Skip to main content
Top
Published in: EJNMMI Research 1/2013

Open Access 01-12-2013 | Original research

Influence of rigid coregistration of PET and CT data on metabolic volumetry: a user’s perspective

Authors: Ingo G Steffen, Frank Hofheinz, Julian MM Rogasch, Christian Furth, Holger Amthauer, Juri Ruf

Published in: EJNMMI Research | Issue 1/2013

Login to get access

Abstract

Background

While non-rigid fusion is by definition expected to alter the information of positron emission tomography (PET) data, we assessed whether rigid transformation also influences metabolic tumor volume (MTV) determination.

Methods

The PET/computed tomography (CT) data of 28 solid pulmonary lesions of 20 tumor patients examined with 18 F-Fluordeoxyglucose (FDG) was retrospectively analyzed. The original (OR) hardware-coregistered PET images were fused with contrast-enhanced diagnostic CT (CT1, 1 mm slices) and low dose CT (CT5, 5 mm slices). After automatic rigid transformation (Mirada Fusion7D) using two algorithms (rigid fast (RF), rigid slow (RS)), MTV and maximal standardized uptake value (SUVmax) were determined applying four different segmentation methods with either fixed or background-adapted thresholding and compared to OR-PET data.

Results

Relative differences in SUVmax compared to OR data revealed no significant differences for RF (median, −0.1%; interquartile range (IQR), −1.1% to 0.9%; p = 0.75) and RS (median, 0.5%; IQR, −0.6% to 1.3%; p = 0.19) in CT1, whereas in CT5 significant deviations were observed for RF (median, −9.0%; IQR, −10.9 to −6.1; p < 0.001) and RS (median, −8.4%; IQR, −11.1 to −5.6; p < 0.001). Relative MTV differences were 0.7% (IQR, −3.0% to 2.7%; p = 0.76) for RF and −1.3% (IQR, −3.6% to 0.9%; p = 0.12) for RS in CT1. Coregistration led to significant MTV differences in RF (median, 10.4%; IQR, 7.4% to 16.7%; p < 0.001) and RS (median, 10.6%; IQR, 5.4% to 17.7%; p < 0.001) in CT5.

Conclusions

Rigid coregistration of PET data allows a quantitative evaluation with reasonable accuracy in most cases. However, in some cases, it can result in substantial deviations of MTV and SUVmax. Therefore, it is recommended to perform quantitative evaluation in the original PET data rather than in coregistered PET data.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ruf J, Lopez-Hänninen E, Böhmig M, Koch I, Denecke T, Plotkin M, Langrehr J, Wiedenmann B, Felix R, Amthauer H: Impact of FDG-PET/MRI image fusion on the detection of pancreatic cancer. Pancreatology 2006, 6: 512–519. 10.1159/000096993CrossRef Ruf J, Lopez-Hänninen E, Böhmig M, Koch I, Denecke T, Plotkin M, Langrehr J, Wiedenmann B, Felix R, Amthauer H: Impact of FDG-PET/MRI image fusion on the detection of pancreatic cancer. Pancreatology 2006, 6: 512–519. 10.1159/000096993CrossRef
2.
go back to reference Slomka PJ, Baum RP: Multimodality image registration with software: state-of-the-art. Eur J Nucl Med Mol Imaging 2009,36(Suppl 1):44–55.CrossRef Slomka PJ, Baum RP: Multimodality image registration with software: state-of-the-art. Eur J Nucl Med Mol Imaging 2009,36(Suppl 1):44–55.CrossRef
3.
go back to reference van Velden FH, van Beers P, Nuyts J, Velasquez LM, Hayes W, Lammertsma AA, Boellaard R, Loeckx D: Effects of rigid and non-rigid image registration on test-retest variability of quantitative [18 F]FDG PET/CT studies. EJNMMI Res 2012, 2: 10. 10.1186/2191-219X-2-10PubMedCentralCrossRef van Velden FH, van Beers P, Nuyts J, Velasquez LM, Hayes W, Lammertsma AA, Boellaard R, Loeckx D: Effects of rigid and non-rigid image registration on test-retest variability of quantitative [18 F]FDG PET/CT studies. EJNMMI Res 2012, 2: 10. 10.1186/2191-219X-2-10PubMedCentralCrossRef
4.
go back to reference Grgic A, Ballek E, Fleckenstein J, Moca N, Kremp S, Schaefer A, Kuhnigk JM, Rübe C, Kirsch CM, Hellwig D: Impact of rigid and nonrigid registration on the determination of 18 F-FDG PET-based tumour volume and standardized uptake value in patients with lung cancer. Eur J Nucl Med Mol Imaging 2011, 38: 856–864. 10.1007/s00259-010-1719-3CrossRef Grgic A, Ballek E, Fleckenstein J, Moca N, Kremp S, Schaefer A, Kuhnigk JM, Rübe C, Kirsch CM, Hellwig D: Impact of rigid and nonrigid registration on the determination of 18 F-FDG PET-based tumour volume and standardized uptake value in patients with lung cancer. Eur J Nucl Med Mol Imaging 2011, 38: 856–864. 10.1007/s00259-010-1719-3CrossRef
5.
go back to reference Erdi YE, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, Yorke ED, Schoder H, Hsiao W, Squire OD, Vernon P, Ashman JB, Mostafavi H, Larson SM, Humm JL: The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med 2004, 45: 1287–1292. Erdi YE, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, Yorke ED, Schoder H, Hsiao W, Squire OD, Vernon P, Ashman JB, Mostafavi H, Larson SM, Humm JL: The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med 2004, 45: 1287–1292.
6.
go back to reference Yamaguchi T, Ueda O, Hara H, Sakai H, Kida T, Suzuki K, Adachi S, Ishii K: Usefulness of a breath-holding acquisition method in PET/CT for pulmonary lesions. Ann Nucl Med 2009, 23: 65–71. 10.1007/s12149-008-0206-4CrossRef Yamaguchi T, Ueda O, Hara H, Sakai H, Kida T, Suzuki K, Adachi S, Ishii K: Usefulness of a breath-holding acquisition method in PET/CT for pulmonary lesions. Ann Nucl Med 2009, 23: 65–71. 10.1007/s12149-008-0206-4CrossRef
7.
go back to reference Nehmeh SA, Erdi YE: Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 2008, 38: 167–176. 10.1053/j.semnuclmed.2008.01.002CrossRef Nehmeh SA, Erdi YE: Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 2008, 38: 167–176. 10.1053/j.semnuclmed.2008.01.002CrossRef
8.
go back to reference Vogel WV, van Dalen JA, Wiering B, Huisman H, Corstens FH, Ruers TJ, Oyen WJ: Evaluation of image registration in PET/CT of the liver and recommendations for optimized imaging. J Nucl Med 2007, 48: 910–919. 10.2967/jnumed.107.041517CrossRef Vogel WV, van Dalen JA, Wiering B, Huisman H, Corstens FH, Ruers TJ, Oyen WJ: Evaluation of image registration in PET/CT of the liver and recommendations for optimized imaging. J Nucl Med 2007, 48: 910–919. 10.2967/jnumed.107.041517CrossRef
9.
go back to reference Townsend DW: Multimodality imaging of structure and function. Phys Med Biol 2008, 53: R1-R39. 10.1088/0031-9155/53/4/R01CrossRef Townsend DW: Multimodality imaging of structure and function. Phys Med Biol 2008, 53: R1-R39. 10.1088/0031-9155/53/4/R01CrossRef
10.
go back to reference Wahl RL, Jacene H, Kasamon Y, Lodge MA: From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 2009,50(Suppl 1):122–150.CrossRef Wahl RL, Jacene H, Kasamon Y, Lodge MA: From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 2009,50(Suppl 1):122–150.CrossRef
11.
go back to reference Feng M, Kong FM, Gross M, Fernando S, Hayman JA, Ten Haken RK: Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing. Int J Radiat Oncol Biol Phys 2009, 73: 1228–1234. 10.1016/j.ijrobp.2008.10.054PubMedCentralCrossRef Feng M, Kong FM, Gross M, Fernando S, Hayman JA, Ten Haken RK: Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing. Int J Radiat Oncol Biol Phys 2009, 73: 1228–1234. 10.1016/j.ijrobp.2008.10.054PubMedCentralCrossRef
12.
go back to reference Petit SF, Aerts HJ, van Loon JG, Offermann C, Houben R, Winkens B, Ollers MC, Lambin P, De Ruysscher D, Dekker AL: Metabolic control probability in tumour subvolumes or how to guide tumour dose redistribution in non-small cell lung cancer (NSCLC): an exploratory clinical study. Radiother Oncol 2009, 91: 393–398. 10.1016/j.radonc.2009.02.020CrossRef Petit SF, Aerts HJ, van Loon JG, Offermann C, Houben R, Winkens B, Ollers MC, Lambin P, De Ruysscher D, Dekker AL: Metabolic control probability in tumour subvolumes or how to guide tumour dose redistribution in non-small cell lung cancer (NSCLC): an exploratory clinical study. Radiother Oncol 2009, 91: 393–398. 10.1016/j.radonc.2009.02.020CrossRef
13.
go back to reference Steffen IG, Wust P, Rühl R, Grieser C, Schnapauff D, Lüdemann L, Grabik W, Ricke J, Amthauer H, Hamm B, Hänninen EL, Denecke T: Value of combined PET/CT for radiation planning in CT-guided percutaneous interstitial high-dose-rate single-fraction brachytherapy for colorectal liver metastases. Int J Radiat Oncol Biol Phys 2010, 77: 1178–1185. 10.1016/j.ijrobp.2009.06.047CrossRef Steffen IG, Wust P, Rühl R, Grieser C, Schnapauff D, Lüdemann L, Grabik W, Ricke J, Amthauer H, Hamm B, Hänninen EL, Denecke T: Value of combined PET/CT for radiation planning in CT-guided percutaneous interstitial high-dose-rate single-fraction brachytherapy for colorectal liver metastases. Int J Radiat Oncol Biol Phys 2010, 77: 1178–1185. 10.1016/j.ijrobp.2009.06.047CrossRef
14.
go back to reference Hofheinz F, Pötzsch C, Oehme L, Beuthien-Baumann B, Steinbach J, Kotzerke J, van den Hoff J: Automatic volume delineation in oncological PET. Evaluation of a dedicated software tool and comparison with manual delineation in clinical data sets. Nuklearmedizin 2012, 51: 9–16.CrossRef Hofheinz F, Pötzsch C, Oehme L, Beuthien-Baumann B, Steinbach J, Kotzerke J, van den Hoff J: Automatic volume delineation in oncological PET. Evaluation of a dedicated software tool and comparison with manual delineation in clinical data sets. Nuklearmedizin 2012, 51: 9–16.CrossRef
15.
go back to reference Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327: 307–310. 10.1016/S0140-6736(86)90837-8CrossRef Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327: 307–310. 10.1016/S0140-6736(86)90837-8CrossRef
16.
go back to reference Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, Casilla C, Fazzari M, Srivastava N, Yeung HW, Humm JL, Guillem J, Downey R, Karpeh M, Cohen AE, Ginsberg R: Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging: the visual response score and the change in total lesion glycolysis. Clin Positron Imaging 1999, 2: 159–171. 10.1016/S1095-0397(99)00016-3CrossRef Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, Casilla C, Fazzari M, Srivastava N, Yeung HW, Humm JL, Guillem J, Downey R, Karpeh M, Cohen AE, Ginsberg R: Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging: the visual response score and the change in total lesion glycolysis. Clin Positron Imaging 1999, 2: 159–171. 10.1016/S1095-0397(99)00016-3CrossRef
17.
go back to reference Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naga I, Siegel BA, Bradley JD: 18 F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006, 47: 1808–1812. Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naga I, Siegel BA, Bradley JD: 18 F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006, 47: 1808–1812.
18.
go back to reference Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, Humm JL: Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997,80(Suppl 12):2505–2509.CrossRef Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, Humm JL: Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997,80(Suppl 12):2505–2509.CrossRef
19.
go back to reference Daisne J, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V: Tri-dimensional automatic segmentation of PET volumes based on source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003, 69: 247–250. 10.1016/S0167-8140(03)00270-6CrossRef Daisne J, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V: Tri-dimensional automatic segmentation of PET volumes based on source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003, 69: 247–250. 10.1016/S0167-8140(03)00270-6CrossRef
20.
go back to reference Drever L, Robinson DM, McEwan A, Roa W: A local contrast based approach to threshold segmentation for PET target volume delineation. Med Phys 2006, 33: 1583–1594. 10.1118/1.2198308CrossRef Drever L, Robinson DM, McEwan A, Roa W: A local contrast based approach to threshold segmentation for PET target volume delineation. Med Phys 2006, 33: 1583–1594. 10.1118/1.2198308CrossRef
21.
go back to reference Hatt M, Lamare F, Boussion N, Turzo A, Collet C, Salzenstein F, Roux C, Jarritt P, Carson K, Cheze-Le Rest C, Visvikis D: Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET. Phys Med Biol 2007, 52: 3467–3491. 10.1088/0031-9155/52/12/010PubMedCentralCrossRef Hatt M, Lamare F, Boussion N, Turzo A, Collet C, Salzenstein F, Roux C, Jarritt P, Carson K, Cheze-Le Rest C, Visvikis D: Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET. Phys Med Biol 2007, 52: 3467–3491. 10.1088/0031-9155/52/12/010PubMedCentralCrossRef
22.
go back to reference Belhassen S, Zaidi H: A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med Phys 2010, 37: 1309–1324. 10.1118/1.3301610CrossRef Belhassen S, Zaidi H: A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med Phys 2010, 37: 1309–1324. 10.1118/1.3301610CrossRef
23.
go back to reference Aristophanous M, Penney BC, Martel MK, Pelizzar CA: A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography. Med Phys 2007, 34: 4223–4235. 10.1118/1.2791035CrossRef Aristophanous M, Penney BC, Martel MK, Pelizzar CA: A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography. Med Phys 2007, 34: 4223–4235. 10.1118/1.2791035CrossRef
24.
go back to reference Clausen MM, Hansen AE, Af Rosenschold PM, Kjær A, Kristensen AT, McEvoy FJ, Engelholm SA: Dose escalation to high-risk sub-volumes based on non-invasive imaging of hypoxia and glycolytic activity in canine solid tumors: a feasibility study. Radiat Oncol 2013, 8: 262. 10.1186/1748-717X-8-262PubMedCentralCrossRef Clausen MM, Hansen AE, Af Rosenschold PM, Kjær A, Kristensen AT, McEvoy FJ, Engelholm SA: Dose escalation to high-risk sub-volumes based on non-invasive imaging of hypoxia and glycolytic activity in canine solid tumors: a feasibility study. Radiat Oncol 2013, 8: 262. 10.1186/1748-717X-8-262PubMedCentralCrossRef
25.
go back to reference Maffione AM, Ferretti A, Grassetto G, Bellan E, Capirci C, Chondrogiannis S, Gava M, Marzola MC, Rampin L, Bondesan C, Colletti PM, Rubello D: Fifteen different 18 F-FDG PET/CT qualitative and quantitative parameters investigated as pathological response predictors of locally advanced rectal cancer treated by neoadjuvant chemoradiation therapy. Eur J Nucl Med Mol Imaging 2013, 40: 853–864. 10.1007/s00259-013-2357-3CrossRef Maffione AM, Ferretti A, Grassetto G, Bellan E, Capirci C, Chondrogiannis S, Gava M, Marzola MC, Rampin L, Bondesan C, Colletti PM, Rubello D: Fifteen different 18 F-FDG PET/CT qualitative and quantitative parameters investigated as pathological response predictors of locally advanced rectal cancer treated by neoadjuvant chemoradiation therapy. Eur J Nucl Med Mol Imaging 2013, 40: 853–864. 10.1007/s00259-013-2357-3CrossRef
26.
go back to reference Hatt M, Cheze Le Rest C, Albarghach N, Pradier O, Visvikis D: PET functional volume delineation: a robustness and repeatability study. Eur J Nucl Med Mol Imaging 2011, 38: 663–672. 10.1007/s00259-010-1688-6CrossRef Hatt M, Cheze Le Rest C, Albarghach N, Pradier O, Visvikis D: PET functional volume delineation: a robustness and repeatability study. Eur J Nucl Med Mol Imaging 2011, 38: 663–672. 10.1007/s00259-010-1688-6CrossRef
27.
go back to reference Soret M, Bacharach SL, Buvat I: Partial-volume effect in PET tumor imaging. J Nucl Med 2007, 48: 932–945. 10.2967/jnumed.106.035774CrossRef Soret M, Bacharach SL, Buvat I: Partial-volume effect in PET tumor imaging. J Nucl Med 2007, 48: 932–945. 10.2967/jnumed.106.035774CrossRef
28.
go back to reference Knäusl B, Hirtl A, Dobrozemsky G, Bergmann H, Kletter K, Dudczak R, Georg D: PET based volume segmentation with emphasis on the iterative TrueX algorithm. Z Med Phys 2012, 22: 29–39. 10.1016/j.zemedi.2010.12.003CrossRef Knäusl B, Hirtl A, Dobrozemsky G, Bergmann H, Kletter K, Dudczak R, Georg D: PET based volume segmentation with emphasis on the iterative TrueX algorithm. Z Med Phys 2012, 22: 29–39. 10.1016/j.zemedi.2010.12.003CrossRef
29.
go back to reference Adams MC, Turkington TG, Wilson JM, Wong TZ: A systematic review of the factors affecting accuracy of SUV measurements. AJR 2010, 195: 310–312. 10.2214/AJR.10.4923CrossRef Adams MC, Turkington TG, Wilson JM, Wong TZ: A systematic review of the factors affecting accuracy of SUV measurements. AJR 2010, 195: 310–312. 10.2214/AJR.10.4923CrossRef
30.
go back to reference Grosu AL, Piert M, Weber WA, Jeremic B, Picchio M, Schratzenstaller U, Zimmermann FB, Schwaiger M, Molls M: Positron emission tomography for radiation treatment planning. Strahlenther Onkol 2005, 181: 483–499. 10.1007/s00066-005-1422-7CrossRef Grosu AL, Piert M, Weber WA, Jeremic B, Picchio M, Schratzenstaller U, Zimmermann FB, Schwaiger M, Molls M: Positron emission tomography for radiation treatment planning. Strahlenther Onkol 2005, 181: 483–499. 10.1007/s00066-005-1422-7CrossRef
31.
go back to reference Schaefer A, Kremp S, Hellwig D, Rube C, Kirsch CM, Nestle U: A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 2008, 35: 1989–1999. 10.1007/s00259-008-0875-1CrossRef Schaefer A, Kremp S, Hellwig D, Rube C, Kirsch CM, Nestle U: A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 2008, 35: 1989–1999. 10.1007/s00259-008-0875-1CrossRef
Metadata
Title
Influence of rigid coregistration of PET and CT data on metabolic volumetry: a user’s perspective
Authors
Ingo G Steffen
Frank Hofheinz
Julian MM Rogasch
Christian Furth
Holger Amthauer
Juri Ruf
Publication date
01-12-2013
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2013
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/2191-219X-3-85

Other articles of this Issue 1/2013

EJNMMI Research 1/2013 Go to the issue