Skip to main content
Top
Published in: Experimental Hematology & Oncology 1/2013

Open Access 01-12-2013 | Research

In vitro and in vivo properties of CD133 expressing cells from human lung cancer cell lines

Authors: Ping Wang, Zhenhe Suo, Mengyu Wang, Hanne K Høifødt, Øystein Fodstad, Gustav Gaudernack, Gunnar Kvalheim

Published in: Experimental Hematology & Oncology | Issue 1/2013

Login to get access

Abstract

Background

Tumor development is recently hypothesized to depend on a rare cell population with stem cell properties, such cells are called cancer stem cells (CSCs) or tumor-initiating cells (TICs). From various cancer tissues or cancer cell lines, CD133 expressing cells were found to define a unique CSC/TIC phenotype. To study whether that also could be the case in lung cancer, we examined different lung cancer cell lines for CD133 expression.

Results

Among the 4 cell lines studied, only the cell line LC-42 expressed CD133. Therefore, LC-42 was further characterized and studied with special emphasis on identifying the presence of CD133+ CSCs/TICs. FACS sorted CD133high and CD133dim subpopulations from LC-42 showed no differences in soft agar colony-forming capacity and spheres-forming capacity in serum-free cultures. LC-42 cells contained Side Population (SP), and only SP cells were able to form spheres. Furthermore, Nanog expression was significantly higher in SP than in non-SP. However, no difference was observed of CD133 expression in SP and non-SP. When CD133high and CD133dim cells were serially xeno-transplanted in NOD/SCID mice, both formed tumours similar to their parental LC-42 cells. There were no expression differences for NANOG, OCT4 and SOX2 examined immunohistochemically in the xenografts from both cell fractions.

Conclusion

Our data do not show a difference in tumorigenic potential of CD133high and CD133dim cells with respect to any of the parameters analyzed in vitro and in viv o, suggesting that CD133 expression is not restricted to cancer-initiating cells in the human lung cancer cell line LC-42.
Appendix
Available only for authorised users
Literature
1.
go back to reference SEER (Surveillance, Epidemiology, and End Results, NCI) Lung and Bronchus: Stat Fact Sheets; 2012. SEER (Surveillance, Epidemiology, and End Results, NCI) Lung and Bronchus: Stat Fact Sheets; 2012.
2.
go back to reference Hamburger AW, Salmon SE: Primary bioassay of human tumor stem cells. Science 1977, 197: 461–463. 10.1126/science.560061PubMedCrossRef Hamburger AW, Salmon SE: Primary bioassay of human tumor stem cells. Science 1977, 197: 461–463. 10.1126/science.560061PubMedCrossRef
3.
go back to reference Reya T, Morrison SJ, Clarke MF, et al.: Stem cells, cancer, and cancer stem cells. Nature 2001, 414: 105–11. 10.1038/35102167PubMedCrossRef Reya T, Morrison SJ, Clarke MF, et al.: Stem cells, cancer, and cancer stem cells. Nature 2001, 414: 105–11. 10.1038/35102167PubMedCrossRef
4.
go back to reference Lapidot T, Sirard C, Vormoor J, et al.: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994, 367: 645–648. 10.1038/367645a0PubMedCrossRef Lapidot T, Sirard C, Vormoor J, et al.: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994, 367: 645–648. 10.1038/367645a0PubMedCrossRef
5.
go back to reference Bonnet D, Dick JE: Human acute myeloid leukaemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997, 3: 730–737. 10.1038/nm0797-730PubMedCrossRef Bonnet D, Dick JE: Human acute myeloid leukaemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997, 3: 730–737. 10.1038/nm0797-730PubMedCrossRef
6.
go back to reference Al Hajj M, Wicha MS, Ito Hernandez A, et al.: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003, 100: 3983–3988. 10.1073/pnas.0530291100PubMedCentralPubMedCrossRef Al Hajj M, Wicha MS, Ito Hernandez A, et al.: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003, 100: 3983–3988. 10.1073/pnas.0530291100PubMedCentralPubMedCrossRef
7.
go back to reference Singh SK, Hawkins C, Clarke ID, et al.: Identification of human brain tumour initiating cells. Nature 2004, 432: 396–401. 10.1038/nature03128PubMedCrossRef Singh SK, Hawkins C, Clarke ID, et al.: Identification of human brain tumour initiating cells. Nature 2004, 432: 396–401. 10.1038/nature03128PubMedCrossRef
8.
go back to reference Fang D, Nguyen TK, Leishear K, et al.: A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005, 65: 9328–9337. 10.1158/0008-5472.CAN-05-1343PubMedCrossRef Fang D, Nguyen TK, Leishear K, et al.: A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005, 65: 9328–9337. 10.1158/0008-5472.CAN-05-1343PubMedCrossRef
9.
go back to reference Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al.: Identification and expansion of human colon-cancer-initiating cells. Nature 2007, 445: 111–115. 10.1038/nature05384PubMedCrossRef Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al.: Identification and expansion of human colon-cancer-initiating cells. Nature 2007, 445: 111–115. 10.1038/nature05384PubMedCrossRef
10.
go back to reference O'Brien CA, Pollett A, Gallinger S, et al.: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445: 106–110. 10.1038/nature05372PubMedCrossRef O'Brien CA, Pollett A, Gallinger S, et al.: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445: 106–110. 10.1038/nature05372PubMedCrossRef
11.
go back to reference Hermann PC, Huber SL, Herrler T, et al.: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007, 1: 313–323. 10.1016/j.stem.2007.06.002PubMedCrossRef Hermann PC, Huber SL, Herrler T, et al.: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007, 1: 313–323. 10.1016/j.stem.2007.06.002PubMedCrossRef
12.
go back to reference Li C, Heidt D, Dalerba P, et al.: Identification of pancreatic cancer stem cells. Cancer Res 2007, 67: 1030–1037. 10.1158/0008-5472.CAN-06-2030PubMedCrossRef Li C, Heidt D, Dalerba P, et al.: Identification of pancreatic cancer stem cells. Cancer Res 2007, 67: 1030–1037. 10.1158/0008-5472.CAN-06-2030PubMedCrossRef
13.
go back to reference Collins AT, Berry PA, Hyde C, et al.: Prospective Identification of Tumorigenic Prostate Cancer Stem Cells. Cancer Res 2005, 65: 10946–10951. 10.1158/0008-5472.CAN-05-2018PubMedCrossRef Collins AT, Berry PA, Hyde C, et al.: Prospective Identification of Tumorigenic Prostate Cancer Stem Cells. Cancer Res 2005, 65: 10946–10951. 10.1158/0008-5472.CAN-05-2018PubMedCrossRef
14.
go back to reference Prince ME, Sivanandan R, Kaczorowski A, et al.: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007, 104: 973–978. 10.1073/pnas.0610117104PubMedCentralPubMedCrossRef Prince ME, Sivanandan R, Kaczorowski A, et al.: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007, 104: 973–978. 10.1073/pnas.0610117104PubMedCentralPubMedCrossRef
15.
go back to reference Kim CF, Jackson EL, Woolfenden AE, et al.: Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005, 121: 823–835. 10.1016/j.cell.2005.03.032PubMedCrossRef Kim CF, Jackson EL, Woolfenden AE, et al.: Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005, 121: 823–835. 10.1016/j.cell.2005.03.032PubMedCrossRef
16.
go back to reference Yin AH, Miraglia S, Zanjani ED, et al.: AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997, 90: 5002–5012.PubMed Yin AH, Miraglia S, Zanjani ED, et al.: AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997, 90: 5002–5012.PubMed
17.
go back to reference Salven P, Mustjoki S, Alitalo R, et al.: VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 2003, 101: 168–172. 10.1182/blood-2002-03-0755PubMedCrossRef Salven P, Mustjoki S, Alitalo R, et al.: VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 2003, 101: 168–172. 10.1182/blood-2002-03-0755PubMedCrossRef
18.
go back to reference Uchida N, Buck DW, He D, et al.: Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 2000, 97: 14720–14725. 10.1073/pnas.97.26.14720PubMedCentralPubMedCrossRef Uchida N, Buck DW, He D, et al.: Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 2000, 97: 14720–14725. 10.1073/pnas.97.26.14720PubMedCentralPubMedCrossRef
19.
go back to reference Monzani E, Facchetti F, Galmozzi E, et al.: Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 2007, 43: 935–946. 10.1016/j.ejca.2007.01.017PubMedCrossRef Monzani E, Facchetti F, Galmozzi E, et al.: Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 2007, 43: 935–946. 10.1016/j.ejca.2007.01.017PubMedCrossRef
20.
go back to reference Eramo A, Lotti F, Sette G, et al.: Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008, 15: 504–514. 10.1038/sj.cdd.4402283PubMedCrossRef Eramo A, Lotti F, Sette G, et al.: Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008, 15: 504–514. 10.1038/sj.cdd.4402283PubMedCrossRef
21.
22.
go back to reference Shmelkov SV, Butler JM, Hooper AT, et al.: CD133 expression is not restricted to stem cells, and both CD133+ and CD133ГÇô metastatic colon cancer cells initiate tumors. J Clin Invest 2008, 118: 2111–2120.PubMedCentralPubMed Shmelkov SV, Butler JM, Hooper AT, et al.: CD133 expression is not restricted to stem cells, and both CD133+ and CD133ГÇô metastatic colon cancer cells initiate tumors. J Clin Invest 2008, 118: 2111–2120.PubMedCentralPubMed
23.
go back to reference Hirschmann-Jax C, Foster AE, Wulf GG, et al.: A distinct side population of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 2004, 101: 14228–14233. 10.1073/pnas.0400067101PubMedCentralPubMedCrossRef Hirschmann-Jax C, Foster AE, Wulf GG, et al.: A distinct side population of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 2004, 101: 14228–14233. 10.1073/pnas.0400067101PubMedCentralPubMedCrossRef
24.
go back to reference Suetsugu A, Nagaki M, Aoki H, et al.: Characterization of CD133+ hepatocellular carcinoma cells as cancer stem//progenitor cells. Biochem Biophys Res Commun 2006, 351: 820–824. 10.1016/j.bbrc.2006.10.128PubMedCrossRef Suetsugu A, Nagaki M, Aoki H, et al.: Characterization of CD133+ hepatocellular carcinoma cells as cancer stem//progenitor cells. Biochem Biophys Res Commun 2006, 351: 820–824. 10.1016/j.bbrc.2006.10.128PubMedCrossRef
25.
go back to reference Elsaba TM, Martinez-Pomares L, Robins AR, et al.: The stem cell marker CD133 associates with enhanced colony formation and cell motility in colorectal cancer. PLoS One 2010, 5: e10714. 10.1371/journal.pone.0010714PubMedCentralPubMedCrossRef Elsaba TM, Martinez-Pomares L, Robins AR, et al.: The stem cell marker CD133 associates with enhanced colony formation and cell motility in colorectal cancer. PLoS One 2010, 5: e10714. 10.1371/journal.pone.0010714PubMedCentralPubMedCrossRef
26.
go back to reference Corbeil D, Roper K, Hellwig A, et al.: The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 2000, 275: 5512–5520. 10.1074/jbc.275.8.5512PubMedCrossRef Corbeil D, Roper K, Hellwig A, et al.: The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 2000, 275: 5512–5520. 10.1074/jbc.275.8.5512PubMedCrossRef
27.
go back to reference Leung EL, Fiscus RR, Tung JW, et al.: Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties. PLoS One 2010, 5: e14062. 10.1371/journal.pone.0014062PubMedCentralPubMedCrossRef Leung EL, Fiscus RR, Tung JW, et al.: Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties. PLoS One 2010, 5: e14062. 10.1371/journal.pone.0014062PubMedCentralPubMedCrossRef
28.
go back to reference Yu J, Vodyanik MA, Smuga-Otto K, et al.: Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science 2007, 318: 1917–1920. 10.1126/science.1151526PubMedCrossRef Yu J, Vodyanik MA, Smuga-Otto K, et al.: Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science 2007, 318: 1917–1920. 10.1126/science.1151526PubMedCrossRef
29.
go back to reference Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002, 2: 442–454. 10.1038/nrc822PubMedCrossRef Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002, 2: 442–454. 10.1038/nrc822PubMedCrossRef
30.
go back to reference Mani SA, Guo W, Liao MJ, et al.: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133: 704–715. 10.1016/j.cell.2008.03.027PubMedCentralPubMedCrossRef Mani SA, Guo W, Liao MJ, et al.: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133: 704–715. 10.1016/j.cell.2008.03.027PubMedCentralPubMedCrossRef
31.
go back to reference Zhou S, Schuetz JD, Bunting KD, et al.: The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001, 7: 1028–1034. 10.1038/nm0901-1028PubMedCrossRef Zhou S, Schuetz JD, Bunting KD, et al.: The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001, 7: 1028–1034. 10.1038/nm0901-1028PubMedCrossRef
32.
go back to reference Kondo T, Setoguchi T, Taga T: Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 2004, 101: 781–786. 10.1073/pnas.0307618100PubMedCentralPubMedCrossRef Kondo T, Setoguchi T, Taga T: Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 2004, 101: 781–786. 10.1073/pnas.0307618100PubMedCentralPubMedCrossRef
33.
go back to reference Chiba T, Kita K, Zheng YW, et al.: Side population purified from hepatocellular carcinoma cells harbors cancer stem cell like properties. Hepatology 2006, 44: 240–251.PubMedCrossRef Chiba T, Kita K, Zheng YW, et al.: Side population purified from hepatocellular carcinoma cells harbors cancer stem cell like properties. Hepatology 2006, 44: 240–251.PubMedCrossRef
34.
go back to reference Haraguchi N, Utsunomiya T, Inoue H, et al.: Characterization of a Side Population of Cancer Cells from Human Gastrointestinal System. Stem Cells 2006, 24: 506–513. 10.1634/stemcells.2005-0282PubMedCrossRef Haraguchi N, Utsunomiya T, Inoue H, et al.: Characterization of a Side Population of Cancer Cells from Human Gastrointestinal System. Stem Cells 2006, 24: 506–513. 10.1634/stemcells.2005-0282PubMedCrossRef
35.
go back to reference Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al.: Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA 2006, 103: 11154–11159. 10.1073/pnas.0603672103PubMedCentralPubMedCrossRef Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al.: Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA 2006, 103: 11154–11159. 10.1073/pnas.0603672103PubMedCentralPubMedCrossRef
36.
go back to reference Ho MM, Ng AV, Lam S, et al.: Side Population in Human Lung Cancer Cell Lines and Tumors Is Enriched with Stem-like Cancer Cells. Cancer Res 2007, 67: 4827–4833. 10.1158/0008-5472.CAN-06-3557PubMedCrossRef Ho MM, Ng AV, Lam S, et al.: Side Population in Human Lung Cancer Cell Lines and Tumors Is Enriched with Stem-like Cancer Cells. Cancer Res 2007, 67: 4827–4833. 10.1158/0008-5472.CAN-06-3557PubMedCrossRef
37.
go back to reference Myklebust AT, Pharo A, Fodstad O: Effective removal of SCLC cells from human bone marrow. Use of four monoclonal antibodies and immunomagnetic beads. Br J Cancer 1993, 67: 1331–1336. 10.1038/bjc.1993.246PubMedCentralPubMedCrossRef Myklebust AT, Pharo A, Fodstad O: Effective removal of SCLC cells from human bone marrow. Use of four monoclonal antibodies and immunomagnetic beads. Br J Cancer 1993, 67: 1331–1336. 10.1038/bjc.1993.246PubMedCentralPubMedCrossRef
Metadata
Title
In vitro and in vivo properties of CD133 expressing cells from human lung cancer cell lines
Authors
Ping Wang
Zhenhe Suo
Mengyu Wang
Hanne K Høifødt
Øystein Fodstad
Gustav Gaudernack
Gunnar Kvalheim
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Experimental Hematology & Oncology / Issue 1/2013
Electronic ISSN: 2162-3619
DOI
https://doi.org/10.1186/2162-3619-2-16

Other articles of this Issue 1/2013

Experimental Hematology & Oncology 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine