Skip to main content
Top
Published in: EJNMMI Research 1/2011

Open Access 01-12-2011 | Original research

Targeting CEA in Pancreas Cancer Xenografts with a Mutated scFv-Fc Antibody Fragment

Authors: Mark D Girgis, Tove Olafsen, Vania Kenanova, Katelyn E McCabe, Anna M Wu, James S Tomlinson

Published in: EJNMMI Research | Issue 1/2011

Login to get access

Abstract

Background

Sensitive antibody-based tumor targeting has the potential not only to image metastatic and micrometastatic disease, but also to be the basis of targeted therapy. The vast majority of pancreas cancers express carcinoembryonic antigen (CEA). Thus, we sought to evaluate the potential of CEA as a pancreatic cancer target utilizing a rapidly clearing engineered anti-CEA scFv-Fc antibody fragment with a mutation in the Fc region [anti-CEA scFv-Fc H310A].

Methods

Immunohistochemistry (IHC) with the antibody fragment was used to confirm expression of CEA on human pancreas cancer specimens. In vivo tumor targeting was evaluated by tail vein injection of I124-labeled anti-CEA scFv-Fc(H310A) into mice harboring CEA-positive and -negative xenografts. MicroPET/CT imaging was performed at successive time intervals. Radioactivity in blood and tumor was measured after the last time point. Additionally, unlabeled anti-CEA scFv-Fc(H310A) was injected into CEA-positive tumor bearing mice and ex vivo IHC was performed to identify the presence of the antibody to define the microscopic intratumoral pattern of targeting.

Results

Moderate to strong staining by IHC was noted on 84% of our human pancreatic cancer specimens and was comparable to staining of our xenografts. Pancreas xenograft imaging with the radiolabeled anti-CEA scFv-Fc(H310A) antibody demonstrated average tumor/blood ratios of 4.0. Immunolocalization demonstrated peripheral antibody fragment penetration of one to five cell diameters (0.75 to 1.5 μm).

Conclusions

We characterized a preclinical xenograft model with respect to CEA expression that was comparable to human cases. We demonstrated that the anti-CEA scFv-Fc(H310A) antibody exhibited antigen-specific tumor targeting and shows promise as an imaging and potentially therapeutic agent.
Appendix
Available only for authorised users
Literature
2.
go back to reference Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin 2010, 60: 277–300. 10.3322/caac.20073PubMedCrossRef Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin 2010, 60: 277–300. 10.3322/caac.20073PubMedCrossRef
3.
go back to reference DeVita VT, Hellman S, Rosenberg SA: Cancer, principles & practice of oncology. 7th edition. Philadelphia: Lippincott Williams & Wilkins; 2005. DeVita VT, Hellman S, Rosenberg SA: Cancer, principles & practice of oncology. 7th edition. Philadelphia: Lippincott Williams & Wilkins; 2005.
4.
go back to reference Kenanova V, Wu AM: Tailoring antibodies for radionuclide delivery. Expert Opin Drug Deliv 2006, 3: 53–70. 10.1517/17425247.3.1.53PubMedCrossRef Kenanova V, Wu AM: Tailoring antibodies for radionuclide delivery. Expert Opin Drug Deliv 2006, 3: 53–70. 10.1517/17425247.3.1.53PubMedCrossRef
5.
go back to reference Kenanova V, Olafsen T, Crow DM, Sundaresan G, Subbarayan M, Carter NH, Ikle DN, Yazaki PJ, Chatziioannou AF, Gambhir SS, Williams LE, Shively JE, Colcher D, Raubitschek AA, Wu AM: Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res 2005, 65: 622–631.PubMedCentralPubMed Kenanova V, Olafsen T, Crow DM, Sundaresan G, Subbarayan M, Carter NH, Ikle DN, Yazaki PJ, Chatziioannou AF, Gambhir SS, Williams LE, Shively JE, Colcher D, Raubitschek AA, Wu AM: Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res 2005, 65: 622–631.PubMedCentralPubMed
6.
go back to reference Hammarstrom S: The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 1999, 9: 67–81. 10.1006/scbi.1998.0119PubMedCrossRef Hammarstrom S: The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 1999, 9: 67–81. 10.1006/scbi.1998.0119PubMedCrossRef
7.
go back to reference Albers GH, Fleuren G, Escribano MJ, Nap M: Immunohistochemistry of CEA in the human pancreas during development, in the adult, chronic pancreatitis, and pancreatic adenocarcinoma. Am J Clin Pathol 1988, 90: 17–22.PubMed Albers GH, Fleuren G, Escribano MJ, Nap M: Immunohistochemistry of CEA in the human pancreas during development, in the adult, chronic pancreatitis, and pancreatic adenocarcinoma. Am J Clin Pathol 1988, 90: 17–22.PubMed
8.
go back to reference Allum WH, Stokes HJ, Macdonald F, Fielding JW: Demonstration of carcinoembryonic antigen (CEA) expression in normal, chronically inflamed, and malignant pancreatic tissue by immunohistochemistry. J Clin Pathol 1986, 39: 610–614. 10.1136/jcp.39.6.610PubMedCentralPubMedCrossRef Allum WH, Stokes HJ, Macdonald F, Fielding JW: Demonstration of carcinoembryonic antigen (CEA) expression in normal, chronically inflamed, and malignant pancreatic tissue by immunohistochemistry. J Clin Pathol 1986, 39: 610–614. 10.1136/jcp.39.6.610PubMedCentralPubMedCrossRef
9.
go back to reference Yamaguchi K, Enjoji M, Tsuneyoshi M: Pancreatoduodenal carcinoma: a clinicopathologic study of 304 patients and immunohistochemical observation for CEA and CA19–9. J Surg Oncol 1991, 47: 148–154. 10.1002/jso.2930470303PubMedCrossRef Yamaguchi K, Enjoji M, Tsuneyoshi M: Pancreatoduodenal carcinoma: a clinicopathologic study of 304 patients and immunohistochemical observation for CEA and CA19–9. J Surg Oncol 1991, 47: 148–154. 10.1002/jso.2930470303PubMedCrossRef
10.
go back to reference Galfre G, Milstein C: Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 1981, 73: 3–46.PubMedCrossRef Galfre G, Milstein C: Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 1981, 73: 3–46.PubMedCrossRef
11.
go back to reference Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF: Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 1997, 16: 145–158. 10.1109/42.563660PubMedCrossRef Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF: Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 1997, 16: 145–158. 10.1109/42.563660PubMedCrossRef
12.
go back to reference Loening AM, Gambhir SS: AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2003, 2: 131–137. 10.1162/153535003322556877PubMedCrossRef Loening AM, Gambhir SS: AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2003, 2: 131–137. 10.1162/153535003322556877PubMedCrossRef
13.
go back to reference Beckman RA, Weiner LM, Davis HM: Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer 2007, 109: 170–179. 10.1002/cncr.22402PubMedCrossRef Beckman RA, Weiner LM, Davis HM: Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer 2007, 109: 170–179. 10.1002/cncr.22402PubMedCrossRef
14.
go back to reference Sundaresan G, Yazaki PJ, Shively JE, Finn RD, Larson SM, Raubitschek AA, Williams LE, Chatziioannou AF, Gambhir SS, Wu AM: 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 2003, 44: 1962–1969.PubMedCentralPubMed Sundaresan G, Yazaki PJ, Shively JE, Finn RD, Larson SM, Raubitschek AA, Williams LE, Chatziioannou AF, Gambhir SS, Wu AM: 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 2003, 44: 1962–1969.PubMedCentralPubMed
15.
go back to reference Yazaki PJ, Wu AM, Tsai SW, Williams LE, Ikler DN, Wong JY, Shively JE, Raubitschek AA: Tumor targeting of radiometal labeled anti-CEA recombinant T84.66 diabody and t84.66 minibody: comparison to radioiodinated fragments. Bioconjug Chem 2001, 12: 220–228. 10.1021/bc000092hPubMedCrossRef Yazaki PJ, Wu AM, Tsai SW, Williams LE, Ikler DN, Wong JY, Shively JE, Raubitschek AA: Tumor targeting of radiometal labeled anti-CEA recombinant T84.66 diabody and t84.66 minibody: comparison to radioiodinated fragments. Bioconjug Chem 2001, 12: 220–228. 10.1021/bc000092hPubMedCrossRef
16.
go back to reference Kaushal S, McElroy MK, Luiken GA, Talamini MA, Moossa AR, Hoffman RM, Bouvet M: Fluorophore-conjugated anti-CEA antibody for the intraoperative imaging of pancreatic and colorectal cancer. J Gastrointest Surg 2008, 12: 1938–1950. 10.1007/s11605-008-0581-0PubMedCentralPubMedCrossRef Kaushal S, McElroy MK, Luiken GA, Talamini MA, Moossa AR, Hoffman RM, Bouvet M: Fluorophore-conjugated anti-CEA antibody for the intraoperative imaging of pancreatic and colorectal cancer. J Gastrointest Surg 2008, 12: 1938–1950. 10.1007/s11605-008-0581-0PubMedCentralPubMedCrossRef
17.
go back to reference Ackerman ME, Pawlowski D, Wittrup KD: Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol Cancer Ther 2008, 7: 2233–2240. 10.1158/1535-7163.MCT-08-0067PubMedCentralPubMedCrossRef Ackerman ME, Pawlowski D, Wittrup KD: Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol Cancer Ther 2008, 7: 2233–2240. 10.1158/1535-7163.MCT-08-0067PubMedCentralPubMedCrossRef
18.
go back to reference Thurber GM, Schmidt MM, Wittrup KD: Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev 2008, 60: 1421–1434. 10.1016/j.addr.2008.04.012PubMedCentralPubMedCrossRef Thurber GM, Schmidt MM, Wittrup KD: Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev 2008, 60: 1421–1434. 10.1016/j.addr.2008.04.012PubMedCentralPubMedCrossRef
19.
go back to reference Thurber GM, Schmidt MM, Wittrup KD: Factors determining antibody distribution in tumors. Trends Pharmacol Sci 2008, 29: 57–61.PubMedCentralPubMed Thurber GM, Schmidt MM, Wittrup KD: Factors determining antibody distribution in tumors. Trends Pharmacol Sci 2008, 29: 57–61.PubMedCentralPubMed
20.
go back to reference Thurber GM, Zajic SC, Wittrup KD: Theoretic criteria for antibody penetration into solid tumors and micrometastases. J Nucl Med 2007, 48: 995–999. 10.2967/jnumed.106.037069PubMedCrossRef Thurber GM, Zajic SC, Wittrup KD: Theoretic criteria for antibody penetration into solid tumors and micrometastases. J Nucl Med 2007, 48: 995–999. 10.2967/jnumed.106.037069PubMedCrossRef
21.
go back to reference Juweid M, Neumann R, Paik C, Perez-Bacete MJ, Sato J, van Osdol W, Weinstein JN: Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res 1992, 52: 5144–5153.PubMed Juweid M, Neumann R, Paik C, Perez-Bacete MJ, Sato J, van Osdol W, Weinstein JN: Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res 1992, 52: 5144–5153.PubMed
22.
go back to reference Prestwich WV, Nunes J, Kwok CS: Beta dose point kernels for radionuclides of potential use in radioimmunotherapy. J Nucl Med 1989, 30: 1036–1046.PubMed Prestwich WV, Nunes J, Kwok CS: Beta dose point kernels for radionuclides of potential use in radioimmunotherapy. J Nucl Med 1989, 30: 1036–1046.PubMed
23.
go back to reference Humm JL: Dosimetric aspects of radiolabeled antibodies for tumor therapy. J Nucl Med 1986, 27: 1490–1497.PubMed Humm JL: Dosimetric aspects of radiolabeled antibodies for tumor therapy. J Nucl Med 1986, 27: 1490–1497.PubMed
24.
go back to reference Presta LG: Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev 2006, 58: 640–656. 10.1016/j.addr.2006.01.026PubMedCrossRef Presta LG: Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev 2006, 58: 640–656. 10.1016/j.addr.2006.01.026PubMedCrossRef
Metadata
Title
Targeting CEA in Pancreas Cancer Xenografts with a Mutated scFv-Fc Antibody Fragment
Authors
Mark D Girgis
Tove Olafsen
Vania Kenanova
Katelyn E McCabe
Anna M Wu
James S Tomlinson
Publication date
01-12-2011
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2011
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/2191-219X-1-24

Other articles of this Issue 1/2011

EJNMMI Research 1/2011 Go to the issue