL-4 were increased in all the samples from this group. In comparison with the tumour control, all test groups showed a decrease of IL-6, a cytokine involved in oestrogen synthesis. Seven days of cyclical feeding with milk fermented by L. helveticus R389 produced an increase in the number of apoptotic cells, compared with all other groups.

Conclusion

This study demonstrated that 7 days of cyclical administration of milk fermented by both strains of L. helveticus diminishes tumour growth, stimulating an antitumour immune response. Compounds released during milk fermentation with L. helveticus R389 would be implicated in its immunoregulatory capacity on the immune response in mammary glands and tumour, which were correlated with the cytokines found at the systemic level. The milk fermented by L. helveticus R389 was able to modulate the relationship between immune and endocrine systems (by IL-6 diminution), which is very important in oestrogen-dependent tumour and induced cellular apoptosis.
Appendix
Available only for authorised users
Literature
2.
go back to reference Kato I: Antitumor activity of lactic acid bacteria. Probiotics 3: Immunomodulation by the Gut Microflora and Probiotics. Edited by: Fuller R, Perdigón G. 2000, London: Kluwer Academic Publishers, 115-138.CrossRef Kato I: Antitumor activity of lactic acid bacteria. Probiotics 3: Immunomodulation by the Gut Microflora and Probiotics. Edited by: Fuller R, Perdigón G. 2000, London: Kluwer Academic Publishers, 115-138.CrossRef
3.
go back to reference Perdigón G, Vintini E, Alvarez S, Medina M, Medici M: Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria. J Dairy Sci. 1999, 82: 1108-1114.CrossRefPubMed Perdigón G, Vintini E, Alvarez S, Medina M, Medici M: Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria. J Dairy Sci. 1999, 82: 1108-1114.CrossRefPubMed
4.
go back to reference Perdigón G, Fuller R, Raya R: Lactic acid bacteria and their effect on the immune system. Curr Issues Intest Microbiol. 2001, 2: 27-42.PubMed Perdigón G, Fuller R, Raya R: Lactic acid bacteria and their effect on the immune system. Curr Issues Intest Microbiol. 2001, 2: 27-42.PubMed
5.
go back to reference de Moreno de LeBlanc A, Maldonado Galdeano C, Chaves S, Perdigón G: Oral administration of L. casei CRL 431 increases immunity in bronchus and mammary glands. European J Inflamm. 2005, 3 (1): 23-28.CrossRef de Moreno de LeBlanc A, Maldonado Galdeano C, Chaves S, Perdigón G: Oral administration of L. casei CRL 431 increases immunity in bronchus and mammary glands. European J Inflamm. 2005, 3 (1): 23-28.CrossRef
6.
go back to reference Matar C, Valdez JC, Medina M, Rachid M, Perdigón G: Immunomodulating effects of milks fermented by Lactobacillus helveticus and its non-proteolytic variant. J Dairy Res. 2001, 68: 601-609. 10.1017/S0022029901005143.CrossRefPubMed Matar C, Valdez JC, Medina M, Rachid M, Perdigón G: Immunomodulating effects of milks fermented by Lactobacillus helveticus and its non-proteolytic variant. J Dairy Res. 2001, 68: 601-609. 10.1017/S0022029901005143.CrossRefPubMed
7.
go back to reference Valdéz JC, Rachid M, Bru E, Perdigón G: The effect of yoghurt on the cytotoxic and phagocytic activity of macrophages in tumour-bearing mice. Food Agric Immunol. 1997, 9: 299-308.CrossRef Valdéz JC, Rachid M, Bru E, Perdigón G: The effect of yoghurt on the cytotoxic and phagocytic activity of macrophages in tumour-bearing mice. Food Agric Immunol. 1997, 9: 299-308.CrossRef
8.
go back to reference Wollowski I, Rechkemmer G, Pool-Zobel BL: Protective role of probiotics and prebiotics in colon cancer. Am J Clin Nutr. 2001, 73: 451S-455S.PubMed Wollowski I, Rechkemmer G, Pool-Zobel BL: Protective role of probiotics and prebiotics in colon cancer. Am J Clin Nutr. 2001, 73: 451S-455S.PubMed
9.
go back to reference Brady LJ, Gallaher DD, Busta FF: The role of probiotic cultures in the prevention of colon cancer. J Nutr. 2000, 130: 410S-414S.PubMed Brady LJ, Gallaher DD, Busta FF: The role of probiotic cultures in the prevention of colon cancer. J Nutr. 2000, 130: 410S-414S.PubMed
10.
go back to reference Perdigón G, de Moreno de LeBlanc A, Valdez J, Rachid M: Role of yoghurt in the prevention of colon cancer. Eur J Clin Nutr. 2002, 56 (Suppl 3): S65-S68. 10.1038/sj.ejcn.1601490.CrossRefPubMed Perdigón G, de Moreno de LeBlanc A, Valdez J, Rachid M: Role of yoghurt in the prevention of colon cancer. Eur J Clin Nutr. 2002, 56 (Suppl 3): S65-S68. 10.1038/sj.ejcn.1601490.CrossRefPubMed
11.
go back to reference de Moreno de LeBlanc A, Valdéz J, Perdigón G: Regulatory effect of yoghurt on intestinal inflammatory immune response. Eur J Inflamm. 2004, 2: 21-61.CrossRef de Moreno de LeBlanc A, Valdéz J, Perdigón G: Regulatory effect of yoghurt on intestinal inflammatory immune response. Eur J Inflamm. 2004, 2: 21-61.CrossRef
12.
go back to reference de Moreno de LeBlanc A, Perdigón G: Yoghurt feeding inhibits promotion and progression of experimental colorectal cancer. Med Sci Monit. 2004, 10: Br96-Br104.PubMed de Moreno de LeBlanc A, Perdigón G: Yoghurt feeding inhibits promotion and progression of experimental colorectal cancer. Med Sci Monit. 2004, 10: Br96-Br104.PubMed
13.
go back to reference Matar C, LeBlanc JG, Martin L, Perdigón G: Biologically active peptides released from fermented milk: role and functions. Handbook of Fermented Functional Foods. Edited by: Farnworth T. 2003, Boca Raton, FL: CRC Press, 177-201. Matar C, LeBlanc JG, Martin L, Perdigón G: Biologically active peptides released from fermented milk: role and functions. Handbook of Fermented Functional Foods. Edited by: Farnworth T. 2003, Boca Raton, FL: CRC Press, 177-201.
14.
go back to reference LeBlanc JG, Matar C, Valdez JC, LeBlanc J, Perdigón G: Immunomodulatory effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. J Dairy Sci. 2002, 85: 2733-2742.CrossRefPubMed LeBlanc JG, Matar C, Valdez JC, LeBlanc J, Perdigón G: Immunomodulatory effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. J Dairy Sci. 2002, 85: 2733-2742.CrossRefPubMed
15.
go back to reference Matar C, Amiot J, Savoie L, Goulet J: The effect of milk fermentation by Lactobacillus helveticus on the release of peptides during in vitro digestion. J Dairy Sci. 1996, 79: 971-979.CrossRefPubMed Matar C, Amiot J, Savoie L, Goulet J: The effect of milk fermentation by Lactobacillus helveticus on the release of peptides during in vitro digestion. J Dairy Sci. 1996, 79: 971-979.CrossRefPubMed
16.
go back to reference Matar C, Nadathur SS, Bakalinsky AT, Goulet J: Antimutagenic effects of milk fermented by Lactobacillus helveticus and its non-proteolytic variant. J Dairy Sci. 1997, 80: 1965-1970.CrossRefPubMed Matar C, Nadathur SS, Bakalinsky AT, Goulet J: Antimutagenic effects of milk fermented by Lactobacillus helveticus and its non-proteolytic variant. J Dairy Sci. 1997, 80: 1965-1970.CrossRefPubMed
17.
go back to reference Ayebo AD, Shahani KM, Dam R, Friend BA: Ion exchange separation of the antitumour component(s) of yogurt dialyzate. J Dairy Sci. 1982, 65: 2388-2390.CrossRefPubMed Ayebo AD, Shahani KM, Dam R, Friend BA: Ion exchange separation of the antitumour component(s) of yogurt dialyzate. J Dairy Sci. 1982, 65: 2388-2390.CrossRefPubMed
18.
go back to reference Biffi A, Coradini D, Larsen R, Riva L, Di Fronzo G: Antiproliferative effect of fermented milk on the growth of a human breast cancer cell line. Nutr Cancer. 1997, 28: 93-99.CrossRefPubMed Biffi A, Coradini D, Larsen R, Riva L, Di Fronzo G: Antiproliferative effect of fermented milk on the growth of a human breast cancer cell line. Nutr Cancer. 1997, 28: 93-99.CrossRefPubMed
19.
go back to reference Church FC, Swaisgood HE, Porter DH, Catignani GL: Spectrophotometric assay using o-phtaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J Dairy Sci. 1983, 66: 1219-1227.CrossRef Church FC, Swaisgood HE, Porter DH, Catignani GL: Spectrophotometric assay using o-phtaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J Dairy Sci. 1983, 66: 1219-1227.CrossRef
20.
go back to reference Brandtzaeg P, Baekkevold ES, Farstad IN, Jahnsen FL, Johansen FE, Nilsen EM, Yamanaka T: Regional specialization in the mucosal immune system: what happens in the microcompartments?. Immunol Today. 1999, 20: 141-151. 10.1016/S0167-5699(98)01413-3.CrossRefPubMed Brandtzaeg P, Baekkevold ES, Farstad IN, Jahnsen FL, Johansen FE, Nilsen EM, Yamanaka T: Regional specialization in the mucosal immune system: what happens in the microcompartments?. Immunol Today. 1999, 20: 141-151. 10.1016/S0167-5699(98)01413-3.CrossRefPubMed
21.
go back to reference Brandtzaeg P, Pabst R: Let's go mucosal: communication on slippery ground. Trends Immunol. 2004, 25: 570-577. 10.1016/j.it.2004.09.005.CrossRefPubMed Brandtzaeg P, Pabst R: Let's go mucosal: communication on slippery ground. Trends Immunol. 2004, 25: 570-577. 10.1016/j.it.2004.09.005.CrossRefPubMed
22.
go back to reference Feghali CA, Wright TM: Cytokines in acute and chronic inflammation. Front Biosci. 1997, 2: d12-d26.CrossRefPubMed Feghali CA, Wright TM: Cytokines in acute and chronic inflammation. Front Biosci. 1997, 2: d12-d26.CrossRefPubMed
24.
go back to reference Urban JL, Shepard HM, Rothstein JL, Sugarman BJ: Tumour necrosis factor: a potent effector molecule for tumour cell killing by activated macrophages. Proc Natl Acad Sci USA. 1986, 83: 5233-5237.CrossRefPubMedPubMedCentral Urban JL, Shepard HM, Rothstein JL, Sugarman BJ: Tumour necrosis factor: a potent effector molecule for tumour cell killing by activated macrophages. Proc Natl Acad Sci USA. 1986, 83: 5233-5237.CrossRefPubMedPubMedCentral
25.
go back to reference Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH: Broad tumor-associated expression and recognition by tumor-derived-γδ T cells of MICA and MICB. Proc Natl Acad Sci USA. 1999, 96: 6879-6884. 10.1073/pnas.96.12.6879.CrossRefPubMedPubMedCentral Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH: Broad tumor-associated expression and recognition by tumor-derived-γδ T cells of MICA and MICB. Proc Natl Acad Sci USA. 1999, 96: 6879-6884. 10.1073/pnas.96.12.6879.CrossRefPubMedPubMedCentral
26.
go back to reference Purohit A, Newman SP, Reed MJ: The role of cytokines in regulating estrogen synthesis: implications for the etiology of breast cancer. Breast Cancer Res. 2002, 4: 65-69. 10.1186/bcr425.CrossRefPubMedPubMedCentral Purohit A, Newman SP, Reed MJ: The role of cytokines in regulating estrogen synthesis: implications for the etiology of breast cancer. Breast Cancer Res. 2002, 4: 65-69. 10.1186/bcr425.CrossRefPubMedPubMedCentral
27.
go back to reference Benny M, Itin A, Sachs L, Keshet E: Pattern of interleukin 6 gene expression in vivo suggests a role for this cytokine in angiogenesis. Proc Natl Acad Sci USA. 1990, 87: 3092-3096.CrossRef Benny M, Itin A, Sachs L, Keshet E: Pattern of interleukin 6 gene expression in vivo suggests a role for this cytokine in angiogenesis. Proc Natl Acad Sci USA. 1990, 87: 3092-3096.CrossRef
28.
go back to reference Bogdab C, Park J, Yodovotz Y, Nathan C: Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor and interleukin-10. J Biol Chem. 1992, 267: 23301-23309. Bogdab C, Park J, Yodovotz Y, Nathan C: Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor and interleukin-10. J Biol Chem. 1992, 267: 23301-23309.
29.
go back to reference Chang TH, Peng X, Fu X: Interleukin-4 mediates cell growth inhibition through activation of Stat1. J Biol Chem. 2000, 275: 1012-1017. Chang TH, Peng X, Fu X: Interleukin-4 mediates cell growth inhibition through activation of Stat1. J Biol Chem. 2000, 275: 1012-1017.
30.
go back to reference Reome JB, Hylind JC, Dutton RW, Dobrzanski MJ: Type 1 and type 2 tumour infiltrating effector cell subpopulations in progressive breast cancer. Clin Immunol. 2004, 111: 69-81. 10.1016/j.clim.2003.11.013.CrossRefPubMed Reome JB, Hylind JC, Dutton RW, Dobrzanski MJ: Type 1 and type 2 tumour infiltrating effector cell subpopulations in progressive breast cancer. Clin Immunol. 2004, 111: 69-81. 10.1016/j.clim.2003.11.013.CrossRefPubMed
31.
go back to reference Ferrarini M, Ferrero E, Dagna LPA, Zocchi MR: Human-γδ T cells: a nonredundant system in the immune-surveillance against cancer. Trends Immunol. 2002, 23: 14-18. 10.1016/S1471-4906(01)02110-X.CrossRefPubMed Ferrarini M, Ferrero E, Dagna LPA, Zocchi MR: Human-γδ T cells: a nonredundant system in the immune-surveillance against cancer. Trends Immunol. 2002, 23: 14-18. 10.1016/S1471-4906(01)02110-X.CrossRefPubMed
32.
go back to reference Bingle L, Brown NJ, Lewis CE: The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002, 196: 254-265. 10.1002/path.1027.CrossRefPubMed Bingle L, Brown NJ, Lewis CE: The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002, 196: 254-265. 10.1002/path.1027.CrossRefPubMed
33.
go back to reference Butler LM, Hewett PJ, Fitridge RA, Cowled PA: Deregulation of apoptosis in colorectal carcinoma: theoretical and therapeutic implications. Aust N Z J Surg. 1999, 69: 88-94. 10.1046/j.1440-1622.1999.01498.x.CrossRefPubMed Butler LM, Hewett PJ, Fitridge RA, Cowled PA: Deregulation of apoptosis in colorectal carcinoma: theoretical and therapeutic implications. Aust N Z J Surg. 1999, 69: 88-94. 10.1046/j.1440-1622.1999.01498.x.CrossRefPubMed
34.
go back to reference Hao X, Du M, Bishop A, Talbot I: Imbalance between proliferation and apoptosis in the development of colorectal carcinoma. Virchows Arch. 1998, 433: 523-527. 10.1007/s004280050284.CrossRefPubMed Hao X, Du M, Bishop A, Talbot I: Imbalance between proliferation and apoptosis in the development of colorectal carcinoma. Virchows Arch. 1998, 433: 523-527. 10.1007/s004280050284.CrossRefPubMed
Metadata
Title
Effects of milk fermented by Lactobacillus helveticusR389 on a murine breast cancer model
Authors
Alejandra de Moreno de LeBlanc
Chantal Matar
Nicole LeBlanc
Gabriela Perdigón
Publication date
01-08-2005
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 4/2005
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr1032

Other articles of this Issue 4/2005

Breast Cancer Research 4/2005 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine