Skip to main content
Top
Published in: Molecular Autism 1/2013

Open Access 01-12-2013 | Research

MeCP2 modulates gene expression pathways in astrocytes

Authors: Dag H Yasui, Huichun Xu, Keith W Dunaway, Janine M LaSalle, Lee-Way Jin, Izumi Maezawa

Published in: Molecular Autism | Issue 1/2013

Login to get access

Abstract

Background

Mutations in MECP2 encoding methyl-CpG-binding protein 2 (MeCP2) cause the X-linked neurodevelopmental disorder Rett syndrome. Rett syndrome patients exhibit neurological symptoms that include irregular breathing, impaired mobility, stereotypic hand movements, and loss of speech. MeCP2 protein epigenetically modulates gene expression through genome-wide binding to methylated CpG dinucleotides. While neurons have the highest level of MeCP2 expression, astrocytes and other cell types also express detectable levels of MeCP2. Recent studies suggest that astrocytes likely control the progression of Rett syndrome. Thus, the object of these studies was to identify gene targets that are affected by loss of MeCP2 binding in astrocytes.

Methods

To identify gene targets of MeCP2 in astrocytes, combined approaches of expression microarray and chromatin immunoprecipitation of MeCP2 followed by sequencing (ChIP-seq) were compared between wild-type and MeCP2-deficient astrocytes. MeCP2 gene targets were compared with genes in the top 10% of MeCP2 binding levels in gene windows either within 2 kb upstream of the transcription start site, or the ‘gene body’ that extended from transcription start to end site, or 2 kb downstream of the transcription end site.

Results

A total of 118 gene transcripts surpassed the highly significant threshold (P < 0.005, fold change > 1.2) in expression microarray analysis from triplicate cultures. The top 10% of genes with the highest levels of MeCP2 binding were identified in two independent ChIP-seq experiments. Together this integrated, genome-wide screen for MeCP2 target genes provided an overlapping list of 19 high-confidence MeCP2-responsive gene transcripts in astrocytes. Validation of candidate target gene transcripts by RT-PCR revealed that expression of Apoc2, Cdon, Csrp and Nrep were consistently responsive to MeCP2 deficiency in astrocytes.

Conclusions

The first MeCP2 ChIP-seq and gene expression microarray analysis in astrocytes reveals a set of potential MeCP2 target genes that may contribute to normal astrocyte signaling, cell division and neuronal support functions, the loss of which may contribute to the Rett syndrome phenotype.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chahrour M, Zoghbi HY: The story of Rett syndrome: from clinic to neurobiology. Neuron. 2007, 56: 422-437.CrossRefPubMed Chahrour M, Zoghbi HY: The story of Rett syndrome: from clinic to neurobiology. Neuron. 2007, 56: 422-437.CrossRefPubMed
2.
go back to reference Hagberg B, Aicardi J, Dias K, Ramos O: A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases. Ann Neurol. 1983, 14: 471-479.CrossRefPubMed Hagberg B, Aicardi J, Dias K, Ramos O: A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases. Ann Neurol. 1983, 14: 471-479.CrossRefPubMed
3.
go back to reference Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY: Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl- CpG-binding protein 2. Nat Genet. 1999, 23: 185-188.CrossRefPubMed Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY: Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl- CpG-binding protein 2. Nat Genet. 1999, 23: 185-188.CrossRefPubMed
4.
go back to reference Mari F, Azimonti S, Bertani I, Bolognese F, Colombo E, Caselli R, Scala E, Longo I, Grosso S, Pescucci C, Ariani F, Hayek G, Balestri P, Bergo A, Badaracco G, Zappella M, Broccoli V, Renieri A, Kilstrup-Nielsen C, Landsberger N: CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet. 2005, 14: 1935-1946.CrossRefPubMed Mari F, Azimonti S, Bertani I, Bolognese F, Colombo E, Caselli R, Scala E, Longo I, Grosso S, Pescucci C, Ariani F, Hayek G, Balestri P, Bergo A, Badaracco G, Zappella M, Broccoli V, Renieri A, Kilstrup-Nielsen C, Landsberger N: CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet. 2005, 14: 1935-1946.CrossRefPubMed
5.
go back to reference Scala E, Ariani F, Mari F, Caselli R, Pescucci C, Longo I, Meloni I, Giachino D, Bruttini M, Hayek G, Zappella M, Renieri A: CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms. J Med Genet. 2005, 42: 103-107.PubMedCentralCrossRefPubMed Scala E, Ariani F, Mari F, Caselli R, Pescucci C, Longo I, Meloni I, Giachino D, Bruttini M, Hayek G, Zappella M, Renieri A: CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms. J Med Genet. 2005, 42: 103-107.PubMedCentralCrossRefPubMed
6.
go back to reference Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA, Spanhol-Rosseto A, Pollazzon M, Buoni S, Spiga O, Ricciardi S, Meloni I, Longo I, Mari F, Broccoli V, Zappella M, Renieri A: FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet. 2008, 83: 89-93.PubMedCentralCrossRefPubMed Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA, Spanhol-Rosseto A, Pollazzon M, Buoni S, Spiga O, Ricciardi S, Meloni I, Longo I, Mari F, Broccoli V, Zappella M, Renieri A: FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet. 2008, 83: 89-93.PubMedCentralCrossRefPubMed
7.
go back to reference Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998, 19: 187-191.CrossRefPubMed Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998, 19: 187-191.CrossRefPubMed
8.
go back to reference Tudor M, Akbarian S, Chen RZ, Jaenisch R: Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci USA. 2002, 99: 15536-15541.PubMedCentralCrossRefPubMed Tudor M, Akbarian S, Chen RZ, Jaenisch R: Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci USA. 2002, 99: 15536-15541.PubMedCentralCrossRefPubMed
9.
go back to reference Yasui DH, Peddada S, Bieda MC, Vallero RO, Hogart A, Nagarajan RP, Thatcher KN, Farnham PJ, Lasalle JM: Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci USA. 2007, 104: 19416-19421.PubMedCentralCrossRefPubMed Yasui DH, Peddada S, Bieda MC, Vallero RO, Hogart A, Nagarajan RP, Thatcher KN, Farnham PJ, Lasalle JM: Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci USA. 2007, 104: 19416-19421.PubMedCentralCrossRefPubMed
10.
go back to reference Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY: MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008, 320: 1224-1229.PubMedCentralCrossRefPubMed Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY: MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008, 320: 1224-1229.PubMedCentralCrossRefPubMed
11.
go back to reference Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ, Andrews R, Bird AP: Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell. 2010, 37: 457-468.PubMedCentralCrossRefPubMed Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ, Andrews R, Bird AP: Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell. 2010, 37: 457-468.PubMedCentralCrossRefPubMed
12.
go back to reference Cohen S, Gabel HW, Hemberg M, Hutchinson AN, Sadacca LA, Ebert DH, Harmin DA, Greenberg RS, Verdine VK, Zhou Z, Wetsel WC, West AE, Greenberg ME: Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron. 2011, 72: 72-85.PubMedCentralCrossRefPubMed Cohen S, Gabel HW, Hemberg M, Hutchinson AN, Sadacca LA, Ebert DH, Harmin DA, Greenberg RS, Verdine VK, Zhou Z, Wetsel WC, West AE, Greenberg ME: Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron. 2011, 72: 72-85.PubMedCentralCrossRefPubMed
13.
go back to reference Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T: Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet. 2005, 37: 31-40.CrossRefPubMed Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T: Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet. 2005, 37: 31-40.CrossRefPubMed
14.
go back to reference Yasui DH, Scoles HA, Horike S, Meguro-Horike M, Dunaway KW, Schroeder DI, Lasalle JM: 15q11.2-13.3 chromatin analysis reveals epigenetic regulation of CHRNA7 with deficiencies in Rett and autism brain. Hum Mol Genet. 2011, 20: 4311-4323.PubMedCentralCrossRefPubMed Yasui DH, Scoles HA, Horike S, Meguro-Horike M, Dunaway KW, Schroeder DI, Lasalle JM: 15q11.2-13.3 chromatin analysis reveals epigenetic regulation of CHRNA7 with deficiencies in Rett and autism brain. Hum Mol Genet. 2011, 20: 4311-4323.PubMedCentralCrossRefPubMed
15.
go back to reference Nikitina T, Ghosh RP, Horowitz-Scherer RA, Hansen JC, Grigoryev SA, Woodcock CL: MeCP2-chromatin interactions include the formation of chromatosome-like structures and are altered in mutations causing Rett syndrome. J Biol Chem. 2007, 282: 28237-28245.CrossRefPubMed Nikitina T, Ghosh RP, Horowitz-Scherer RA, Hansen JC, Grigoryev SA, Woodcock CL: MeCP2-chromatin interactions include the formation of chromatosome-like structures and are altered in mutations causing Rett syndrome. J Biol Chem. 2007, 282: 28237-28245.CrossRefPubMed
16.
go back to reference Young JI, Hong EP, Castle JC, Crespo-Barreto J, Bowman AB, Rose MF, Kang D, Richman R, Johnson JM, Berget S, Zoghbi HY: Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci USA. 2005, 102: 17551-17558.PubMedCentralCrossRefPubMed Young JI, Hong EP, Castle JC, Crespo-Barreto J, Bowman AB, Rose MF, Kang D, Richman R, Johnson JM, Berget S, Zoghbi HY: Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci USA. 2005, 102: 17551-17558.PubMedCentralCrossRefPubMed
17.
go back to reference Guy J, Hendrich B, Holmes M, Martin JE, Bird A: A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet. 2001, 27: 322-326.CrossRefPubMed Guy J, Hendrich B, Holmes M, Martin JE, Bird A: A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet. 2001, 27: 322-326.CrossRefPubMed
18.
go back to reference Chen RZ, Akbarian S, Tudor M, Jaenisch R: Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet. 2001, 27: 327-331.CrossRefPubMed Chen RZ, Akbarian S, Tudor M, Jaenisch R: Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet. 2001, 27: 327-331.CrossRefPubMed
19.
go back to reference Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Greenberg ME: Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science. 2003, 302: 885-889.CrossRefPubMed Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Greenberg ME: Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science. 2003, 302: 885-889.CrossRefPubMed
20.
go back to reference Zhou Z, Hong EJ, Cohen S, Zhao WN, Ho HY, Schmidt L, Chen WG, Lin Y, Savner E, Griffith EC, Hu L, Steen JA, Weitz CJ, Greenberg ME: Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron. 2006, 52: 255-269.PubMedCentralCrossRefPubMed Zhou Z, Hong EJ, Cohen S, Zhao WN, Ho HY, Schmidt L, Chen WG, Lin Y, Savner E, Griffith EC, Hu L, Steen JA, Weitz CJ, Greenberg ME: Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron. 2006, 52: 255-269.PubMedCentralCrossRefPubMed
21.
go back to reference Maezawa I, Swanberg S, Harvey D, LaSalle JM, Jin LW: Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci. 2009, 29: 5051-5061.PubMedCentralCrossRefPubMed Maezawa I, Swanberg S, Harvey D, LaSalle JM, Jin LW: Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci. 2009, 29: 5051-5061.PubMedCentralCrossRefPubMed
22.
go back to reference Lioy DT, Garg SK, Monaghan CE, Raber J, Foust KD, Kaspar BK, Hirrlinger PG, Kirchhoff F, Bissonnette JM, Ballas N, Mandel G: A role for glia in the progression of Rett's syndrome. Nature. 2011, 475: 497-500.PubMedCentralCrossRefPubMed Lioy DT, Garg SK, Monaghan CE, Raber J, Foust KD, Kaspar BK, Hirrlinger PG, Kirchhoff F, Bissonnette JM, Ballas N, Mandel G: A role for glia in the progression of Rett's syndrome. Nature. 2011, 475: 497-500.PubMedCentralCrossRefPubMed
23.
go back to reference Traynor J, Agarwal P, Lazzeroni L, Francke U: Gene expression patterns vary in clonal cell cultures from Rett syndrome females with eight different MECP2 mutations. BMC Med Genet. 2002, 3: 12-PubMedCentralCrossRefPubMed Traynor J, Agarwal P, Lazzeroni L, Francke U: Gene expression patterns vary in clonal cell cultures from Rett syndrome females with eight different MECP2 mutations. BMC Med Genet. 2002, 3: 12-PubMedCentralCrossRefPubMed
24.
go back to reference Peddada S, Yasui DH, LaSalle JM: Inhibitors of differentiation (ID1, ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated in Rett syndrome. Hum Mol Genet. 2006, 15: 2003-2014.PubMedCentralCrossRefPubMed Peddada S, Yasui DH, LaSalle JM: Inhibitors of differentiation (ID1, ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated in Rett syndrome. Hum Mol Genet. 2006, 15: 2003-2014.PubMedCentralCrossRefPubMed
25.
go back to reference Kriaucionis S, Paterson A, Curtis J, Guy J, Macleod N, Bird A: Gene expression analysis exposes mitochondrial abnormalities in a mouse model of Rett syndrome. Mol Cell Biol. 2006, 26: 5033-5042.PubMedCentralCrossRefPubMed Kriaucionis S, Paterson A, Curtis J, Guy J, Macleod N, Bird A: Gene expression analysis exposes mitochondrial abnormalities in a mouse model of Rett syndrome. Mol Cell Biol. 2006, 26: 5033-5042.PubMedCentralCrossRefPubMed
26.
go back to reference Jordan C, Li HH, Kwan HC, Francke U: Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets. BMC Med Genet. 2007, 8: 36-PubMedCentralCrossRefPubMed Jordan C, Li HH, Kwan HC, Francke U: Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets. BMC Med Genet. 2007, 8: 36-PubMedCentralCrossRefPubMed
27.
go back to reference Gibson JH, Slobedman B, NH K, Williamson SL, Minchenko D, El-Osta A, Stern JL, Christodoulou J: Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neurosci. 2010, 11: 53-PubMedCentralCrossRefPubMed Gibson JH, Slobedman B, NH K, Williamson SL, Minchenko D, El-Osta A, Stern JL, Christodoulou J: Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neurosci. 2010, 11: 53-PubMedCentralCrossRefPubMed
28.
go back to reference Maezawa I, Nivison M, Montine KS, Maeda N, Montine TJ: Neurotoxicity from innate immune response is greatest with targeted replacement of E4 allele of apolipoprotein E gene and is mediated by microglial p38MAPK. FASEB J. 2006, 20: 797-799.PubMed Maezawa I, Nivison M, Montine KS, Maeda N, Montine TJ: Neurotoxicity from innate immune response is greatest with targeted replacement of E4 allele of apolipoprotein E gene and is mediated by microglial p38MAPK. FASEB J. 2006, 20: 797-799.PubMed
29.
go back to reference Wu Z, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F: A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc. 2004, 99: 909-917.CrossRef Wu Z, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F: A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc. 2004, 99: 909-917.CrossRef
30.
go back to reference Reiner A, Yekutieli D, Benjamini Y: Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics. 2003, 19: 368-375.CrossRefPubMed Reiner A, Yekutieli D, Benjamini Y: Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics. 2003, 19: 368-375.CrossRefPubMed
31.
go back to reference Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4: P3-CrossRefPubMed Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4: P3-CrossRefPubMed
32.
33.
go back to reference Blahnik KR, Dou L, O'Geen H, McPhillips T, Xu X, Cao AR, Iyengar S, Nicolet CM, Ludascher B, Korf I, Farnham PJ: Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Res. 2010, 38: e13-PubMedCentralCrossRefPubMed Blahnik KR, Dou L, O'Geen H, McPhillips T, Xu X, Cao AR, Iyengar S, Nicolet CM, Ludascher B, Korf I, Farnham PJ: Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Res. 2010, 38: e13-PubMedCentralCrossRefPubMed
34.
go back to reference Hon G, Ren B, Wang W: ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. PLoS Comput Biol. 2008, 4: e1000201-PubMedCentralCrossRefPubMed Hon G, Ren B, Wang W: ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. PLoS Comput Biol. 2008, 4: e1000201-PubMedCentralCrossRefPubMed
35.
go back to reference Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9: R137-PubMedCentralCrossRefPubMed Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9: R137-PubMedCentralCrossRefPubMed
36.
go back to reference Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008, 28: 264-278.CrossRefPubMed Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008, 28: 264-278.CrossRefPubMed
37.
go back to reference Delgado IJ, Kim DS, Thatcher KN, LaSalle JM, Van den Veyver IB: Expression profiling of clonal lymphocyte cell cultures from Rett syndrome patients. BMC Med Genet. 2006, 7: 61-PubMedCentralCrossRefPubMed Delgado IJ, Kim DS, Thatcher KN, LaSalle JM, Van den Veyver IB: Expression profiling of clonal lymphocyte cell cultures from Rett syndrome patients. BMC Med Genet. 2006, 7: 61-PubMedCentralCrossRefPubMed
38.
go back to reference Mackenzie B, Erickson JD: Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch. 2004, 447: 784-795.CrossRefPubMed Mackenzie B, Erickson JD: Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch. 2004, 447: 784-795.CrossRefPubMed
39.
go back to reference Melone M, Quagliano F, Barbaresi P, Varoqui H, Erickson JD, Conti F: Localization of the glutamine transporter SNAT1 in rat cerebral cortex and neighboring structures, with a note on its localization in human cortex. Cereb Cortex. 2004, 14: 562-574.CrossRefPubMed Melone M, Quagliano F, Barbaresi P, Varoqui H, Erickson JD, Conti F: Localization of the glutamine transporter SNAT1 in rat cerebral cortex and neighboring structures, with a note on its localization in human cortex. Cereb Cortex. 2004, 14: 562-574.CrossRefPubMed
40.
go back to reference Briscoe J, Pierani A, Jessell TM, Ericson J: A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell. 2000, 101: 435-445.CrossRefPubMed Briscoe J, Pierani A, Jessell TM, Ericson J: A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell. 2000, 101: 435-445.CrossRefPubMed
41.
go back to reference Jay P, Rougeulle C, Massacrier A, Moncla A, Mattei MG, Malzac P, Roeckel N, Taviaux S, Lefranc JL, Cau P, Berta P, Lalande M, Muscatelli F: The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet. 1997, 17: 357-361.CrossRefPubMed Jay P, Rougeulle C, Massacrier A, Moncla A, Mattei MG, Malzac P, Roeckel N, Taviaux S, Lefranc JL, Cau P, Berta P, Lalande M, Muscatelli F: The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet. 1997, 17: 357-361.CrossRefPubMed
43.
go back to reference Ballas N, Lioy DT, Grunseich C, Mandel G: Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci. 2009, 12: 311-317.PubMedCentralCrossRefPubMed Ballas N, Lioy DT, Grunseich C, Mandel G: Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci. 2009, 12: 311-317.PubMedCentralCrossRefPubMed
44.
go back to reference Matsumoto A, Motozaki K, Seki T, Sasaki R, Kawabe T: Expression of human brain carboxypeptidase B, a possible cleaving enzyme for beta-amyloid precursor protein, in peripheral fluids. Neurosci Res. 2001, 39: 313-317.CrossRefPubMed Matsumoto A, Motozaki K, Seki T, Sasaki R, Kawabe T: Expression of human brain carboxypeptidase B, a possible cleaving enzyme for beta-amyloid precursor protein, in peripheral fluids. Neurosci Res. 2001, 39: 313-317.CrossRefPubMed
45.
go back to reference Matsumoto H, Nagasaka T, Hattori A, Rogi T, Tsuruoka N, Mizutani S, Tsujimoto M: Expression of placental leucine aminopeptidase/oxytocinase in neuronal cells and its action on neuronal peptides. Eur J Biochem. 2001, 268: 3259-3266.CrossRefPubMed Matsumoto H, Nagasaka T, Hattori A, Rogi T, Tsuruoka N, Mizutani S, Tsujimoto M: Expression of placental leucine aminopeptidase/oxytocinase in neuronal cells and its action on neuronal peptides. Eur J Biochem. 2001, 268: 3259-3266.CrossRefPubMed
46.
go back to reference Ma L, Yu YM, Guo Y, Hart RP, Schachner M: Cysteine- and glycine-rich protein 1a is involved in spinal cord regeneration in adult zebrafish. Eur J Neurosci. 2012, 35: 353-365.PubMedCentralCrossRefPubMed Ma L, Yu YM, Guo Y, Hart RP, Schachner M: Cysteine- and glycine-rich protein 1a is involved in spinal cord regeneration in adult zebrafish. Eur J Neurosci. 2012, 35: 353-365.PubMedCentralCrossRefPubMed
47.
go back to reference Bae GU, Domene S, Roessler E, Schachter K, Kang JS, Muenke M, Krauss RS: Mutations in CDON, encoding a hedgehog receptor, result in holoprosencephaly and defective interactions with other hedgehog receptors. Am J Hum Genet. 2011, 89: 231-240.PubMedCentralCrossRefPubMed Bae GU, Domene S, Roessler E, Schachter K, Kang JS, Muenke M, Krauss RS: Mutations in CDON, encoding a hedgehog receptor, result in holoprosencephaly and defective interactions with other hedgehog receptors. Am J Hum Genet. 2011, 89: 231-240.PubMedCentralCrossRefPubMed
49.
go back to reference Sharma M, Li X, Wang Y, Zarnegar M, Huang CY, Palvimo JJ, Lim B, Sun Z: hZimp10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci. EMBO J. 2003, 22: 6101-6114.PubMedCentralCrossRefPubMed Sharma M, Li X, Wang Y, Zarnegar M, Huang CY, Palvimo JJ, Lim B, Sun Z: hZimp10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci. EMBO J. 2003, 22: 6101-6114.PubMedCentralCrossRefPubMed
50.
go back to reference Swanberg SE, Nagarajan RP, Peddada S, Yasui DH, LaSalle JM: Reciprocal co-regulation of EGR2 and MECP2 is disrupted in Rett syndrome and autism. Hum Mol Genet. 2009, 18: 525-534.PubMedCentralCrossRefPubMed Swanberg SE, Nagarajan RP, Peddada S, Yasui DH, LaSalle JM: Reciprocal co-regulation of EGR2 and MECP2 is disrupted in Rett syndrome and autism. Hum Mol Genet. 2009, 18: 525-534.PubMedCentralCrossRefPubMed
51.
go back to reference Santello M, Cali C, Bezzi P: Gliotransmission and the tripartite synapse. Adv Exp Med Biol. 2012, 970: 307-331.CrossRefPubMed Santello M, Cali C, Bezzi P: Gliotransmission and the tripartite synapse. Adv Exp Med Biol. 2012, 970: 307-331.CrossRefPubMed
52.
go back to reference Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB, Guyenet PG, Kipnis J: Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature. 2012, 484: 105-109.PubMedCentralCrossRefPubMed Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB, Guyenet PG, Kipnis J: Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature. 2012, 484: 105-109.PubMedCentralCrossRefPubMed
53.
go back to reference Boulanger LM, Shatz CJ: Immune signalling in neural development, synaptic plasticity and disease. Nat Rev Neurosci. 2004, 5: 521-531.CrossRefPubMed Boulanger LM, Shatz CJ: Immune signalling in neural development, synaptic plasticity and disease. Nat Rev Neurosci. 2004, 5: 521-531.CrossRefPubMed
54.
go back to reference Itoh M, Ide S, Takashima S, Kudo S, Nomura Y, Segawa M, Kubota T, Mori H, Tanaka S, Horie H, Tanabe Y, Goto Y: Methyl CpG-binding protein 2 (a mutation of which causes Rett syndrome) directly regulates insulin-like growth factor binding protein 3 in mouse and human brains. J Neuropathol Exp Neurol. 2007, 66: 117-123.CrossRefPubMed Itoh M, Ide S, Takashima S, Kudo S, Nomura Y, Segawa M, Kubota T, Mori H, Tanaka S, Horie H, Tanabe Y, Goto Y: Methyl CpG-binding protein 2 (a mutation of which causes Rett syndrome) directly regulates insulin-like growth factor binding protein 3 in mouse and human brains. J Neuropathol Exp Neurol. 2007, 66: 117-123.CrossRefPubMed
55.
go back to reference Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, Flannery R, Jaenisch R, Sur M: Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA. 2009, 106: 2029-2034.PubMedCentralCrossRefPubMed Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, Flannery R, Jaenisch R, Sur M: Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA. 2009, 106: 2029-2034.PubMedCentralCrossRefPubMed
56.
go back to reference Kitamura M, Itoh K, Matsumoto A, Hayashi Y, Sasaki R, Imai Y, Itoh H: Prenatal ionizing radiation-induced apoptosis of the developing murine brain with special references to the expression of some proteins. Kobe J Med Sci. 2001, 47: 59-76.PubMed Kitamura M, Itoh K, Matsumoto A, Hayashi Y, Sasaki R, Imai Y, Itoh H: Prenatal ionizing radiation-induced apoptosis of the developing murine brain with special references to the expression of some proteins. Kobe J Med Sci. 2001, 47: 59-76.PubMed
Metadata
Title
MeCP2 modulates gene expression pathways in astrocytes
Authors
Dag H Yasui
Huichun Xu
Keith W Dunaway
Janine M LaSalle
Lee-Way Jin
Izumi Maezawa
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2013
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/2040-2392-4-3

Other articles of this Issue 1/2013

Molecular Autism 1/2013 Go to the issue