Skip to main content
Top
Published in: Cancer & Metabolism 1/2014

Open Access 01-12-2014 | Research

Inhibition of 6-phosphofructo-2-kinase (PFKFB3) induces autophagy as a survival mechanism

Authors: Alden C Klarer, Julie O’Neal, Yoannis Imbert-Fernandez, Amy Clem, Steve R Ellis, Jennifer Clark, Brian Clem, Jason Chesney, Sucheta Telang

Published in: Cancer & Metabolism | Issue 1/2014

Login to get access

Abstract

Background

Unlike glycolytic enzymes that directly catabolize glucose to pyruvate, the family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFBs) control the conversion of fructose-6-phosphate to and from fructose-2,6-bisphosphate, a key regulator of the glycolytic enzyme phosphofructokinase-1 (PFK-1). One family member, PFKFB3, has been shown to be highly expressed and activated in human cancer cells, and derivatives of a PFKFB3 inhibitor, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), are currently being developed in clinical trials. However, the effectiveness of drugs such as 3PO that target energetic pathways is limited by survival pathways that can be activated by reduced ATP and nutrient uptake. One such pathway is the process of cellular self-catabolism termed autophagy. We hypothesized that the functional glucose starvation induced by inhibition of PFKFB3 in tumor cells would induce autophagy as a pro-survival mechanism and that inhibitors of autophagy could increase the anti-tumor effects of PFKFB3 inhibitors.

Results

We found that selective inhibition of PFKFB3 with either siRNA transfection or 3PO in HCT-116 colon adenocarcinoma cells caused a marked decrease in glucose uptake simultaneously with an increase in autophagy based on LC3-II and p62 protein expression, acridine orange fluorescence of acidic vacuoles and electron microscopic detection of autophagosomes. The induction of autophagy caused by PFKFB3 inhibition required an increase in reactive oxygen species since N-acetyl-cysteine blocked both the conversion of LC3-I to LC3-II and the increase in acridine orange fluorescence in acidic vesicles after exposure of HCT-116 cells to 3PO. We speculated that the induction of autophagy might protect cells from the pro-apoptotic effects of 3PO and found that agents that disrupt autophagy, including chloroquine, increased 3PO-induced apoptosis as measured by double staining with Annexin V and propidium iodide in both HCT-116 cells and Lewis lung carcinoma (LLC) cells. Chloroquine also increased the anti-growth effect of 3PO against LLCs in vivo and resulted in an increase in apoptotic cells within the tumors.

Conclusions

We conclude that PFKFB3 inhibitors suppress glucose uptake, which in turn causes an increase in autophagy. The addition of selective inhibitors of autophagy to 3PO and its more potent derivatives may prove useful as rational combinations for the treatment of cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Van Schaftingen E, Hue L, Hers HG: Fructose 2,6-bisphosphate, the probably structure of the glucose- and glucagon-sensitive stimulator of phosphofructokinase. Biochem J. 1980, 192 (3): 897-901.CrossRefPubMedPubMedCentral Van Schaftingen E, Hue L, Hers HG: Fructose 2,6-bisphosphate, the probably structure of the glucose- and glucagon-sensitive stimulator of phosphofructokinase. Biochem J. 1980, 192 (3): 897-901.CrossRefPubMedPubMedCentral
2.
go back to reference Bobarykina AY, Minchenko DO, Opentanova IL, Moenner M, Caro J, Esumi H, Minchenko OH: Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers. Acta Biochim Pol. 2006, 53 (4): 789-799.PubMed Bobarykina AY, Minchenko DO, Opentanova IL, Moenner M, Caro J, Esumi H, Minchenko OH: Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers. Acta Biochim Pol. 2006, 53 (4): 789-799.PubMed
3.
go back to reference Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, Mitchell R, Bucala R: High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res. 2002, 62 (20): 5881-5887.PubMed Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, Mitchell R, Bucala R: High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res. 2002, 62 (20): 5881-5887.PubMed
4.
go back to reference Minchenko A, Leshchinsky I, Opentanova I, Sang N, Srinivas V, Armstead V, Caro J: Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem. 2002, 277 (8): 6183-6187. 10.1074/jbc.M110978200.CrossRefPubMedPubMedCentral Minchenko A, Leshchinsky I, Opentanova I, Sang N, Srinivas V, Armstead V, Caro J: Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem. 2002, 277 (8): 6183-6187. 10.1074/jbc.M110978200.CrossRefPubMedPubMedCentral
5.
go back to reference Obach M, Navarro-Sabate A, Caro J, Kong X, Duran J, Gomez M, Perales JC, Ventura F, Rosa JL, Bartrons R: 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J Biol Chem. 2004, 279 (51): 53562-53570. 10.1074/jbc.M406096200.CrossRefPubMed Obach M, Navarro-Sabate A, Caro J, Kong X, Duran J, Gomez M, Perales JC, Ventura F, Rosa JL, Bartrons R: 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J Biol Chem. 2004, 279 (51): 53562-53570. 10.1074/jbc.M406096200.CrossRefPubMed
6.
go back to reference Novellasdemunt L, Obach M, Millan-Arino L, Manzano A, Ventura F, Rosa JL, Jordan A, Navarro-Sabate A, Bartrons R: Progestins activate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in breast cancer cells. Biochem J. 2012, 442 (2): 345-356. 10.1042/BJ20111418.CrossRefPubMed Novellasdemunt L, Obach M, Millan-Arino L, Manzano A, Ventura F, Rosa JL, Jordan A, Navarro-Sabate A, Bartrons R: Progestins activate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in breast cancer cells. Biochem J. 2012, 442 (2): 345-356. 10.1042/BJ20111418.CrossRefPubMed
7.
go back to reference Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, de Boer VC, Anastasiou D, Ito K, Sasaki AT, Rameh L, Carracedo A, Vander Heiden MG, Cantley LC, Pinton P, Haigis MC, Pandolfi PP: Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell. 2012, 149 (1): 49-62. 10.1016/j.cell.2012.02.030.CrossRefPubMedPubMedCentral Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, de Boer VC, Anastasiou D, Ito K, Sasaki AT, Rameh L, Carracedo A, Vander Heiden MG, Cantley LC, Pinton P, Haigis MC, Pandolfi PP: Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell. 2012, 149 (1): 49-62. 10.1016/j.cell.2012.02.030.CrossRefPubMedPubMedCentral
8.
go back to reference Manes NP, El-Maghrabi MR: The kinase activity of human brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is regulated via inhibition by phosphoenolpyruvate. Arch Biochem Biophys. 2005, 438 (2): 125-136. 10.1016/j.abb.2005.04.011.CrossRefPubMed Manes NP, El-Maghrabi MR: The kinase activity of human brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is regulated via inhibition by phosphoenolpyruvate. Arch Biochem Biophys. 2005, 438 (2): 125-136. 10.1016/j.abb.2005.04.011.CrossRefPubMed
9.
go back to reference Telang S, Yalcin A, Clem AL, Bucala R, Lane AN, Eaton JW, Chesney J: Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene. 2006, 25 (55): 7225-7234. 10.1038/sj.onc.1209709.CrossRefPubMed Telang S, Yalcin A, Clem AL, Bucala R, Lane AN, Eaton JW, Chesney J: Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene. 2006, 25 (55): 7225-7234. 10.1038/sj.onc.1209709.CrossRefPubMed
10.
go back to reference Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J, Lane A, Trent JO, Chesney J: Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther. 2008, 7 (1): 110-120. 10.1158/1535-7163.MCT-07-0482.CrossRefPubMed Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J, Lane A, Trent JO, Chesney J: Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther. 2008, 7 (1): 110-120. 10.1158/1535-7163.MCT-07-0482.CrossRefPubMed
11.
go back to reference Aki T, Yamaguchi K, Fujimiya T, Mizukami Y: Phosphoinositide 3-kinase accelerates autophagic cell death during glucose deprivation in the rat cardiomyocyte-derived cell line H9c2. Oncogene. 2003, 22 (52): 8529-8535. 10.1038/sj.onc.1207197.CrossRefPubMed Aki T, Yamaguchi K, Fujimiya T, Mizukami Y: Phosphoinositide 3-kinase accelerates autophagic cell death during glucose deprivation in the rat cardiomyocyte-derived cell line H9c2. Oncogene. 2003, 22 (52): 8529-8535. 10.1038/sj.onc.1207197.CrossRefPubMed
12.
go back to reference Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, Debnath J: Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell. 2011, 22 (2): 165-178. 10.1091/mbc.E10-06-0500.CrossRefPubMedPubMedCentral Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, Debnath J: Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell. 2011, 22 (2): 165-178. 10.1091/mbc.E10-06-0500.CrossRefPubMedPubMedCentral
13.
go back to reference Mitchener JS, Shelburne JD, Bradford WD, Hawkins HK: Cellular autophagocytosis induced by deprivation of serum and amino acids in HeLa cells. Am J Pathol. 1976, 83 (3): 485-492.PubMedPubMedCentral Mitchener JS, Shelburne JD, Bradford WD, Hawkins HK: Cellular autophagocytosis induced by deprivation of serum and amino acids in HeLa cells. Am J Pathol. 1976, 83 (3): 485-492.PubMedPubMedCentral
14.
go back to reference Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB: Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell. 2005, 120 (2): 237-248. 10.1016/j.cell.2004.11.046.CrossRefPubMed Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB: Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell. 2005, 120 (2): 237-248. 10.1016/j.cell.2004.11.046.CrossRefPubMed
15.
go back to reference Onodera J, Ohsumi Y: Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem. 2005, 280 (36): 31582-31586. 10.1074/jbc.M506736200.CrossRefPubMed Onodera J, Ohsumi Y: Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem. 2005, 280 (36): 31582-31586. 10.1074/jbc.M506736200.CrossRefPubMed
18.
go back to reference DiPaola RS, Dvorzhinski D, Thalasila A, Garikapaty V, Doram D, May M, Bray K, Mathew R, Beaudoin B, Karp C, Stein M, Foran DJ, White E: Therapeutic starvation and autophagy in prostate cancer: a new paradigm for targeting metabolism in cancer therapy. Prostate. 2008, 68 (16): 1743-1752. 10.1002/pros.20837.CrossRefPubMedPubMedCentral DiPaola RS, Dvorzhinski D, Thalasila A, Garikapaty V, Doram D, May M, Bray K, Mathew R, Beaudoin B, Karp C, Stein M, Foran DJ, White E: Therapeutic starvation and autophagy in prostate cancer: a new paradigm for targeting metabolism in cancer therapy. Prostate. 2008, 68 (16): 1743-1752. 10.1002/pros.20837.CrossRefPubMedPubMedCentral
19.
go back to reference Stein M, Lin H, Jeyamohan C, Dvorzhinski D, Gounder M, Bray K, Eddy S, Goodin S, White E, Dipaola RS: Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate. 2010, 70 (13): 1388-1394. 10.1002/pros.21172.CrossRefPubMedPubMedCentral Stein M, Lin H, Jeyamohan C, Dvorzhinski D, Gounder M, Bray K, Eddy S, Goodin S, White E, Dipaola RS: Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate. 2010, 70 (13): 1388-1394. 10.1002/pros.21172.CrossRefPubMedPubMedCentral
20.
go back to reference Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, Le Marchand-Brustel Y, Giorgetti-Peraldi S, Cormont M, Bertolotto C, Deckert M, Auberger P, Tanti JF, Bost F: Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res. 2010, 70 (6): 2465-2475. 10.1158/0008-5472.CAN-09-2782.CrossRefPubMed Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, Le Marchand-Brustel Y, Giorgetti-Peraldi S, Cormont M, Bertolotto C, Deckert M, Auberger P, Tanti JF, Bost F: Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res. 2010, 70 (6): 2465-2475. 10.1158/0008-5472.CAN-09-2782.CrossRefPubMed
21.
go back to reference Lee KH, Hsu EC, Guh JH, Yang HC, Wang D, Kulp SK, Shapiro CL, Chen CS: Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator. J Biol Chem. 2011, 286 (45): 39247-39258. 10.1074/jbc.M111.264598.CrossRefPubMedPubMedCentral Lee KH, Hsu EC, Guh JH, Yang HC, Wang D, Kulp SK, Shapiro CL, Chen CS: Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator. J Biol Chem. 2011, 286 (45): 39247-39258. 10.1074/jbc.M111.264598.CrossRefPubMedPubMedCentral
22.
go back to reference Sasaki K, Tsuno NH, Sunami E, Tsurita G, Kawai K, Okaji Y, Nishikawa T, Shuno Y, Hongo K, Hiyoshi M, Kaneko M, Kitayama J, Takahashi K, Nagawa H: Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer. 2010, 10: 370-10.1186/1471-2407-10-370.CrossRefPubMedPubMedCentral Sasaki K, Tsuno NH, Sunami E, Tsurita G, Kawai K, Okaji Y, Nishikawa T, Shuno Y, Hongo K, Hiyoshi M, Kaneko M, Kitayama J, Takahashi K, Nagawa H: Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer. 2010, 10: 370-10.1186/1471-2407-10-370.CrossRefPubMedPubMedCentral
23.
go back to reference Guo XL, Li D, Hu F, Song JR, Zhang SS, Deng WJ, Sun K, Zhao QD, Xie XQ, Song YJ, Wu MC, Wei LX: Targeting autophagy potentiates chemotherapy-induced apoptosis and proliferation inhibition in hepatocarcinoma cells. Cancer Lett. 2012, 320 (2): 171-179. 10.1016/j.canlet.2012.03.002.CrossRefPubMed Guo XL, Li D, Hu F, Song JR, Zhang SS, Deng WJ, Sun K, Zhao QD, Xie XQ, Song YJ, Wu MC, Wei LX: Targeting autophagy potentiates chemotherapy-induced apoptosis and proliferation inhibition in hepatocarcinoma cells. Cancer Lett. 2012, 320 (2): 171-179. 10.1016/j.canlet.2012.03.002.CrossRefPubMed
24.
go back to reference Wu Z, Chang PC, Yang JC, Chu CY, Wang LY, Chen NT, Ma AH, Desai SJ, Lo SH, Evans CP, Lam KS, Kung HJ: Autophagy blockade sensitizes prostate cancer cells towards Src family kinase inhibitors. Genes Cancer. 2010, 1 (1): 40-49. 10.1177/1947601909358324.CrossRefPubMedPubMedCentral Wu Z, Chang PC, Yang JC, Chu CY, Wang LY, Chen NT, Ma AH, Desai SJ, Lo SH, Evans CP, Lam KS, Kung HJ: Autophagy blockade sensitizes prostate cancer cells towards Src family kinase inhibitors. Genes Cancer. 2010, 1 (1): 40-49. 10.1177/1947601909358324.CrossRefPubMedPubMedCentral
25.
go back to reference Fan C, Wang W, Zhao B, Zhang S, Miao J: Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg Med Chem. 2006, 14 (9): 3218-3222. 10.1016/j.bmc.2005.12.035.CrossRefPubMed Fan C, Wang W, Zhao B, Zhang S, Miao J: Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg Med Chem. 2006, 14 (9): 3218-3222. 10.1016/j.bmc.2005.12.035.CrossRefPubMed
26.
go back to reference Gupta A, Roy S, Lazar AJ, Wang WL, McAuliffe JC, Reynoso D, McMahon J, Taguchi T, Floris G, Debiec-Rychter M, Schoffski P, Trent JA, Debnath J, Rubin BP: Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc Natl Acad Sci U S A. 2010, 107 (32): 14333-14338. 10.1073/pnas.1000248107.CrossRefPubMedPubMedCentral Gupta A, Roy S, Lazar AJ, Wang WL, McAuliffe JC, Reynoso D, McMahon J, Taguchi T, Floris G, Debiec-Rychter M, Schoffski P, Trent JA, Debnath J, Rubin BP: Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc Natl Acad Sci U S A. 2010, 107 (32): 14333-14338. 10.1073/pnas.1000248107.CrossRefPubMedPubMedCentral
27.
go back to reference Van Schaftingen E, Lederer B, Bartrons R, Hers HG: A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem. 1982, 129 (1): 191-195. 10.1111/j.1432-1033.1982.tb07039.x.CrossRefPubMed Van Schaftingen E, Lederer B, Bartrons R, Hers HG: A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem. 1982, 129 (1): 191-195. 10.1111/j.1432-1033.1982.tb07039.x.CrossRefPubMed
28.
go back to reference Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM: Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005, 64 (2): 113-122.CrossRefPubMed Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM: Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005, 64 (2): 113-122.CrossRefPubMed
29.
go back to reference Cordero MD, De Miguel M, Moreno Fernandez AM, Carmona Lopez IM, Garrido Maraver J, Cotan D, Gomez Izquierdo L, Bonal P, Campa F, Bullon P, Navas P, Sánchez Alcázar JA: Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease. Arthritis Res Ther. 2010, 12 (1): R17-10.1186/ar2918.CrossRefPubMedPubMedCentral Cordero MD, De Miguel M, Moreno Fernandez AM, Carmona Lopez IM, Garrido Maraver J, Cotan D, Gomez Izquierdo L, Bonal P, Campa F, Bullon P, Navas P, Sánchez Alcázar JA: Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease. Arthritis Res Ther. 2010, 12 (1): R17-10.1186/ar2918.CrossRefPubMedPubMedCentral
30.
go back to reference Tasdemir E, Galluzzi L, Maiuri MC, Criollo A, Vitale I, Hangen E, Modjtahedi N, Kroemer G: Methods for assessing autophagy and autophagic cell death. Methods Mol Biol. 2008, 445: 29-76. 10.1007/978-1-59745-157-4_3.CrossRefPubMed Tasdemir E, Galluzzi L, Maiuri MC, Criollo A, Vitale I, Hangen E, Modjtahedi N, Kroemer G: Methods for assessing autophagy and autophagic cell death. Methods Mol Biol. 2008, 445: 29-76. 10.1007/978-1-59745-157-4_3.CrossRefPubMed
31.
go back to reference Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell'antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC: Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011, 25 (7): 717-729. 10.1101/gad.2016111.CrossRefPubMedPubMedCentral Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell'antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC: Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011, 25 (7): 717-729. 10.1101/gad.2016111.CrossRefPubMedPubMedCentral
32.
go back to reference Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB: Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest. 2007, 117 (2): 326-336. 10.1172/JCI28833.CrossRefPubMedPubMedCentral Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB: Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest. 2007, 117 (2): 326-336. 10.1172/JCI28833.CrossRefPubMedPubMedCentral
33.
go back to reference Gregoriou M, Cornish-Bowden A, Trayer IP: Isotope-exchange evidence for allosteric regulation of hexokinase II by glucose 6-phosphate and for an obligatory addition of substrates. Biochem Soc Trans. 1981, 9 (1): 62-63.CrossRefPubMed Gregoriou M, Cornish-Bowden A, Trayer IP: Isotope-exchange evidence for allosteric regulation of hexokinase II by glucose 6-phosphate and for an obligatory addition of substrates. Biochem Soc Trans. 1981, 9 (1): 62-63.CrossRefPubMed
34.
go back to reference Gregoriou M, Trayer IP, Cornish-Bowden A: Isotope-exchange evidence that glucose 6-phosphate inhibits rat-muscle hexokinase II at an allosteric site. Eur J Biochem. 1983, 134 (2): 283-288. 10.1111/j.1432-1033.1983.tb07563.x.CrossRefPubMed Gregoriou M, Trayer IP, Cornish-Bowden A: Isotope-exchange evidence that glucose 6-phosphate inhibits rat-muscle hexokinase II at an allosteric site. Eur J Biochem. 1983, 134 (2): 283-288. 10.1111/j.1432-1033.1983.tb07563.x.CrossRefPubMed
35.
go back to reference Lazo PA, Bosca L: Mitochondrial membrane-bound hexokinase of ascites tumor cells. Functional implications of lysine residues studied by modification with imidoesters. Hoppe Seylers Z Physiol Chem. 1982, 363 (6): 635-641.CrossRefPubMed Lazo PA, Bosca L: Mitochondrial membrane-bound hexokinase of ascites tumor cells. Functional implications of lysine residues studied by modification with imidoesters. Hoppe Seylers Z Physiol Chem. 1982, 363 (6): 635-641.CrossRefPubMed
36.
go back to reference Gao M, Liang J, Lu Y, Guo H, German P, Bai S, Jonasch E, Yang X, Mills GB, Ding Z: Site-specific activation of AKT protects cells from death induced by glucose deprivation. Oncogene. 2013, [Ahead of print]. Gao M, Liang J, Lu Y, Guo H, German P, Bai S, Jonasch E, Yang X, Mills GB, Ding Z: Site-specific activation of AKT protects cells from death induced by glucose deprivation. Oncogene. 2013, [Ahead of print].
37.
go back to reference Milusheva EA, Doda M, Baranyi M, Vizi ES: Effect of hypoxia and glucose deprivation on ATP level, adenylate energy charge and [Ca2+]o-dependent and independent release of [3H]dopamine in rat striatal slices. Neurochem Int. 1996, 28 (5–6): 501-507.CrossRefPubMed Milusheva EA, Doda M, Baranyi M, Vizi ES: Effect of hypoxia and glucose deprivation on ATP level, adenylate energy charge and [Ca2+]o-dependent and independent release of [3H]dopamine in rat striatal slices. Neurochem Int. 1996, 28 (5–6): 501-507.CrossRefPubMed
38.
go back to reference Liu Y, Song XD, Liu W, Zhang TY, Zuo J: Glucose deprivation induces mitochondrial dysfunction and oxidative stress in PC12 cell line. J Cell Mol Med. 2003, 7 (1): 49-56. 10.1111/j.1582-4934.2003.tb00202.x.CrossRefPubMed Liu Y, Song XD, Liu W, Zhang TY, Zuo J: Glucose deprivation induces mitochondrial dysfunction and oxidative stress in PC12 cell line. J Cell Mol Med. 2003, 7 (1): 49-56. 10.1111/j.1582-4934.2003.tb00202.x.CrossRefPubMed
39.
go back to reference Marambio P, Toro B, Sanhueza C, Troncoso R, Parra V, Verdejo H, Garcia L, Quiroga C, Munafo D, Diaz-Elizondo J, Bravo R, González MJ, Diaz-Araya G, Pedrozo Z, Chiong M, Colombo MI, Lavandero S: Glucose deprivation causes oxidative stress and stimulates aggresome formation and autophagy in cultured cardiac myocytes. Biochim Biophys Acta. 2010, 1802 (6): 509-518. 10.1016/j.bbadis.2010.02.002.CrossRefPubMed Marambio P, Toro B, Sanhueza C, Troncoso R, Parra V, Verdejo H, Garcia L, Quiroga C, Munafo D, Diaz-Elizondo J, Bravo R, González MJ, Diaz-Araya G, Pedrozo Z, Chiong M, Colombo MI, Lavandero S: Glucose deprivation causes oxidative stress and stimulates aggresome formation and autophagy in cultured cardiac myocytes. Biochim Biophys Acta. 2010, 1802 (6): 509-518. 10.1016/j.bbadis.2010.02.002.CrossRefPubMed
40.
go back to reference Hauptmann P, Riel C, Kunz-Schughart LA, Frohlich KU, Madeo F, Lehle L: Defects in N-glycosylation induce apoptosis in yeast. Mol Microbiol. 2006, 59 (3): 765-778. 10.1111/j.1365-2958.2005.04981.x.CrossRefPubMed Hauptmann P, Riel C, Kunz-Schughart LA, Frohlich KU, Madeo F, Lehle L: Defects in N-glycosylation induce apoptosis in yeast. Mol Microbiol. 2006, 59 (3): 765-778. 10.1111/j.1365-2958.2005.04981.x.CrossRefPubMed
41.
go back to reference Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ: Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem. 1995, 270 (5): 2320-2326. 10.1074/jbc.270.5.2320.CrossRefPubMed Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ: Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem. 1995, 270 (5): 2320-2326. 10.1074/jbc.270.5.2320.CrossRefPubMed
42.
go back to reference Li L, Chen Y, Gibson SB: Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal. 2013, 25 (1): 50-65. 10.1016/j.cellsig.2012.09.020.CrossRefPubMed Li L, Chen Y, Gibson SB: Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal. 2013, 25 (1): 50-65. 10.1016/j.cellsig.2012.09.020.CrossRefPubMed
43.
44.
go back to reference Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y: Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem. 1991, 266 (26): 17707-17712.PubMed Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y: Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem. 1991, 266 (26): 17707-17712.PubMed
45.
go back to reference Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005, 171 (4): 603-614. 10.1083/jcb.200507002.CrossRefPubMedPubMedCentral Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005, 171 (4): 603-614. 10.1083/jcb.200507002.CrossRefPubMedPubMedCentral
46.
go back to reference Ylä-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL: Monitoring autophagy by electron microscopy in Mammalian cells. Methods Enzymol. 2009, 452: 143-164.CrossRefPubMed Ylä-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL: Monitoring autophagy by electron microscopy in Mammalian cells. Methods Enzymol. 2009, 452: 143-164.CrossRefPubMed
47.
go back to reference Seo M, Kim JD, Neau D, Sehgal I, Lee YH: Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect. PLoS One. 2011, 6 (9): e24179-10.1371/journal.pone.0024179.CrossRefPubMedPubMedCentral Seo M, Kim JD, Neau D, Sehgal I, Lee YH: Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect. PLoS One. 2011, 6 (9): e24179-10.1371/journal.pone.0024179.CrossRefPubMedPubMedCentral
49.
go back to reference Sutherland R, Freyer J, Mueller-Klieser W, Wilson R, Heacock C, Sciandra J, Sordat B: Cellular growth and metabolic adaptations to nutrient stress environments in tumor microregions. Int J Radiat Oncol Biol Phys. 1986, 12 (4): 611-615. 10.1016/0360-3016(86)90070-2.CrossRefPubMed Sutherland R, Freyer J, Mueller-Klieser W, Wilson R, Heacock C, Sciandra J, Sordat B: Cellular growth and metabolic adaptations to nutrient stress environments in tumor microregions. Int J Radiat Oncol Biol Phys. 1986, 12 (4): 611-615. 10.1016/0360-3016(86)90070-2.CrossRefPubMed
50.
go back to reference Hoftiezer V, Berggren PO, Hellman B: Effects of glucose deprivation and altered Ca2+ concentrations on clonal insulin-producing cells (RINm5F). Biomed Biochim Acta. 1985, 44 (1): 77-84.PubMed Hoftiezer V, Berggren PO, Hellman B: Effects of glucose deprivation and altered Ca2+ concentrations on clonal insulin-producing cells (RINm5F). Biomed Biochim Acta. 1985, 44 (1): 77-84.PubMed
51.
go back to reference Zang Y, Yu LF, Nan FJ, Feng LY, Li J: AMP-activated protein kinase is involved in neural stem cell growth suppression and cell cycle arrest by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and glucose deprivation by down-regulating phospho-retinoblastoma protein and cyclin D. J Biol Chem. 2009, 284 (10): 6175-6184.CrossRefPubMed Zang Y, Yu LF, Nan FJ, Feng LY, Li J: AMP-activated protein kinase is involved in neural stem cell growth suppression and cell cycle arrest by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and glucose deprivation by down-regulating phospho-retinoblastoma protein and cyclin D. J Biol Chem. 2009, 284 (10): 6175-6184.CrossRefPubMed
52.
go back to reference Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J, Wang C, Pavlides S, Martinez-Cantarin MP, Capozza F, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Caro J, Lisanti MP, Sotgia F: Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle. 2010, 9 (17): 3515-3533. 10.4161/cc.9.17.12928.CrossRefPubMedPubMedCentral Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J, Wang C, Pavlides S, Martinez-Cantarin MP, Capozza F, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Caro J, Lisanti MP, Sotgia F: Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle. 2010, 9 (17): 3515-3533. 10.4161/cc.9.17.12928.CrossRefPubMedPubMedCentral
53.
go back to reference Kim JH, Kim HY, Lee YK, Yoon YS, Xu WG, Yoon JK, Choi SE, Ko YG, Kim MJ, Lee SJ, Wang HJ, Yoon G: Involvement of mitophagy in oncogenic K-Ras-induced transformation: overcoming a cellular energy deficit from glucose deficiency. Autophagy. 2011, 7 (10): 1187-1198. 10.4161/auto.7.10.16643.CrossRefPubMedPubMedCentral Kim JH, Kim HY, Lee YK, Yoon YS, Xu WG, Yoon JK, Choi SE, Ko YG, Kim MJ, Lee SJ, Wang HJ, Yoon G: Involvement of mitophagy in oncogenic K-Ras-induced transformation: overcoming a cellular energy deficit from glucose deficiency. Autophagy. 2011, 7 (10): 1187-1198. 10.4161/auto.7.10.16643.CrossRefPubMedPubMedCentral
54.
go back to reference Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B: Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell. 2007, 128 (5): 931-946. 10.1016/j.cell.2006.12.044.CrossRefPubMed Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B: Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell. 2007, 128 (5): 931-946. 10.1016/j.cell.2006.12.044.CrossRefPubMed
55.
go back to reference Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000, 19 (21): 5720-5728. 10.1093/emboj/19.21.5720.CrossRefPubMedPubMedCentral Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000, 19 (21): 5720-5728. 10.1093/emboj/19.21.5720.CrossRefPubMedPubMedCentral
56.
go back to reference Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T: LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci. 2004, 117 (Pt 13): 2805-2812.CrossRefPubMed Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T: LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci. 2004, 117 (Pt 13): 2805-2812.CrossRefPubMed
57.
go back to reference Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC: Does bafilomycin A1 block the fusion of autophagosomes with lysosomes?. Autophagy. 2008, 4 (7): 849-950.CrossRefPubMed Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC: Does bafilomycin A1 block the fusion of autophagosomes with lysosomes?. Autophagy. 2008, 4 (7): 849-950.CrossRefPubMed
58.
go back to reference Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy. 2005, 1 (2): 84-91. 10.4161/auto.1.2.1697.CrossRefPubMed Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy. 2005, 1 (2): 84-91. 10.4161/auto.1.2.1697.CrossRefPubMed
59.
go back to reference Vadlamudi RK, Shin J: Genomic structure and promoter analysis of the p62 gene encoding a non-proteasomal multiubiquitin chain binding protein. FEBS Lett. 1998, 435 (2–3): 138-142.CrossRefPubMed Vadlamudi RK, Shin J: Genomic structure and promoter analysis of the p62 gene encoding a non-proteasomal multiubiquitin chain binding protein. FEBS Lett. 1998, 435 (2–3): 138-142.CrossRefPubMed
60.
go back to reference Byun YJ, Kim SK, Kim YM, Chae GT, Jeong SW, Lee SB: Hydrogen peroxide induces autophagic cell death in C6 glioma cells via BNIP3-mediated suppression of the mTOR pathway. Neurosci Lett. 2009, 461 (2): 131-135. 10.1016/j.neulet.2009.06.011.CrossRefPubMed Byun YJ, Kim SK, Kim YM, Chae GT, Jeong SW, Lee SB: Hydrogen peroxide induces autophagic cell death in C6 glioma cells via BNIP3-mediated suppression of the mTOR pathway. Neurosci Lett. 2009, 461 (2): 131-135. 10.1016/j.neulet.2009.06.011.CrossRefPubMed
61.
go back to reference Essick EE, Sam F: Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid Med Cell Longev. 2010, 3 (3): 168-177. 10.4161/oxim.3.3.12106.CrossRefPubMedPubMedCentral Essick EE, Sam F: Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid Med Cell Longev. 2010, 3 (3): 168-177. 10.4161/oxim.3.3.12106.CrossRefPubMedPubMedCentral
62.
go back to reference Zheng Y, Zhao YL, Deng X, Yang S, Mao Y, Li Z, Jiang P, Zhao X, Wei Y: Chloroquine inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis. Cancer Invest. 2009, 27 (3): 286-292. 10.1080/07357900802427927.CrossRefPubMed Zheng Y, Zhao YL, Deng X, Yang S, Mao Y, Li Z, Jiang P, Zhao X, Wei Y: Chloroquine inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis. Cancer Invest. 2009, 27 (3): 286-292. 10.1080/07357900802427927.CrossRefPubMed
63.
go back to reference Jiang PD, Zhao YL, Deng XQ, Mao YQ, Shi W, Tang QQ, Li ZG, Zheng YZ, Yang SY, Wei YQ: Antitumor and antimetastatic activities of chloroquine diphosphate in a murine model of breast cancer. Biomed Pharmacother. 2010, 64 (9): 609-614. 10.1016/j.biopha.2010.06.004.CrossRefPubMed Jiang PD, Zhao YL, Deng XQ, Mao YQ, Shi W, Tang QQ, Li ZG, Zheng YZ, Yang SY, Wei YQ: Antitumor and antimetastatic activities of chloroquine diphosphate in a murine model of breast cancer. Biomed Pharmacother. 2010, 64 (9): 609-614. 10.1016/j.biopha.2010.06.004.CrossRefPubMed
64.
go back to reference Clem BF, O'Neal J, Tapolsky G, Clem AL, Imbert-Fernandez Y, Kerr DA, Klarer AC, Redman R, Miller DM, Trent JO, Telang S, Chesney J: Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther. 2013, 12 (8): 1461-1470. 10.1158/1535-7163.MCT-13-0097.CrossRefPubMedPubMedCentral Clem BF, O'Neal J, Tapolsky G, Clem AL, Imbert-Fernandez Y, Kerr DA, Klarer AC, Redman R, Miller DM, Trent JO, Telang S, Chesney J: Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther. 2013, 12 (8): 1461-1470. 10.1158/1535-7163.MCT-13-0097.CrossRefPubMedPubMedCentral
Metadata
Title
Inhibition of 6-phosphofructo-2-kinase (PFKFB3) induces autophagy as a survival mechanism
Authors
Alden C Klarer
Julie O’Neal
Yoannis Imbert-Fernandez
Amy Clem
Steve R Ellis
Jennifer Clark
Brian Clem
Jason Chesney
Sucheta Telang
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Cancer & Metabolism / Issue 1/2014
Electronic ISSN: 2049-3002
DOI
https://doi.org/10.1186/2049-3002-2-2

Other articles of this Issue 1/2014

Cancer & Metabolism 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine