Skip to main content
Top
Published in: Molecular Autism 1/2014

Open Access 01-12-2014 | Research

Ubiquitin-proteasome dependent degradation of GABAAα1 in autism spectrum disorder

Authors: Amanda Crider, Chirayu D Pandya, Diya Peter, Anthony O Ahmed, Anilkumar Pillai

Published in: Molecular Autism | Issue 1/2014

Login to get access

Abstract

Background

Although the neurobiological basis of autism spectrum disorder (ASD) is not fully understood, recent studies have indicated the potential role of GABAA receptors in the pathophysiology of ASD. GABAA receptors play a crucial role in various neurodevelopmental processes and adult neuroplasticity. However, the mechanism(s) of regulation of GABAA receptors in ASD remains poorly understood.

Methods

Postmortem middle frontal gyrus tissues (13 ASD and 13 control subjects) were used. In vitro studies were performed in primary cortical neurons at days in vitro (DIV) 14. The protein levels were examined by western blotting. Immunofluorescence studies were employed for cellular localization. The gene expression was determined by RT-PCR array and qRT-PCR.

Results

A significant decrease in GABAAα1 protein, but not mRNA levels was found in the middle frontal gyrus of ASD subjects indicating a post-translational regulation of GABAA receptors in ASD. At the cellular level, treatment with proteasomal inhibitor, MG132, or lactacystin significantly increased GABAAα1 protein levels and Lys48-linked polyubiquitination of GABAAα1, but reduced proteasome activity in mouse primary cortical neurons (DIV 14 from E16 embryos). Moreover, treatment with betulinic acid, a proteasome activator significantly decreased GABAAα1 protein levels in cortical neurons indicating the role of polyubiquitination of GABAAα1 proteins with their subsequent proteasomal degradation in cortical neurons. Ubiquitination specific RT-PCR array followed by western blot analysis revealed a significant increase in SYVN1, an endoplasmic reticulum (ER)-associated degradation (ERAD) E3 ubiquitin ligase in the middle frontal gyrus of ASD subjects. In addition, the inhibition of proteasomal activity by MG132 increased the expression of GABAAα1 in the ER. The siRNA knockdown of SYVN1 significantly increased GABAAα1 protein levels in cortical neurons. Moreover, reduced association between SYVN1 and GABAAα1 was found in the middle frontal gyrus of ASD subjects.

Conclusions

SYVN1 plays a critical role as an E3 ligase in the ubiquitin proteasome system (UPS)-mediated GABAAα1 degradation. Thus, inhibition of the ubiquitin-proteasome-mediated GABAAα1 degradation may be an important mechanism for preventing GABAAα1 turnover to maintain GABAAα1 levels and GABA signaling in ASD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ: GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev. 2012, 36: 2044-2055. 10.1016/j.neubiorev.2012.07.005.PubMedCentralCrossRefPubMed Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ: GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev. 2012, 36: 2044-2055. 10.1016/j.neubiorev.2012.07.005.PubMedCentralCrossRefPubMed
2.
go back to reference Rossignol E: Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural Plast. 2011, 2011: 649325.PubMedCentralPubMed Rossignol E: Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural Plast. 2011, 2011: 649325.PubMedCentralPubMed
3.
go back to reference Möhler H: GABA(A) receptor diversity and pharmacology. Cell Tissue Res. 2006, 326: 505-516. 10.1007/s00441-006-0284-3.CrossRefPubMed Möhler H: GABA(A) receptor diversity and pharmacology. Cell Tissue Res. 2006, 326: 505-516. 10.1007/s00441-006-0284-3.CrossRefPubMed
4.
go back to reference Wisden W, Laurie DJ, Monyer H, Seeburg PH: The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci. 1992, 12: 1040-1062.PubMed Wisden W, Laurie DJ, Monyer H, Seeburg PH: The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci. 1992, 12: 1040-1062.PubMed
5.
go back to reference Beneyto M, Abbott A, Hashimoto T, Lewis DA: Lamina-specific alterations in cortical GABA(A) receptor subunit expression in schizophrenia. Cereb Cortex. 2011, 21: 999-1011. 10.1093/cercor/bhq169.PubMedCentralCrossRefPubMed Beneyto M, Abbott A, Hashimoto T, Lewis DA: Lamina-specific alterations in cortical GABA(A) receptor subunit expression in schizophrenia. Cereb Cortex. 2011, 21: 999-1011. 10.1093/cercor/bhq169.PubMedCentralCrossRefPubMed
6.
go back to reference Rudolph U, Crestani F, Benke D, Brünig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Mohler H: Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature. 1999, 401: 796-800. 10.1038/44579.CrossRefPubMed Rudolph U, Crestani F, Benke D, Brünig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Mohler H: Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature. 1999, 401: 796-800. 10.1038/44579.CrossRefPubMed
7.
go back to reference Barker JL, Behar T, Li YX, Liu QY, Ma W, Maric D, Maric I, Schaffner AE, Serafini R, Smith SV, Somogyi R, Vautrin JY, Wen XL, Xian H: GABAergic cells and signals in CNS development. Perspect Dev Neurobiol. 1998, 5: 305-322.PubMed Barker JL, Behar T, Li YX, Liu QY, Ma W, Maric D, Maric I, Schaffner AE, Serafini R, Smith SV, Somogyi R, Vautrin JY, Wen XL, Xian H: GABAergic cells and signals in CNS development. Perspect Dev Neurobiol. 1998, 5: 305-322.PubMed
8.
go back to reference Conti F, Minelli A, Melone M: GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Brain Res Rev. 2004, 45: 196-212. 10.1016/j.brainresrev.2004.03.003.CrossRefPubMed Conti F, Minelli A, Melone M: GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Brain Res Rev. 2004, 45: 196-212. 10.1016/j.brainresrev.2004.03.003.CrossRefPubMed
9.
go back to reference Akerman CJ, Cline HT: Refining the roles of GABAergic signaling during neural circuit formation. Trends Neurosci. 2007, 30: 382-389. 10.1016/j.tins.2007.06.002.CrossRefPubMed Akerman CJ, Cline HT: Refining the roles of GABAergic signaling during neural circuit formation. Trends Neurosci. 2007, 30: 382-389. 10.1016/j.tins.2007.06.002.CrossRefPubMed
10.
go back to reference Di Cristo G: Development of cortical GABAergic circuits and its implications for neurodevelopmental disorders. Clin Genet. 2007, 72: 1-8. 10.1111/j.1399-0004.2007.00822.x.CrossRefPubMed Di Cristo G: Development of cortical GABAergic circuits and its implications for neurodevelopmental disorders. Clin Genet. 2007, 72: 1-8. 10.1111/j.1399-0004.2007.00822.x.CrossRefPubMed
11.
go back to reference Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD: GABA(A) receptor downregulation in brains of subjects with autism. J Autism Dev Disord. 2009, 39: 223-230. 10.1007/s10803-008-0646-7.PubMedCentralCrossRefPubMed Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD: GABA(A) receptor downregulation in brains of subjects with autism. J Autism Dev Disord. 2009, 39: 223-230. 10.1007/s10803-008-0646-7.PubMedCentralCrossRefPubMed
12.
go back to reference Jarome TJ, Helmstetter FJ: The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiol Learn Mem. 2013, 105: 107-116.PubMedCentralCrossRefPubMed Jarome TJ, Helmstetter FJ: The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiol Learn Mem. 2013, 105: 107-116.PubMedCentralCrossRefPubMed
13.
go back to reference Arancibia-Cárcamo IL, Yuen EY, Muir J, Lumb MJ, Michels G, Saliba RS, Smart TG, Yan Z, Kittler JT, Moss SJ: Ubiquitin-dependent lysosomal targeting of GABA(A) receptors regulates neuronal inhibition. Proc Natl Acad Sci U S A. 2009, 106: 17552-17557. 10.1073/pnas.0905502106.PubMedCentralCrossRefPubMed Arancibia-Cárcamo IL, Yuen EY, Muir J, Lumb MJ, Michels G, Saliba RS, Smart TG, Yan Z, Kittler JT, Moss SJ: Ubiquitin-dependent lysosomal targeting of GABA(A) receptors regulates neuronal inhibition. Proc Natl Acad Sci U S A. 2009, 106: 17552-17557. 10.1073/pnas.0905502106.PubMedCentralCrossRefPubMed
14.
go back to reference Zemoura K, Schenkel M, Acuña MA, Yévenes GE, Zeilhofer HU, Benke D: Endoplasmic reticulum-associated degradation controls cell surface expression of γ-aminobutyric acid, type B receptors. J Biol Chem. 2013, 288: 34897-34905. 10.1074/jbc.M113.514745.PubMedCentralCrossRefPubMed Zemoura K, Schenkel M, Acuña MA, Yévenes GE, Zeilhofer HU, Benke D: Endoplasmic reticulum-associated degradation controls cell surface expression of γ-aminobutyric acid, type B receptors. J Biol Chem. 2013, 288: 34897-34905. 10.1074/jbc.M113.514745.PubMedCentralCrossRefPubMed
15.
go back to reference Zemoura K, Benke D: Proteasomal degradation of γ-Aminobutyric AcidB receptors is mediated by the interaction of the GABAB2 C terminus with the proteasomal ATPase Rtp6 and regulated by Neuronal Activity. J Biol Chem. 2014, 289: 7738-7746. 10.1074/jbc.M113.541987.PubMedCentralCrossRefPubMed Zemoura K, Benke D: Proteasomal degradation of γ-Aminobutyric AcidB receptors is mediated by the interaction of the GABAB2 C terminus with the proteasomal ATPase Rtp6 and regulated by Neuronal Activity. J Biol Chem. 2014, 289: 7738-7746. 10.1074/jbc.M113.541987.PubMedCentralCrossRefPubMed
16.
go back to reference Glickman MH, Ciechanover A: The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002, 82: 373-428.CrossRefPubMed Glickman MH, Ciechanover A: The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002, 82: 373-428.CrossRefPubMed
17.
go back to reference Pickart CM: Back to the future with ubiquitin. Cell. 2004, 116: 181-190. 10.1016/S0092-8674(03)01074-2.CrossRefPubMed Pickart CM: Back to the future with ubiquitin. Cell. 2004, 116: 181-190. 10.1016/S0092-8674(03)01074-2.CrossRefPubMed
18.
go back to reference Carper RA, Courchesne E: Localized enlargement of the frontal cortex in early autism. Biol Psychiatry. 2005, 57: 126-133. 10.1016/j.biopsych.2004.11.005.CrossRefPubMed Carper RA, Courchesne E: Localized enlargement of the frontal cortex in early autism. Biol Psychiatry. 2005, 57: 126-133. 10.1016/j.biopsych.2004.11.005.CrossRefPubMed
19.
go back to reference Barendse EM, Hendriks MP, Jansen JF, Backes WH, Hofman PA, Thoonen G, Kessels RP, Aldenkamp AP: Working memory deficits in high-functioning adolescents with autism spectrum disorders: neuropsychological and neuroimaging correlates. J Neurodev Disord. 2013, 5: 14-10.1186/1866-1955-5-14.PubMedCentralCrossRefPubMed Barendse EM, Hendriks MP, Jansen JF, Backes WH, Hofman PA, Thoonen G, Kessels RP, Aldenkamp AP: Working memory deficits in high-functioning adolescents with autism spectrum disorders: neuropsychological and neuroimaging correlates. J Neurodev Disord. 2013, 5: 14-10.1186/1866-1955-5-14.PubMedCentralCrossRefPubMed
20.
21.
go back to reference Howell KR, Hoda MN, Pillai A: VEGF activates NR2B phosphorylation through Dab1 pathway. Neurosci Lett. 2013, 552: 30-34.CrossRefPubMed Howell KR, Hoda MN, Pillai A: VEGF activates NR2B phosphorylation through Dab1 pathway. Neurosci Lett. 2013, 552: 30-34.CrossRefPubMed
22.
go back to reference Hershko A, Ciechanover A: The ubiquitin system. Annu Rev Biochem. 1998, 67: 425-479. 10.1146/annurev.biochem.67.1.425.CrossRefPubMed Hershko A, Ciechanover A: The ubiquitin system. Annu Rev Biochem. 1998, 67: 425-479. 10.1146/annurev.biochem.67.1.425.CrossRefPubMed
23.
go back to reference Tolkacheva T, Boddapati M, Sanfiz A, Tsuchida K, Kimmelman AC, Chan AM: Regulation of PTEN binding to MAGI-2 by two putative phosphorylation sites at threonine 382 and 383. Cancer Res. 2001, 61: 4985-4989.PubMed Tolkacheva T, Boddapati M, Sanfiz A, Tsuchida K, Kimmelman AC, Chan AM: Regulation of PTEN binding to MAGI-2 by two putative phosphorylation sites at threonine 382 and 383. Cancer Res. 2001, 61: 4985-4989.PubMed
24.
go back to reference Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML: Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord. 2001, 31: 537-543. 10.1023/A:1013238809666.CrossRefPubMed Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML: Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord. 2001, 31: 537-543. 10.1023/A:1013238809666.CrossRefPubMed
25.
go back to reference Oblak A, Gibbs TT, Blatt GJ: Decreased GABAA receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism. Autism Res. 2009, 2: 205-219. 10.1002/aur.88.PubMedCentralCrossRefPubMed Oblak A, Gibbs TT, Blatt GJ: Decreased GABAA receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism. Autism Res. 2009, 2: 205-219. 10.1002/aur.88.PubMedCentralCrossRefPubMed
26.
go back to reference Oblak AL, Gibbs TT, Blatt GJ: Reduced GABAA receptors and benzodiazepine binding sites in the posterior cingulate cortex and fusiform gyrus in autism. Brain Res. 2011, 1380: 218-228.PubMedCentralCrossRefPubMed Oblak AL, Gibbs TT, Blatt GJ: Reduced GABAA receptors and benzodiazepine binding sites in the posterior cingulate cortex and fusiform gyrus in autism. Brain Res. 2011, 1380: 218-228.PubMedCentralCrossRefPubMed
27.
go back to reference Kang JQ, Macdonald RL: The GABAA receptor gamma2 subunit R43Q mutation linked to childhood absence epilepsy and febrile seizures causes retention of alpha1beta2gamma2S receptors in the endoplasmic reticulum. J Neurosci. 2004, 24: 8672-8677. 10.1523/JNEUROSCI.2717-04.2004.CrossRefPubMed Kang JQ, Macdonald RL: The GABAA receptor gamma2 subunit R43Q mutation linked to childhood absence epilepsy and febrile seizures causes retention of alpha1beta2gamma2S receptors in the endoplasmic reticulum. J Neurosci. 2004, 24: 8672-8677. 10.1523/JNEUROSCI.2717-04.2004.CrossRefPubMed
28.
go back to reference Gallagher MJ, Shen W, Song L, Macdonald RL: Endoplasmic reticulum retention and associated degradation of a GABAA receptor epilepsy mutation that inserts an aspartate in the M3 transmembrane segment of the alpha1 subunit. J Biol Chem. 2005, 280: 37995-38004. 10.1074/jbc.M508305200.CrossRefPubMed Gallagher MJ, Shen W, Song L, Macdonald RL: Endoplasmic reticulum retention and associated degradation of a GABAA receptor epilepsy mutation that inserts an aspartate in the M3 transmembrane segment of the alpha1 subunit. J Biol Chem. 2005, 280: 37995-38004. 10.1074/jbc.M508305200.CrossRefPubMed
29.
go back to reference Fujita E, Dai H, Tanabe Y, Zhiling Y, Yamagata T, Miyakawa T, Tanokura M, Momoi MY, Momoi T: Autism spectrum disorder is related to endoplasmic reticulum stress induced by mutations in the synaptic cell adhesion molecule, CADM1. Cell Death Dis. 2010, 1: e47-10.1038/cddis.2010.23.PubMedCentralCrossRefPubMed Fujita E, Dai H, Tanabe Y, Zhiling Y, Yamagata T, Miyakawa T, Tanokura M, Momoi MY, Momoi T: Autism spectrum disorder is related to endoplasmic reticulum stress induced by mutations in the synaptic cell adhesion molecule, CADM1. Cell Death Dis. 2010, 1: e47-10.1038/cddis.2010.23.PubMedCentralCrossRefPubMed
Metadata
Title
Ubiquitin-proteasome dependent degradation of GABAAα1 in autism spectrum disorder
Authors
Amanda Crider
Chirayu D Pandya
Diya Peter
Anthony O Ahmed
Anilkumar Pillai
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2014
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/2040-2392-5-45

Other articles of this Issue 1/2014

Molecular Autism 1/2014 Go to the issue