Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2015

Open Access 01-12-2015 | Research

Kaolin-induced chronic hydrocephalus accelerates amyloid deposition and vascular disease in transgenic rats expressing high levels of human APP

Authors: Gerald D Silverberg, Miles C Miller, Crissey L Pascale, Ilias N Caralopoulos, Yuksel Agca, Cansu Agca, Edward G Stopa

Published in: Fluids and Barriers of the CNS | Issue 1/2015

Login to get access

Abstract

Background

Normal pressure hydrocephalus (NPH) is most common in the elderly and has a high co-morbidity with Alzheimer’s disease (AD) and cerebrovascular disease (CVD). To understand the relationship between NPH, AD and CVD, we investigated how chronic hydrocephalus impacts brain amyloid-beta peptide (Aβ) accumulation and vascular pathology in an AD transgenic rodent model. Previously we showed that the altered CSF physiology produced by kaolin-hydrocephalus in older wild-type Sprague–Dawley rats increased Aβ and hyperphosphorylated Tau (Silverberg et. al. Brain Res. 2010, 1317:286–296). We postulated that hydrocephalus would similarly affect an AD rat model.

Methods

Thirty-five transgenic rats (tgAPP21) that express high levels of human APP and naturally overproduce Aβ40 were used. Six- (n = 7) and twelve-month-old (n = 9) rats had hydrocephalus induced by cisternal kaolin injection. We analyzed Aβ burden (Aβ40, Aβ42 and oligomeric Aβ) and vascular integrity (Masson trichrome and Verhoeff-Van Gieson) by immunohistochemistry and chemical staining at 10 weeks (n = 8) and 6 months (n = 5) post hydrocephalus induction. We also analyzed whether the vascular pathology seen in tgAPP21 rats, which develop amyloid angiopathy, was accelerated by hydrocephalus. Age-matched naïve and sham-operated tgAPP21 rats served as controls (n = 19).

Results

In hydrocephalic tgAPP21 rats, compared to naïve and sham-operated controls, there was increased Aβ 40 and oligomeric Aβ in hippocampal and cortical neurons at 10 weeks and 6 months post-hydrocephalus induction. No dense-core amyloid plaques were seen, but diffuse Aβ immunoreactivity was evident in neurons. Vascular pathology was accelerated by the induction of hydrocephalus compared to controls. In the six-month-old rats, subtle degenerative changes were noted in vessel walls at 10 weeks post-kaolin, whereas at six months post-kaolin and in the 12-month-old hydrocephalic rats more pronounced amyloid angiopathic changes were seen, with frequent large areas of infarction noted.

Conclusions

Kaolin-hydrocephalus can accelerate intraneuronal Aβ40 accumulation and vascular pathology in tgAPP21 rats. In addition, disrupted CSF production and reduced CSF turnover results in impaired Aβ clearance and accelerated vascular pathology in chronic hydrocephalus. The high co-morbidity seen in NPH, AD and CVD is likely not to be an age-related coincidence, but rather a convergence of pathologies related to diminished CSF clearance.
Literature
1.
go back to reference Hakim S, Adams RD: The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics.J Neurol Sci 1965, 2:307–27. 10.1016/0022-510X(65)90016-XCrossRefPubMed Hakim S, Adams RD: The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics.J Neurol Sci 1965, 2:307–27. 10.1016/0022-510X(65)90016-XCrossRefPubMed
2.
go back to reference Symon L, Dorsch NW: Use of long-term intracranial pressure measurement to assess hydrocephalic patients prior to shunt surgery.J Neurosurg 1975, 42:258–73. 10.3171/jns.1975.42.3.0258CrossRefPubMed Symon L, Dorsch NW: Use of long-term intracranial pressure measurement to assess hydrocephalic patients prior to shunt surgery.J Neurosurg 1975, 42:258–73. 10.3171/jns.1975.42.3.0258CrossRefPubMed
3.
go back to reference Symon L, Dorsch NW, Stephens RJ: Pressure waves in so-called low-pressure hydrocephalus.Lancet 1977, 2:1291–2. Symon L, Dorsch NW, Stephens RJ: Pressure waves in so-called low-pressure hydrocephalus.Lancet 1977, 2:1291–2.
4.
go back to reference Krauss JK, Droste DW, Bohus M, Regel JP, Scheremet R, Riemann D, et al.: The relation of intracranial pressure B-waves to different sleep stages in patients with suspected normal pressure hydrocephalus.Acta Neurochir (Wien) 1995, 136:195–203. 10.1007/BF01410626CrossRef Krauss JK, Droste DW, Bohus M, Regel JP, Scheremet R, Riemann D, et al.: The relation of intracranial pressure B-waves to different sleep stages in patients with suspected normal pressure hydrocephalus.Acta Neurochir (Wien) 1995, 136:195–203. 10.1007/BF01410626CrossRef
5.
go back to reference Wikkelsø C, Hellström P, Klinge PM, Tans JT, European iNPH Multicentre Study Group: The European iNPH Multicentre Study on the predictive values of resistance to CSF outflow and the CSF Tap Test in patients with idiopathic normal pressure hydrocephalus.J Neurol Neurosurg Psychiatry 2013, 84:562–8. 10.1136/jnnp-2012-303314CrossRefPubMed Wikkelsø C, Hellström P, Klinge PM, Tans JT, European iNPH Multicentre Study Group: The European iNPH Multicentre Study on the predictive values of resistance to CSF outflow and the CSF Tap Test in patients with idiopathic normal pressure hydrocephalus.J Neurol Neurosurg Psychiatry 2013, 84:562–8. 10.1136/jnnp-2012-303314CrossRefPubMed
6.
go back to reference Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D: Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis.Lancet Neurol 2003, 2:506–11. 10.1016/S1474-4422(03)00487-3CrossRefPubMed Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D: Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis.Lancet Neurol 2003, 2:506–11. 10.1016/S1474-4422(03)00487-3CrossRefPubMed
7.
go back to reference Silverberg GD: Normal pressure hydrocephalus (NPH): ischaemia, CSF stagnation or both.Brain 2004, 127:947–8. 10.1093/brain/awh178CrossRefPubMed Silverberg GD: Normal pressure hydrocephalus (NPH): ischaemia, CSF stagnation or both.Brain 2004, 127:947–8. 10.1093/brain/awh178CrossRefPubMed
8.
go back to reference Tullberg M, Hultin L, Ekholm S, Månsson JE, Fredman P, Wikkelsø C: White matter changes in normal pressure hydrocephalus and Binswanger disease: specificity, predictive value and correlations to axonal degeneration and demyelination.Acta Neurol Scand 2002, 105:417–26. 10.1034/j.1600-0404.2002.01189.xCrossRefPubMed Tullberg M, Hultin L, Ekholm S, Månsson JE, Fredman P, Wikkelsø C: White matter changes in normal pressure hydrocephalus and Binswanger disease: specificity, predictive value and correlations to axonal degeneration and demyelination.Acta Neurol Scand 2002, 105:417–26. 10.1034/j.1600-0404.2002.01189.xCrossRefPubMed
9.
go back to reference Bateman GA: The pathophysiology of idiopathic normal pressure hydrocephalus: cerebral ischemia or altered venous hemodynamics?Am J Neuroradiol 2008, 29:198–203. 10.3174/ajnr.A0739CrossRefPubMed Bateman GA: The pathophysiology of idiopathic normal pressure hydrocephalus: cerebral ischemia or altered venous hemodynamics?Am J Neuroradiol 2008, 29:198–203. 10.3174/ajnr.A0739CrossRefPubMed
10.
go back to reference Del Bigio MR, Cardoso ER, Halliday WC: Neuropathological changes in chronic adult hydrocephalus: cortical biopsies and autopsy findings.Can J Neurol Sci 1997, 24:121–6.CrossRefPubMed Del Bigio MR, Cardoso ER, Halliday WC: Neuropathological changes in chronic adult hydrocephalus: cortical biopsies and autopsy findings.Can J Neurol Sci 1997, 24:121–6.CrossRefPubMed
11.
go back to reference Savolainen S, Paljärvi L, Vapalahti M: Prevalence of Alzheimer’s disease in patients investigated for presumed normal pressure hydrocephalus: a clinical and neuropathological study.Acta Neurochir (Wien) 1999, 141:849–53. 10.1007/s007010050386CrossRef Savolainen S, Paljärvi L, Vapalahti M: Prevalence of Alzheimer’s disease in patients investigated for presumed normal pressure hydrocephalus: a clinical and neuropathological study.Acta Neurochir (Wien) 1999, 141:849–53. 10.1007/s007010050386CrossRef
12.
go back to reference Golomb J, Wisoff J, Miller DC, Boksay I, Kluger A, Weiner H, et al.: Alzheimer’s disease comorbidity in normal pressure hydrocephalus: prevalence and shunt response.J Neurol Neurosurg Psychiatry 2000, 68:778–81. 10.1136/jnnp.68.6.778CrossRefPubMedPubMedCentral Golomb J, Wisoff J, Miller DC, Boksay I, Kluger A, Weiner H, et al.: Alzheimer’s disease comorbidity in normal pressure hydrocephalus: prevalence and shunt response.J Neurol Neurosurg Psychiatry 2000, 68:778–81. 10.1136/jnnp.68.6.778CrossRefPubMedPubMedCentral
13.
go back to reference Association A’s: Alzheimer’s disease facts and figures.Alzheimers Dement 2014,2014(10):e47–92. Association A’s: Alzheimer’s disease facts and figures.Alzheimers Dement 2014,2014(10):e47–92.
14.
go back to reference Braak H, Braak E: Neuropathological stageing of Alzheimer-related changes.Acta Neuropathol 1991, 82:239–59. 10.1007/BF00308809CrossRefPubMed Braak H, Braak E: Neuropathological stageing of Alzheimer-related changes.Acta Neuropathol 1991, 82:239–59. 10.1007/BF00308809CrossRefPubMed
15.
go back to reference The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease: Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease.Neurobiol Aging 1997,18(4 suppl):S1–2. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease: Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease.Neurobiol Aging 1997,18(4 suppl):S1–2.
16.
go back to reference Selkoe DJ: Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein.Ann NY Acad Sci 2000, 924:17–25.CrossRefPubMed Selkoe DJ: Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein.Ann NY Acad Sci 2000, 924:17–25.CrossRefPubMed
17.
go back to reference Hardy J: A hundred years of Alzheimer’s disease research.Neuron 2006, 52:3–13. 10.1016/j.neuron.2006.09.016CrossRefPubMed Hardy J: A hundred years of Alzheimer’s disease research.Neuron 2006, 52:3–13. 10.1016/j.neuron.2006.09.016CrossRefPubMed
18.
go back to reference Mawuenyega KG, Sigurdson W, Ovod V, Munselli T, Kasten T, Morris JC, et al.: Decreased Clearance of CNS β-Amyloid in Alzheimer’s Disease.Science 2010, 330:1774. 10.1126/science.1197623CrossRefPubMedPubMedCentral Mawuenyega KG, Sigurdson W, Ovod V, Munselli T, Kasten T, Morris JC, et al.: Decreased Clearance of CNS β-Amyloid in Alzheimer’s Disease.Science 2010, 330:1774. 10.1126/science.1197623CrossRefPubMedPubMedCentral
19.
go back to reference Klinge PM, Samii A, Niesken S, Brinker T, Silverberg GD: Brain amyloid accumulation in aged rats with kaolin-induced hydrocephalus.NeuroReport 2006, 17:657–60. 10.1097/00001756-200604240-00020CrossRefPubMed Klinge PM, Samii A, Niesken S, Brinker T, Silverberg GD: Brain amyloid accumulation in aged rats with kaolin-induced hydrocephalus.NeuroReport 2006, 17:657–60. 10.1097/00001756-200604240-00020CrossRefPubMed
20.
go back to reference Silverberg GD, Miller MC, Machan JT, Johanson CE, Caralopoulos IN, Pascale CL, et al.: Amyloid and Tau accumulate in the brains of aged hydrocephalic rats.Brain Res 2010, 1317:286–96.CrossRefPubMed Silverberg GD, Miller MC, Machan JT, Johanson CE, Caralopoulos IN, Pascale CL, et al.: Amyloid and Tau accumulate in the brains of aged hydrocephalic rats.Brain Res 2010, 1317:286–96.CrossRefPubMed
21.
go back to reference Agca C, Fritz JJ, Walker LC, Levey AI, Chan AWS, Lah JJ, et al.: Development of transgenic rats producing human β-amyloid precursor protein as a model for Alzheimer’s disease: Transgene and endogenous APP genes are regulated tissue-specifically.BMC Neurosci 2008, 9:28. 10.1186/1471-2202-9-28CrossRefPubMedPubMedCentral Agca C, Fritz JJ, Walker LC, Levey AI, Chan AWS, Lah JJ, et al.: Development of transgenic rats producing human β-amyloid precursor protein as a model for Alzheimer’s disease: Transgene and endogenous APP genes are regulated tissue-specifically.BMC Neurosci 2008, 9:28. 10.1186/1471-2202-9-28CrossRefPubMedPubMedCentral
22.
go back to reference Klinge PM, Samii A, Muhlendyck A, Visnyei K, Meyer GJ, Walter GF, et al.: Cerebral hypoperfusion and delayed hippocampal response after induction of adult kaolin hydrocephalus.Stroke 2003, 34:193–9. 10.1161/01.STR.0000048820.17198.15CrossRefPubMed Klinge PM, Samii A, Muhlendyck A, Visnyei K, Meyer GJ, Walter GF, et al.: Cerebral hypoperfusion and delayed hippocampal response after induction of adult kaolin hydrocephalus.Stroke 2003, 34:193–9. 10.1161/01.STR.0000048820.17198.15CrossRefPubMed
23.
go back to reference Masson PJ: Trichrome stainings and their preliminary techniques.J Tech Meth 1929, 12:75. Masson PJ: Trichrome stainings and their preliminary techniques.J Tech Meth 1929, 12:75.
24.
go back to reference Luna L: Manual of histological staining methods of the armed forces insitiute of pathology. 3rd edition. New York: McGraw Hill; 1968:76–95. Luna L: Manual of histological staining methods of the armed forces insitiute of pathology. 3rd edition. New York: McGraw Hill; 1968:76–95.
25.
go back to reference Carson F: Histotechnology: a self-instructional text. 1st edition. Chicago: American Society for Clinical Pathology Press; 1990:142–9. Carson F: Histotechnology: a self-instructional text. 1st edition. Chicago: American Society for Clinical Pathology Press; 1990:142–9.
26.
go back to reference Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, et al.: Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation.J Biol Chem 1998, 273:32730–8. 10.1074/jbc.273.49.32730CrossRefPubMed Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, et al.: Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation.J Biol Chem 1998, 273:32730–8. 10.1074/jbc.273.49.32730CrossRefPubMed
27.
go back to reference Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, et al.: Identification of the major Abeta1–42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition.Nat Med 2000, 6:143–50. 10.1038/72237CrossRefPubMed Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, et al.: Identification of the major Abeta1–42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition.Nat Med 2000, 6:143–50. 10.1038/72237CrossRefPubMed
28.
go back to reference Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, et al.: Metabolic regulation of brain Abeta by neprilysin.Science 2001, 292:1550–2. 10.1126/science.1059946CrossRefPubMed Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, et al.: Metabolic regulation of brain Abeta by neprilysin.Science 2001, 292:1550–2. 10.1126/science.1059946CrossRefPubMed
29.
go back to reference Kanemitsu H, Tomiyama T, Mori H: Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form.Neurosci Lett 2003, 350:113–6. 10.1016/S0304-3940(03)00898-XCrossRefPubMed Kanemitsu H, Tomiyama T, Mori H: Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form.Neurosci Lett 2003, 350:113–6. 10.1016/S0304-3940(03)00898-XCrossRefPubMed
30.
go back to reference Zlokovic BV, Yamada S, Holtzman D, Ghiso J, Frangione B: Clearance of amyloid beta-peptide from brain: transport or metabolism?Nat Med 2000, 6:718–9.CrossRef Zlokovic BV, Yamada S, Holtzman D, Ghiso J, Frangione B: Clearance of amyloid beta-peptide from brain: transport or metabolism?Nat Med 2000, 6:718–9.CrossRef
31.
go back to reference Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, et al.: Clearance of Alzheimer’s amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier.J Clin Invest 2000, 106:1489–99. 10.1172/JCI10498CrossRefPubMedPubMedCentral Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, et al.: Clearance of Alzheimer’s amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier.J Clin Invest 2000, 106:1489–99. 10.1172/JCI10498CrossRefPubMedPubMedCentral
32.
go back to reference Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, et al.: RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain.Nat Med 2003, 9:907–13. 10.1038/nm890CrossRefPubMed Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, et al.: RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain.Nat Med 2003, 9:907–13. 10.1038/nm890CrossRefPubMed
33.
go back to reference Deane R, Zlokovic BV: Role of the blood–brain barrier in the pathogenesis of Alzheimer’s disease.Curr Alzheimer Res 2007, 4:191–7. 10.2174/156720507780362245CrossRefPubMed Deane R, Zlokovic BV: Role of the blood–brain barrier in the pathogenesis of Alzheimer’s disease.Curr Alzheimer Res 2007, 4:191–7. 10.2174/156720507780362245CrossRefPubMed
34.
go back to reference Zlokovic BV: Clearing amyloid through the blood–brain barrier.J Neurochem 2004, 89:807–11. 10.1111/j.1471-4159.2004.02385.xCrossRefPubMed Zlokovic BV: Clearing amyloid through the blood–brain barrier.J Neurochem 2004, 89:807–11. 10.1111/j.1471-4159.2004.02385.xCrossRefPubMed
35.
go back to reference Silverberg GD, Miller MC, Messier AA, Majmudar S, Machan JT, Donahue JE, et al.: Amyloid deposition and influx transporter expression at the blood–brain barrier increase in normal aging.J Neuropathol Exp Neurol 2010, 69:98–108. 10.1097/NEN.0b013e3181c8ad2fCrossRefPubMed Silverberg GD, Miller MC, Messier AA, Majmudar S, Machan JT, Donahue JE, et al.: Amyloid deposition and influx transporter expression at the blood–brain barrier increase in normal aging.J Neuropathol Exp Neurol 2010, 69:98–108. 10.1097/NEN.0b013e3181c8ad2fCrossRefPubMed
36.
go back to reference Silverberg GD, Messier AA, Miller MC, Machan JT, Majmudar S, Stopa EG, et al.: Amyloid efflux transporter expression at the blood–brain barrier declines in normal aging.J Neuropathol Exp Neurol 2010, 69:1034–43. 10.1097/NEN.0b013e3181f46e25CrossRefPubMed Silverberg GD, Messier AA, Miller MC, Machan JT, Majmudar S, Stopa EG, et al.: Amyloid efflux transporter expression at the blood–brain barrier declines in normal aging.J Neuropathol Exp Neurol 2010, 69:1034–43. 10.1097/NEN.0b013e3181f46e25CrossRefPubMed
37.
go back to reference Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, et al.: Amyloid-beta transporter expression at the blood-cerebrospinal fluid barrier is age-dependent.Fluids Barriers CNS 2011, 8:21. 10.1186/2045-8118-8-21CrossRefPubMedPubMedCentral Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, et al.: Amyloid-beta transporter expression at the blood-cerebrospinal fluid barrier is age-dependent.Fluids Barriers CNS 2011, 8:21. 10.1186/2045-8118-8-21CrossRefPubMedPubMedCentral
38.
go back to reference Davson H, Oldendorf WH: Symposium on membrane transport. Transport in the central nervous system.Proc R Soc Med 1967, 60:326–9.PubMedPubMedCentral Davson H, Oldendorf WH: Symposium on membrane transport. Transport in the central nervous system.Proc R Soc Med 1967, 60:326–9.PubMedPubMedCentral
39.
go back to reference Oldendorf WH, Davson H: Brain extracellular space and the sink action of cerebrospinal fluid. Measurement of rabbit brain extracellular space using sucrose labeled with carbon 14.Arch Neurol 1967, 17:196–205. 10.1001/archneur.1967.00470260086010CrossRefPubMed Oldendorf WH, Davson H: Brain extracellular space and the sink action of cerebrospinal fluid. Measurement of rabbit brain extracellular space using sucrose labeled with carbon 14.Arch Neurol 1967, 17:196–205. 10.1001/archneur.1967.00470260086010CrossRefPubMed
40.
go back to reference Rennels ML, Blaumanis OR, Grady PA: Rapid solute transport throughout the brain via paravascular fluid pathways.Adv Neurol 1990, 52:431–9.PubMed Rennels ML, Blaumanis OR, Grady PA: Rapid solute transport throughout the brain via paravascular fluid pathways.Adv Neurol 1990, 52:431–9.PubMed
41.
go back to reference Johanson CE: Ventricles and Cerebrospinal fluid. In Neuroscience in Medicine. Edited by: Conn PM. Philadelphia: J.B. Lippincott Company; 1995:171–96. Johanson CE: Ventricles and Cerebrospinal fluid. In Neuroscience in Medicine. Edited by: Conn PM. Philadelphia: J.B. Lippincott Company; 1995:171–96.
42.
go back to reference Chiu C, Miller MC, Caralopoulos IN, Worden MS, Brinker T, Gordon ZN, et al.: Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months.Fluids Barriers CNS 2012, 9:3. 10.1186/2045-8118-9-3CrossRefPubMedPubMedCentral Chiu C, Miller MC, Caralopoulos IN, Worden MS, Brinker T, Gordon ZN, et al.: Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months.Fluids Barriers CNS 2012, 9:3. 10.1186/2045-8118-9-3CrossRefPubMedPubMedCentral
43.
go back to reference Silverberg GD, Heit G, Huhn S, Jaffe RA, Chang SD, Bronte-Stewart H, et al.: The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type.Neurology 2001, 57:1763–6. 10.1212/WNL.57.10.1763CrossRefPubMed Silverberg GD, Heit G, Huhn S, Jaffe RA, Chang SD, Bronte-Stewart H, et al.: The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type.Neurology 2001, 57:1763–6. 10.1212/WNL.57.10.1763CrossRefPubMed
44.
go back to reference Silverberg GD, Huhn S, Jaffe RA, Chang SD, Saul T, Heit G, et al.: Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus.J Neurosurg 2002, 97:1271–5. 10.3171/jns.2002.97.6.1271CrossRefPubMed Silverberg GD, Huhn S, Jaffe RA, Chang SD, Saul T, Heit G, et al.: Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus.J Neurosurg 2002, 97:1271–5. 10.3171/jns.2002.97.6.1271CrossRefPubMed
45.
go back to reference Hochwald GM, Nakamura S, Camins MB: The rat in experimental obstructive hydrocephalus.Z Kinderchir 1981, 34:403–10.PubMed Hochwald GM, Nakamura S, Camins MB: The rat in experimental obstructive hydrocephalus.Z Kinderchir 1981, 34:403–10.PubMed
46.
go back to reference Hochwald GM, Sahar A: Effect of spinal fluid pressure on cerebrospinal fluid formation.Exp Neurol 1971, 32:30–40. 10.1016/0014-4886(71)90162-2CrossRefPubMed Hochwald GM, Sahar A: Effect of spinal fluid pressure on cerebrospinal fluid formation.Exp Neurol 1971, 32:30–40. 10.1016/0014-4886(71)90162-2CrossRefPubMed
47.
go back to reference Brinker T, Beck H, Klinge P, Kischnik B, Oi S, Samii M: Sinusoidal intrathecal infusion for assessment of CSF dynamics in kaolin-induced hydrocephalus.Acta Neurochir (Wien) 1998, 140:1069–75. 10.1007/s007010050216CrossRef Brinker T, Beck H, Klinge P, Kischnik B, Oi S, Samii M: Sinusoidal intrathecal infusion for assessment of CSF dynamics in kaolin-induced hydrocephalus.Acta Neurochir (Wien) 1998, 140:1069–75. 10.1007/s007010050216CrossRef
48.
go back to reference Kondziella D, Ludemann W, Brinker T, Sletvold O, Sonnewald U: Alterations in brain metabolism, CNS morphology and CSF dynamics in adult rats with kaolin-induced hydrocephalus.Brain Res 2002, 927:35–41. 10.1016/S0006-8993(01)03320-0CrossRefPubMed Kondziella D, Ludemann W, Brinker T, Sletvold O, Sonnewald U: Alterations in brain metabolism, CNS morphology and CSF dynamics in adult rats with kaolin-induced hydrocephalus.Brain Res 2002, 927:35–41. 10.1016/S0006-8993(01)03320-0CrossRefPubMed
49.
go back to reference Rosen RF, Fritz JJ, Dooyema J, Cintron AF, Hamaguchi T, Lah JJ, et al.: Exogenous seeding of cerebral β-amyloid deposition in βAPP-transgenic rats.J Neurochem 2012, 120:660–6. 10.1111/j.1471-4159.2011.07551.xCrossRefPubMed Rosen RF, Fritz JJ, Dooyema J, Cintron AF, Hamaguchi T, Lah JJ, et al.: Exogenous seeding of cerebral β-amyloid deposition in βAPP-transgenic rats.J Neurochem 2012, 120:660–6. 10.1111/j.1471-4159.2011.07551.xCrossRefPubMed
50.
go back to reference Weller RO, Subash M, Preston SD, Mazanti I, Carare RO: Perivascular drainage of amyloid-beta peptides from thebrain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease.Brain Pathol 2008, 18:253–66.CrossRefPubMed Weller RO, Subash M, Preston SD, Mazanti I, Carare RO: Perivascular drainage of amyloid-beta peptides from thebrain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease.Brain Pathol 2008, 18:253–66.CrossRefPubMed
51.
go back to reference Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO: Cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination-failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy.Neuropathol Appl Neurobiol 2013, 39:593–611. 10.1111/nan.12042CrossRefPubMed Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO: Cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination-failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy.Neuropathol Appl Neurobiol 2013, 39:593–611. 10.1111/nan.12042CrossRefPubMed
Metadata
Title
Kaolin-induced chronic hydrocephalus accelerates amyloid deposition and vascular disease in transgenic rats expressing high levels of human APP
Authors
Gerald D Silverberg
Miles C Miller
Crissey L Pascale
Ilias N Caralopoulos
Yuksel Agca
Cansu Agca
Edward G Stopa
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2015
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/2045-8118-12-2

Other articles of this Issue 1/2015

Fluids and Barriers of the CNS 1/2015 Go to the issue