Skip to main content
Top
Published in: European Journal of Medical Research 8/2010

01-12-2010 | Research

In vitro chemosensitivity of head and neck cancer cell lines

Authors: PJ Schuler, S Trellakis, J Greve, M Bas, C Bergmann, E Bölke, G Lehnerdt, S Mattheis, AE Albers, S Brandau, S Lang, TL Whiteside, H Bier, TK Hoffmann

Published in: European Journal of Medical Research | Issue 8/2010

Login to get access

Abstract

Background

Systemic treatment of head and neck squamous cell carcinoma (HNSCC) includes a variety of antineoplastic drugs. However, drug-resistance interferes with the effectiveness of chemotherapy. Preclinical testing models are needed in order to develop approaches to overcome chemoresistance.

Methods

Ten human cell lines were obtained from HNSCC, including one with experimentally-induced cisplatin resistance. Inhibition of cell growth by seven chemotherapeutic agents (cisplatin, carboplatin, 5- fluorouracil, methotrexate, bleomycin, vincristin, and paclitaxel) was measured using metabolic MTT-uptake assay and correlated to clinically-achievable plasma concentrations.

Results

All drugs inhibited cell growth in a concentration-dependent manner with an IC50 comparable to that achievable in vivo. However, response curves for methotrexate were unsatisfactory and for paclitaxel, the solubilizer cremophor EL was toxic. Cross-resistance was observed between cisplatin and carboplatin.

Conclusion

Chemosensitivity of HNSCC cell lines can be determined using the MTT-uptake assay. For DNA-interfering cytostatics and vinca alkaloids this is a simple and reproducible procedure. Determined in vitro chemosensitivity serves as a baseline for further experimental approaches aiming to modulate chemoresistance in HNSCC with potential clinical significance.
Literature
1.
go back to reference Oddone N, Morgan GJ, Palme CE, et al.: Metastatic cutaneous squamous cell carcinoma of the head and neck: the immunosuppression, treatment, extranodal spread, and margin status (ITEM) prognostic score to predict outcome and the need to improve survival. Cancer 2009, 9: 1883–1891.CrossRef Oddone N, Morgan GJ, Palme CE, et al.: Metastatic cutaneous squamous cell carcinoma of the head and neck: the immunosuppression, treatment, extranodal spread, and margin status (ITEM) prognostic score to predict outcome and the need to improve survival. Cancer 2009, 9: 1883–1891.CrossRef
2.
go back to reference Ahmed SM, Cohen EE: Treatment of squamous cell carcinoma of the head and neck in the metastatic and refractory settings: advances in chemotherapy and the emergence of small molecule epidermal growth factor receptor kinase inhibitors. Curr Cancer Drug Targets 2007, 7: 666–673. 10.2174/156800907782418293PubMedCrossRef Ahmed SM, Cohen EE: Treatment of squamous cell carcinoma of the head and neck in the metastatic and refractory settings: advances in chemotherapy and the emergence of small molecule epidermal growth factor receptor kinase inhibitors. Curr Cancer Drug Targets 2007, 7: 666–673. 10.2174/156800907782418293PubMedCrossRef
3.
go back to reference Dollner R, Granzow C, Neudert M, Dietz A: Ex vivo chemosensitivity of head and neck carcinoma to cytostatic drug combinations. Anticancer Res 2006, 2B: 1651–1655. Dollner R, Granzow C, Neudert M, Dietz A: Ex vivo chemosensitivity of head and neck carcinoma to cytostatic drug combinations. Anticancer Res 2006, 2B: 1651–1655.
4.
go back to reference Pignon JP, Bourhis J, Domenge C, Designe L: Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta-Analysis of Chemotherapy on Head and Neck Cancer. Lancet 2000, 9208: 949–955.CrossRef Pignon JP, Bourhis J, Domenge C, Designe L: Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta-Analysis of Chemotherapy on Head and Neck Cancer. Lancet 2000, 9208: 949–955.CrossRef
5.
go back to reference Schrag D, Garewal HS, Burstein HJ, Samson DJ, von Hoff DD, Somerfield MR: American Society of Clinical Oncology Technology Assessment: chemotherapy sensitivity and resistance assays. J Clin Oncol 2004, 17: 3631–3638.CrossRef Schrag D, Garewal HS, Burstein HJ, Samson DJ, von Hoff DD, Somerfield MR: American Society of Clinical Oncology Technology Assessment: chemotherapy sensitivity and resistance assays. J Clin Oncol 2004, 17: 3631–3638.CrossRef
6.
go back to reference Krause CJ, Carey TE, Ott RW, Hurbis C, McClatchey KD, Regezi JA: Human squamous cell carcinoma. Establishment and characterization of new permanent cell lines. Arch Otolaryngol 1981, 11: 703–710.CrossRef Krause CJ, Carey TE, Ott RW, Hurbis C, McClatchey KD, Regezi JA: Human squamous cell carcinoma. Establishment and characterization of new permanent cell lines. Arch Otolaryngol 1981, 11: 703–710.CrossRef
7.
go back to reference Bier H, Bergler W, Mickisch G, Wesch H, Ganzer U: Establishment and characterization of cisplatin-resistant sublines of the human squamous carcinoma cell line HLac 79. Acta Otolaryngol 1990, 5–6: 466–473.CrossRef Bier H, Bergler W, Mickisch G, Wesch H, Ganzer U: Establishment and characterization of cisplatin-resistant sublines of the human squamous carcinoma cell line HLac 79. Acta Otolaryngol 1990, 5–6: 466–473.CrossRef
8.
go back to reference Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB: Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 1987, 4: 936–942. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB: Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 1987, 4: 936–942.
9.
go back to reference Poch G, Vychodil-Kahr S, Petru E: Sigmoid model versus median-effect analysis for obtaining dose-response curves for in vitro chemosensitivity testing. Int J Clin Pharmacol Ther 1999, 4: 189–192. Poch G, Vychodil-Kahr S, Petru E: Sigmoid model versus median-effect analysis for obtaining dose-response curves for in vitro chemosensitivity testing. Int J Clin Pharmacol Ther 1999, 4: 189–192.
10.
go back to reference Hafner D, Heinen E, Noack E: Mathematical analysis of concentration-response relationships. Method for the evaluation of the ED50 and the number of binding sites per receptor molecule using the logit transformation. Arzneimittelforschung 1977, 10: 1871–1873. Hafner D, Heinen E, Noack E: Mathematical analysis of concentration-response relationships. Method for the evaluation of the ED50 and the number of binding sites per receptor molecule using the logit transformation. Arzneimittelforschung 1977, 10: 1871–1873.
11.
go back to reference Scheithauer W, Clark GM, Salmon SE, Dorda W, Shoemaker RH, Von Hoff DD: Model for estimation of clinically achievable plasma concentrations for investigational anticancer drugs in man. Cancer Treat Rep 1986, 12: 1379–1382. Scheithauer W, Clark GM, Salmon SE, Dorda W, Shoemaker RH, Von Hoff DD: Model for estimation of clinically achievable plasma concentrations for investigational anticancer drugs in man. Cancer Treat Rep 1986, 12: 1379–1382.
12.
go back to reference van den Bongard HJ, Mathot RA, Beijnen JH, Schellens JH: Pharmacokinetically guided administration of chemotherapeutic agents. Clin Pharmacokinet 2000, 5: 345–367.CrossRef van den Bongard HJ, Mathot RA, Beijnen JH, Schellens JH: Pharmacokinetically guided administration of chemotherapeutic agents. Clin Pharmacokinet 2000, 5: 345–367.CrossRef
13.
go back to reference Rousseau A, Marquet P, Debord J, Sabot C, Lachatre G: Adaptive control methods for the dose individualisation of anticancer agents. Clin Pharmacokinet 2000, 4: 315–353.CrossRef Rousseau A, Marquet P, Debord J, Sabot C, Lachatre G: Adaptive control methods for the dose individualisation of anticancer agents. Clin Pharmacokinet 2000, 4: 315–353.CrossRef
14.
go back to reference Perez-Tomas R: Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Curr Med Chem 2006, 16: 1859–1876.CrossRef Perez-Tomas R: Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Curr Med Chem 2006, 16: 1859–1876.CrossRef
15.
go back to reference Brower SL, Fensterer JE, Bush JE: The ChemoFx assay: an ex vivo chemosensitivity and resistance assay for predicting patient response to cancer chemotherapy. Methods Mol Biol 2008, 57–78. Brower SL, Fensterer JE, Bush JE: The ChemoFx assay: an ex vivo chemosensitivity and resistance assay for predicting patient response to cancer chemotherapy. Methods Mol Biol 2008, 57–78.
16.
go back to reference Cree IA, Kurbacher CM, Lamont A, Hindley AC, Love S: A prospective randomized controlled trial of tumour chemosensitivity assay directed chemotherapy versus physician's choice in patients with recurrent platinum-resistant ovarian cancer. Anticancer Drugs 2007, 9: 1093–1101.CrossRef Cree IA, Kurbacher CM, Lamont A, Hindley AC, Love S: A prospective randomized controlled trial of tumour chemosensitivity assay directed chemotherapy versus physician's choice in patients with recurrent platinum-resistant ovarian cancer. Anticancer Drugs 2007, 9: 1093–1101.CrossRef
17.
go back to reference Abe R, Ueo H, Akiyoshi T: Evaluation of MTT assay in agarose for chemosensitivity testing of human cancers: comparison with MTT assay. Oncology 1994, 5: 416–425.CrossRef Abe R, Ueo H, Akiyoshi T: Evaluation of MTT assay in agarose for chemosensitivity testing of human cancers: comparison with MTT assay. Oncology 1994, 5: 416–425.CrossRef
18.
go back to reference Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT, Whiteside TL: A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res 2007,15(Pt 1):4345–4354.CrossRef Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT, Whiteside TL: A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res 2007,15(Pt 1):4345–4354.CrossRef
19.
go back to reference Padron JM, van der Wilt CL, Smid K, et al.: The multilayered postconfluent cell culture as a model for drug screening. Crit Rev Oncol Hematol 2000, 2–3: 141–157.CrossRef Padron JM, van der Wilt CL, Smid K, et al.: The multilayered postconfluent cell culture as a model for drug screening. Crit Rev Oncol Hematol 2000, 2–3: 141–157.CrossRef
20.
go back to reference Kuo MT, Chen HH, Song IS, Savaraj N, Ishikawa T: The roles of copper transporters in cisplatin resistance. Cancer Metastasis Rev 2007, 1: 71–83.CrossRef Kuo MT, Chen HH, Song IS, Savaraj N, Ishikawa T: The roles of copper transporters in cisplatin resistance. Cancer Metastasis Rev 2007, 1: 71–83.CrossRef
21.
go back to reference Borst P, Rottenberg S, Jonkers J: How do real tumors become resistant to cisplatin? Cell Cycle 2008, 10: 1353–1359.CrossRef Borst P, Rottenberg S, Jonkers J: How do real tumors become resistant to cisplatin? Cell Cycle 2008, 10: 1353–1359.CrossRef
22.
go back to reference Cullen KJ, Newkirk KA, Schumaker LM, Aldosari N, Rone JD, Haddad BR: Glutathione S-transferase pi amplification is associated with cisplatin resistance in head and neck squamous cell carcinoma cell lines and primary tumors. Cancer Res 2003, 23: 8097–8102. Cullen KJ, Newkirk KA, Schumaker LM, Aldosari N, Rone JD, Haddad BR: Glutathione S-transferase pi amplification is associated with cisplatin resistance in head and neck squamous cell carcinoma cell lines and primary tumors. Cancer Res 2003, 23: 8097–8102.
23.
go back to reference Hoffmann TK, Sonkoly E, Hauser U, et al.: Alterations in the p53 pathway and their association with radio- and chemosensitivity in head and neck squamous cell carcinoma. Oral Oncol 2008, 12: 1100–1109.CrossRef Hoffmann TK, Sonkoly E, Hauser U, et al.: Alterations in the p53 pathway and their association with radio- and chemosensitivity in head and neck squamous cell carcinoma. Oral Oncol 2008, 12: 1100–1109.CrossRef
24.
go back to reference Akervall J, Guo X, Qian CN, et al.: Genetic and expression profiles of squamous cell carcinoma of the head and neck correlate with cisplatin sensitivity and resistance in cell lines and patients. Clin Cancer Res 2004, 24: 8204–8213.CrossRef Akervall J, Guo X, Qian CN, et al.: Genetic and expression profiles of squamous cell carcinoma of the head and neck correlate with cisplatin sensitivity and resistance in cell lines and patients. Clin Cancer Res 2004, 24: 8204–8213.CrossRef
25.
go back to reference Hasegawa Y, Goto M, Hanai N, et al.: Evaluation of optimal drug concentration in histoculture drug response assay in association with clinical efficacy for head and neck cancer. Oral Oncol 2007, 8: 749–756.CrossRef Hasegawa Y, Goto M, Hanai N, et al.: Evaluation of optimal drug concentration in histoculture drug response assay in association with clinical efficacy for head and neck cancer. Oral Oncol 2007, 8: 749–756.CrossRef
26.
go back to reference Knox RJ, Friedlos F, Lydall DA, Roberts JJ: Mechanism of cytotoxicity of anticancer platinum drugs: evidence that cis-diamminedichloroplatinum(II) and cis-diammine (1,1-cyclobutanedicarboxylato)platinum(II) differ only in the kinetics of their interaction with DNA. Cancer Res 1986,4(Pt 2):1972–1979. Knox RJ, Friedlos F, Lydall DA, Roberts JJ: Mechanism of cytotoxicity of anticancer platinum drugs: evidence that cis-diamminedichloroplatinum(II) and cis-diammine (1,1-cyclobutanedicarboxylato)platinum(II) differ only in the kinetics of their interaction with DNA. Cancer Res 1986,4(Pt 2):1972–1979.
27.
go back to reference Bier H: Chemotherapeutic drug resistance in the management of head and neck cancer. Eur Arch Otorhinolaryngol 1993, 4: 200–208. Bier H: Chemotherapeutic drug resistance in the management of head and neck cancer. Eur Arch Otorhinolaryngol 1993, 4: 200–208.
28.
go back to reference Coley HM, Lewandowicz G, Sargent JM, Verrill MW: Chemosensitivity testing of fresh and continuous tumor cell cultures using lactate dehydrogenase. Anticancer Res 1997, 1A: 231–236. Coley HM, Lewandowicz G, Sargent JM, Verrill MW: Chemosensitivity testing of fresh and continuous tumor cell cultures using lactate dehydrogenase. Anticancer Res 1997, 1A: 231–236.
29.
go back to reference Pagliacci MC, Spinozzi F, Migliorati G, et al.: Genistein inhibits tumour cell growth in vitro but enhances mitochondrial reduction of tetrazolium salts: a further pitfall in the use of the MTT assay for evaluating cell growth and survival. Eur J Cancer 1993, 11: 1573–1577.CrossRef Pagliacci MC, Spinozzi F, Migliorati G, et al.: Genistein inhibits tumour cell growth in vitro but enhances mitochondrial reduction of tetrazolium salts: a further pitfall in the use of the MTT assay for evaluating cell growth and survival. Eur J Cancer 1993, 11: 1573–1577.CrossRef
Metadata
Title
In vitro chemosensitivity of head and neck cancer cell lines
Authors
PJ Schuler
S Trellakis
J Greve
M Bas
C Bergmann
E Bölke
G Lehnerdt
S Mattheis
AE Albers
S Brandau
S Lang
TL Whiteside
H Bier
TK Hoffmann
Publication date
01-12-2010
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 8/2010
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/2047-783X-15-8-337

Other articles of this Issue 8/2010

European Journal of Medical Research 8/2010 Go to the issue