Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2013

Open Access 01-12-2013 | Research

A pilot open-label trial of minocycline in patients with autism and regressive features

Authors: Carlos A Pardo, Ashura Buckley, Audrey Thurm, Li-Ching Lee, Arun Azhagiri, David M Neville, Susan E Swedo

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2013

Login to get access

Abstract

Background

Minocycline is a tetracycline derivative that readily crosses the blood brain barrier and appears to have beneficial effects on neuroinflammation, microglial activation and neuroprotection in a variety of neurological disorders. Both microglial activation and neuroinflammation have been reported to be associated with autism. The study was designed to evaluate the effects of minocycline treatment on markers of neuroinflammation and autism symptomatology in children with autism and a history of developmental regression.

Methods

Eleven children were enrolled in an open-label trial of six months of minocycline (1.4 mg/kg). Ten children completed the trial. Behavioral measures were collected and cerebrospinal fluid (CSF), serum and plasma were obtained before and at the end of minocycline treatment and were analyzed for markers of neuroinflammation.

Results

Clinical improvements were negligible. The laboratory assays demonstrated significant changes in the expression profile of the truncated form of brain derived neurotrophic factor (BDNF) (P = 0.042) and hepatic growth factor (HGF) (P = 0.028) in CSF. In serum, the ratio of the truncated BDNF form and α-2 macroglobulin (α-2 M), was also significantly lower (P = 0.028) while the mature BDNF/α-2 M ratio revealed no difference following treatment. Only the chemokine CXCL8 (IL-8) was significantly different (P = 0.047) in serum while no significant changes were observed in CSF or serum in chemokines such as CCL2 (MCP-1) or cytokines such as TNF-α, CD40L, IL-6, IFN-γ and IL-1β when pre- and post-treatment levels of these proteins were compared. No significant pre- and post-treatment changes were seen in the profiles of plasma metalloproteinases, putative targets of the effects of minocycline.

Conclusions

Changes in the pre- and post-treatment profiles of BDNF in CSF and blood, HGF in CSF and CXCL8 (IL-8) in serum, suggest that minocycline may have effects in the CNS by modulating the production of neurotrophic growth factors. However, in this small group of children, no clinical improvements were observed during or after the six months of minocycline administration.

Trial registration

Appendix
Available only for authorised users
Literature
2.
go back to reference Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de WJ: Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun. 2011, 25: 40-45. 10.1016/j.bbi.2010.08.003.PubMedCentralCrossRefPubMed Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de WJ: Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun. 2011, 25: 40-45. 10.1016/j.bbi.2010.08.003.PubMedCentralCrossRefPubMed
3.
go back to reference Ozonoff S, Iosif AM, Baguio F, Cook IC, Hill MM, Hutman T, Rogers SJ, Rozga A, Sangha S, Sigman M, Steinfeld MB, Young GS: A prospective study of the emergence of early behavioral signs of autism. J Am Acad Child Adolesc Psychiatry. 2010, 49: 256-266.PubMedCentralPubMed Ozonoff S, Iosif AM, Baguio F, Cook IC, Hill MM, Hutman T, Rogers SJ, Rozga A, Sangha S, Sigman M, Steinfeld MB, Young GS: A prospective study of the emergence of early behavioral signs of autism. J Am Acad Child Adolesc Psychiatry. 2010, 49: 256-266.PubMedCentralPubMed
4.
go back to reference Laurence JA, Fatemi SH: Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum. 2005, 4: 206-210. 10.1080/14734220500208846.CrossRefPubMed Laurence JA, Fatemi SH: Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum. 2005, 4: 206-210. 10.1080/14734220500208846.CrossRefPubMed
5.
go back to reference Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M: Elevated immune response in the brain of autistic patients. J Neuroimmunol. 2009, 207: 111-116. 10.1016/j.jneuroim.2008.12.002.PubMedCentralCrossRefPubMed Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M: Elevated immune response in the brain of autistic patients. J Neuroimmunol. 2009, 207: 111-116. 10.1016/j.jneuroim.2008.12.002.PubMedCentralCrossRefPubMed
6.
go back to reference Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchesne E, Everall IP: Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry. 2010, 68: 368-376. 10.1016/j.biopsych.2010.05.024.CrossRefPubMed Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchesne E, Everall IP: Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry. 2010, 68: 368-376. 10.1016/j.biopsych.2010.05.024.CrossRefPubMed
7.
go back to reference Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA: Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005, 57: 67-81. 10.1002/ana.20315.CrossRefPubMed Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA: Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005, 57: 67-81. 10.1002/ana.20315.CrossRefPubMed
8.
go back to reference Ransohoff RM: Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity. 2009, 31: 711-721. 10.1016/j.immuni.2009.09.010.PubMedCentralCrossRefPubMed Ransohoff RM: Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity. 2009, 31: 711-721. 10.1016/j.immuni.2009.09.010.PubMedCentralCrossRefPubMed
9.
go back to reference Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A: The role of microglia in the healthy brain. J Neurosci. 2011, 31: 16064-16069. 10.1523/JNEUROSCI.4158-11.2011.CrossRefPubMed Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A: The role of microglia in the healthy brain. J Neurosci. 2011, 31: 16064-16069. 10.1523/JNEUROSCI.4158-11.2011.CrossRefPubMed
10.
go back to reference Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev. 2011, 91: 461-553. 10.1152/physrev.00011.2010.CrossRefPubMed Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev. 2011, 91: 461-553. 10.1152/physrev.00011.2010.CrossRefPubMed
11.
go back to reference Sierra A, Encinas JM, Deudero JJ, Chnacey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M: Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010, 7: 483-495. 10.1016/j.stem.2010.08.014.PubMedCentralCrossRefPubMed Sierra A, Encinas JM, Deudero JJ, Chnacey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M: Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010, 7: 483-495. 10.1016/j.stem.2010.08.014.PubMedCentralCrossRefPubMed
12.
go back to reference Derecki NC, Cronk JC, Kipnis J: The role of microglia in brain maintanance: Implications for Rett syndrome. Trends Immunol. 2013, 34: 144-150. 10.1016/j.it.2012.10.002.PubMedCentralCrossRefPubMed Derecki NC, Cronk JC, Kipnis J: The role of microglia in brain maintanance: Implications for Rett syndrome. Trends Immunol. 2013, 34: 144-150. 10.1016/j.it.2012.10.002.PubMedCentralCrossRefPubMed
13.
go back to reference Amaral DG, Schumann CM, Nordahl CW: Neuroanatomy of autism. Trends Neurosci. 2008, 31: 137-145. 10.1016/j.tins.2007.12.005.CrossRefPubMed Amaral DG, Schumann CM, Nordahl CW: Neuroanatomy of autism. Trends Neurosci. 2008, 31: 137-145. 10.1016/j.tins.2007.12.005.CrossRefPubMed
14.
go back to reference Alano CC, Kauppinen TM, Valls AV, Swanson RA: Minocycline inhibits poly (ADP-ribose) polymerase-1 at nanomolar concentrations. Proc Natl Acad Sci USA. 2006, 103: 9685-9690. 10.1073/pnas.0600554103.PubMedCentralCrossRefPubMed Alano CC, Kauppinen TM, Valls AV, Swanson RA: Minocycline inhibits poly (ADP-ribose) polymerase-1 at nanomolar concentrations. Proc Natl Acad Sci USA. 2006, 103: 9685-9690. 10.1073/pnas.0600554103.PubMedCentralCrossRefPubMed
15.
go back to reference Blum D, Chtarto A, Tenenbaum L, Brotchi J, Levivier M: Clinical potential of minocycline for neurodegenerative disorders. Neurobiol Dis. 2004, 17: 359-366. 10.1016/j.nbd.2004.07.012.CrossRefPubMed Blum D, Chtarto A, Tenenbaum L, Brotchi J, Levivier M: Clinical potential of minocycline for neurodegenerative disorders. Neurobiol Dis. 2004, 17: 359-366. 10.1016/j.nbd.2004.07.012.CrossRefPubMed
16.
go back to reference Gordon PH, Moore DH, Gelinas DF, Qualls C, Meister ME, Werner J, Mendoza M, Mass J, Kushner G, Miller RG: Placebo-controlled phase I/II studies of minocycline in amyotrophic lateral sclerosis. Neurology. 2004, 62: 1845-1847. 10.1212/01.WNL.0000125321.92112.7E.CrossRefPubMed Gordon PH, Moore DH, Gelinas DF, Qualls C, Meister ME, Werner J, Mendoza M, Mass J, Kushner G, Miller RG: Placebo-controlled phase I/II studies of minocycline in amyotrophic lateral sclerosis. Neurology. 2004, 62: 1845-1847. 10.1212/01.WNL.0000125321.92112.7E.CrossRefPubMed
17.
go back to reference Gordon PH, Moore DH, Miller RG, Florence JM, Verheijde JL, Doorish C, Hilton JF, Spitalny GM, Macarthur RB, Mitsumoto H, Neville HE, Boylan K, Mozaffar T, Belsh JM, Ravits J, Bedlack RS, Graves MC, McCluskey LF, Barohn RJ, Tandan R, Western ALS Study Group: Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 2007, 6: 1045-1053. 10.1016/S1474-4422(07)70270-3.CrossRefPubMed Gordon PH, Moore DH, Miller RG, Florence JM, Verheijde JL, Doorish C, Hilton JF, Spitalny GM, Macarthur RB, Mitsumoto H, Neville HE, Boylan K, Mozaffar T, Belsh JM, Ravits J, Bedlack RS, Graves MC, McCluskey LF, Barohn RJ, Tandan R, Western ALS Study Group: Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 2007, 6: 1045-1053. 10.1016/S1474-4422(07)70270-3.CrossRefPubMed
18.
go back to reference Kim HS, Suh YH: Minocycline and neurodegenerative diseases. Behav Brain Res. 2009, 196: 168-179. 10.1016/j.bbr.2008.09.040.CrossRefPubMed Kim HS, Suh YH: Minocycline and neurodegenerative diseases. Behav Brain Res. 2009, 196: 168-179. 10.1016/j.bbr.2008.09.040.CrossRefPubMed
19.
go back to reference Nutile-McMenemy N, Elfenbein A, Deleo JA: Minocycline decreases in vitro microglial motility, beta1-integrin, and Kv1.3 channel expression. J Neurochem. 2007, 103: 2035-2046. 10.1111/j.1471-4159.2007.04889.x.CrossRefPubMed Nutile-McMenemy N, Elfenbein A, Deleo JA: Minocycline decreases in vitro microglial motility, beta1-integrin, and Kv1.3 channel expression. J Neurochem. 2007, 103: 2035-2046. 10.1111/j.1471-4159.2007.04889.x.CrossRefPubMed
20.
21.
go back to reference Orsucci D, Calsolaro V, Mancuso M, Siciliano G: Neuroprotective effects of tetracyclines: molecular targets, animal models and human disease. CNS Neurol Disord Drug Targets. 2009, 8: 222-231. 10.2174/187152709788680689.CrossRefPubMed Orsucci D, Calsolaro V, Mancuso M, Siciliano G: Neuroprotective effects of tetracyclines: molecular targets, animal models and human disease. CNS Neurol Disord Drug Targets. 2009, 8: 222-231. 10.2174/187152709788680689.CrossRefPubMed
22.
go back to reference Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM: The promise of minocycline in neurology. Lancet Neurol. 2004, 3: 744-751. 10.1016/S1474-4422(04)00937-8.CrossRefPubMed Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM: The promise of minocycline in neurology. Lancet Neurol. 2004, 3: 744-751. 10.1016/S1474-4422(04)00937-8.CrossRefPubMed
23.
go back to reference Plane JM, Liu R, Wang TW, Silverstein FS, Parent JM: Neonatal hypoxic-ischemic injury increases forebrain subventricular zone neurogenesis in the mouse. Neurobiol Dis. 2004, 16: 585-595. 10.1016/j.nbd.2004.04.003.CrossRefPubMed Plane JM, Liu R, Wang TW, Silverstein FS, Parent JM: Neonatal hypoxic-ischemic injury increases forebrain subventricular zone neurogenesis in the mouse. Neurobiol Dis. 2004, 16: 585-595. 10.1016/j.nbd.2004.04.003.CrossRefPubMed
24.
go back to reference Hinwood M, Morandini J, Day TA, Walker FR: Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex. 2012, 22: 1442-1454. 10.1093/cercor/bhr229.CrossRefPubMed Hinwood M, Morandini J, Day TA, Walker FR: Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex. 2012, 22: 1442-1454. 10.1093/cercor/bhr229.CrossRefPubMed
25.
go back to reference Metz LM, Zhang Y, Yeung M, Patry DG, Bell RB, Stoian CA, Yong VW, Patten SB, Duquette P, Antel JP, Mitchell JR: Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol. 2004, 55: 756-10.1002/ana.20111.CrossRefPubMed Metz LM, Zhang Y, Yeung M, Patry DG, Bell RB, Stoian CA, Yong VW, Patten SB, Duquette P, Antel JP, Mitchell JR: Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol. 2004, 55: 756-10.1002/ana.20111.CrossRefPubMed
26.
go back to reference Galpern WR, Singhal AB: Neuroprotection: lessons from a spectrum of neurological disorders. Int J Stroke. 2006, 1: 97-99. 10.1111/j.1747-4949.2006.00023.x.CrossRefPubMed Galpern WR, Singhal AB: Neuroprotection: lessons from a spectrum of neurological disorders. Int J Stroke. 2006, 1: 97-99. 10.1111/j.1747-4949.2006.00023.x.CrossRefPubMed
27.
go back to reference Gordon PH, Cheung YK, Levin B, Andrews H, Doorish C, Macarthur RB, Montes J, Bednarz K, Florence J, Rowin J, Boylan K, Mozaffar T, Tandan R, Mitsumoto H, Kelvin EA, Chapin J, Bedlack R, Rivner M, McCluskey LF, Pestronk A, Graves M, Sorenson EJ, Barohn RJ, Belsh JM, Lou JS, Levine T, Saperstein D, Miller RG, Scelsa SN, Combination Drug Selection Trial Study Group: A novel, efficient, randomized selection trial comparing combinations of drug therapy for ALS. Amyotroph Lateral Scler. 2008, 9: 212-222. 10.1080/17482960802195632.PubMedCentralCrossRefPubMed Gordon PH, Cheung YK, Levin B, Andrews H, Doorish C, Macarthur RB, Montes J, Bednarz K, Florence J, Rowin J, Boylan K, Mozaffar T, Tandan R, Mitsumoto H, Kelvin EA, Chapin J, Bedlack R, Rivner M, McCluskey LF, Pestronk A, Graves M, Sorenson EJ, Barohn RJ, Belsh JM, Lou JS, Levine T, Saperstein D, Miller RG, Scelsa SN, Combination Drug Selection Trial Study Group: A novel, efficient, randomized selection trial comparing combinations of drug therapy for ALS. Amyotroph Lateral Scler. 2008, 9: 212-222. 10.1080/17482960802195632.PubMedCentralCrossRefPubMed
28.
go back to reference Lewitt PA, Guttman M, Tetrud JW, Tuite PJ, Mori A, Chaikin P, Sussman NM: Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces "off" time in Parkinson's disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol. 2008, 63: 295-302. 10.1002/ana.21315.CrossRefPubMed Lewitt PA, Guttman M, Tetrud JW, Tuite PJ, Mori A, Chaikin P, Sussman NM: Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces "off" time in Parkinson's disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol. 2008, 63: 295-302. 10.1002/ana.21315.CrossRefPubMed
29.
go back to reference Hayakawa K, Mishima K, Nozako M, Hazekawa M, Mishima S, Fujioka M, Orito K, Egashira N, Iwasaki K, Fujiwara M: Delayed treatment with minocycline ameliorates neurologic impairment through activated microglia expressing a high-mobility group box1-inhibiting mechanism. Stroke. 2008, 39: 951-958. 10.1161/STROKEAHA.107.495820.CrossRefPubMed Hayakawa K, Mishima K, Nozako M, Hazekawa M, Mishima S, Fujioka M, Orito K, Egashira N, Iwasaki K, Fujiwara M: Delayed treatment with minocycline ameliorates neurologic impairment through activated microglia expressing a high-mobility group box1-inhibiting mechanism. Stroke. 2008, 39: 951-958. 10.1161/STROKEAHA.107.495820.CrossRefPubMed
30.
go back to reference Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, Ethell IM: Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet. 2009, 46: 94-102.CrossRefPubMed Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, Ethell IM: Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet. 2009, 46: 94-102.CrossRefPubMed
31.
go back to reference Paribello C, Tao L, Folino A, Berry-Kravis E, Tranfaglia M, Ethell IM, Ethell DW: Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurol. 2010, 10: 91-10.1186/1471-2377-10-91.PubMedCentralCrossRefPubMed Paribello C, Tao L, Folino A, Berry-Kravis E, Tranfaglia M, Ethell IM, Ethell DW: Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurol. 2010, 10: 91-10.1186/1471-2377-10-91.PubMedCentralCrossRefPubMed
32.
go back to reference Kriz J, Nguyen MD, Julien JP: Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2002, 10: 268-278. 10.1006/nbdi.2002.0487.CrossRefPubMed Kriz J, Nguyen MD, Julien JP: Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2002, 10: 268-278. 10.1006/nbdi.2002.0487.CrossRefPubMed
33.
go back to reference Bonelli RM, Hodl AK, Hofmann P, Kapfhammer HP: Neuroprotection in Huntington's disease: a 2-year study on minocycline. Int Clin Psychopharmacol. 2004, 19: 337-342. 10.1097/00004850-200411000-00004.CrossRefPubMed Bonelli RM, Hodl AK, Hofmann P, Kapfhammer HP: Neuroprotection in Huntington's disease: a 2-year study on minocycline. Int Clin Psychopharmacol. 2004, 19: 337-342. 10.1097/00004850-200411000-00004.CrossRefPubMed
34.
go back to reference Le Couteur A, Lord C, Rutter M: Autism Diagnostic Interview-Revised (ADI-R). 2003, Los Angeles: Western Psychological Services Le Couteur A, Lord C, Rutter M: Autism Diagnostic Interview-Revised (ADI-R). 2003, Los Angeles: Western Psychological Services
35.
go back to reference Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC, Pickles A, Rutter M: The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000, 30: 205-223. 10.1023/A:1005592401947.CrossRefPubMed Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC, Pickles A, Rutter M: The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000, 30: 205-223. 10.1023/A:1005592401947.CrossRefPubMed
36.
go back to reference Sparrow SS, Cichetti D, Balla D: Vineland Adaptive Behavior Scales. 2005, Circle Pines, MN: American Guidance Service Sparrow SS, Cichetti D, Balla D: Vineland Adaptive Behavior Scales. 2005, Circle Pines, MN: American Guidance Service
37.
go back to reference Luyster R, Richler J, Risi S, Hsu WL, Dawson G, Bernier R, Dunn M, Hepburn S, Hyman SL, McMahon WM, Goudie-Nice J, Minshew N, Rogers S, Sigman M, Spence MA, Goldberg WA, Tager-Flusberg H, Volkmar FR, Lord C: Early regression in social communication in autism spectrum disorders: a CPEA Study. Dev Neuropsychol. 2005, 27: 311-336. 10.1207/s15326942dn2703_2.CrossRefPubMed Luyster R, Richler J, Risi S, Hsu WL, Dawson G, Bernier R, Dunn M, Hepburn S, Hyman SL, McMahon WM, Goudie-Nice J, Minshew N, Rogers S, Sigman M, Spence MA, Goldberg WA, Tager-Flusberg H, Volkmar FR, Lord C: Early regression in social communication in autism spectrum disorders: a CPEA Study. Dev Neuropsychol. 2005, 27: 311-336. 10.1207/s15326942dn2703_2.CrossRefPubMed
38.
go back to reference Mullen E: Infant Mullen Scales of Early Learning. 1995, Circle Pines, MN: American Guidance Service Mullen E: Infant Mullen Scales of Early Learning. 1995, Circle Pines, MN: American Guidance Service
39.
go back to reference Elliott C: Manual for the Differential Ability Scales. 2007, San Antonio, TX: Pearson Assessments Elliott C: Manual for the Differential Ability Scales. 2007, San Antonio, TX: Pearson Assessments
40.
go back to reference Guy W: ECDEU Assessment Manual of Psychopharmacology-Revised. 1976, Rockville, MD: Psychopharmacology Research Branch Guy W: ECDEU Assessment Manual of Psychopharmacology-Revised. 1976, Rockville, MD: Psychopharmacology Research Branch
41.
go back to reference Hussein MH, Daoud GA, Kakita H, Kato S, Goto T, Kamei M, Goto K, Nobata M, Ozaki Y, Ito T, Fukuda S, Kato I, Suzuki S, Sobajima H, Hara F, Hashimoto T, Togari H: High cerebrospinal fluid antioxidants and interleukin 8 are protective of hypoxic brain damage in newborns. Free Radic Res. 2010, 44: 422-429. 10.3109/10715760903548245.CrossRefPubMed Hussein MH, Daoud GA, Kakita H, Kato S, Goto T, Kamei M, Goto K, Nobata M, Ozaki Y, Ito T, Fukuda S, Kato I, Suzuki S, Sobajima H, Hara F, Hashimoto T, Togari H: High cerebrospinal fluid antioxidants and interleukin 8 are protective of hypoxic brain damage in newborns. Free Radic Res. 2010, 44: 422-429. 10.3109/10715760903548245.CrossRefPubMed
42.
go back to reference Thirumangalakudi L, Yin L, Rao HV, Grammas P:IL-8 induces expression of matrix metalloproteinases, cell cycle and pro-apoptotic proteins, and cell death in cultured neurons. J Alzheimers Dis. 2007, 11: 305-311.PubMed Thirumangalakudi L, Yin L, Rao HV, Grammas P:IL-8 induces expression of matrix metalloproteinases, cell cycle and pro-apoptotic proteins, and cell death in cultured neurons. J Alzheimers Dis. 2007, 11: 305-311.PubMed
43.
go back to reference Switzer JA, Hess DC, Ergul A, Waller JL, Machado LS, Portik-Dobos V, Pettigrew LC, Clark WM, Fagan SC:Matrix metalloproteinase-9 in an exploratory trial of intravenous minocycline for acute ischemic stroke. Stroke. 2011, 42: 2633-2635. 10.1161/STROKEAHA.111.618215.PubMedCentralCrossRefPubMed Switzer JA, Hess DC, Ergul A, Waller JL, Machado LS, Portik-Dobos V, Pettigrew LC, Clark WM, Fagan SC:Matrix metalloproteinase-9 in an exploratory trial of intravenous minocycline for acute ischemic stroke. Stroke. 2011, 42: 2633-2635. 10.1161/STROKEAHA.111.618215.PubMedCentralCrossRefPubMed
44.
go back to reference Bekinschtein P, Cammarota M, Izquierdo I, Medina JH:BDNF and memory formation and storage. Neuroscientist. 2008, 14: 147-156.CrossRefPubMed Bekinschtein P, Cammarota M, Izquierdo I, Medina JH:BDNF and memory formation and storage. Neuroscientist. 2008, 14: 147-156.CrossRefPubMed
45.
go back to reference Yang J, Siao CJ, Nagappan G, Marinic T, Jing D, McGrath K, Chen ZY, Mark W, Tessarollo L, Lee FS, Lu B, Hempstead BL:Neuronal release of proBDNF. Nat Neurosci. 2009, 12: 113-115. 10.1038/nn.2244.PubMedCentralCrossRefPubMed Yang J, Siao CJ, Nagappan G, Marinic T, Jing D, McGrath K, Chen ZY, Mark W, Tessarollo L, Lee FS, Lu B, Hempstead BL:Neuronal release of proBDNF. Nat Neurosci. 2009, 12: 113-115. 10.1038/nn.2244.PubMedCentralCrossRefPubMed
46.
go back to reference Carlino D, Leone E, Di Cola F, Baj G, Marin R, Dinelli G, Tongiorgi E, De Vanna M:Low serum truncated-BDNF isoform correlates with higher cognitive impairment in schizophrenia. J Psychiatr Res. 2011, 45: 273-279. 10.1016/j.jpsychires.2010.06.012.CrossRefPubMed Carlino D, Leone E, Di Cola F, Baj G, Marin R, Dinelli G, Tongiorgi E, De Vanna M:Low serum truncated-BDNF isoform correlates with higher cognitive impairment in schizophrenia. J Psychiatr Res. 2011, 45: 273-279. 10.1016/j.jpsychires.2010.06.012.CrossRefPubMed
47.
go back to reference Carlino D, De Vanna M, Tongiorgi E:Is altered BDNF biosynthesis a general feature in patients with cognitive dysfunctions?. Neuroscientist. 2012, 10.1177/1073858412469444. Epub ahead of print, Carlino D, De Vanna M, Tongiorgi E:Is altered BDNF biosynthesis a general feature in patients with cognitive dysfunctions?. Neuroscientist. 2012, 10.1177/1073858412469444. Epub ahead of print,
48.
go back to reference Garcia KLP, Yu G, Nicolini C, Michalski B, Garzon DJ, Chiu VS, Tongiorgi E, Szatmari P, Fahnestock M:Altered balance of proteolytic isoforms of pro-brain-derived neurotrophic factor in autism. J Neuropath Exp Neurol. 2012, 71: 289-297. 10.1097/NEN.0b013e31824b27e4.PubMedCentralCrossRefPubMed Garcia KLP, Yu G, Nicolini C, Michalski B, Garzon DJ, Chiu VS, Tongiorgi E, Szatmari P, Fahnestock M:Altered balance of proteolytic isoforms of pro-brain-derived neurotrophic factor in autism. J Neuropath Exp Neurol. 2012, 71: 289-297. 10.1097/NEN.0b013e31824b27e4.PubMedCentralCrossRefPubMed
49.
go back to reference Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S, Elia M, Schneider C, Melmed R, Sacco R, Persico AM, Levitt P:A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci USA. 2006, 103: 16834-16839. 10.1073/pnas.0605296103.PubMedCentralCrossRefPubMed Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S, Elia M, Schneider C, Melmed R, Sacco R, Persico AM, Levitt P:A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci USA. 2006, 103: 16834-16839. 10.1073/pnas.0605296103.PubMedCentralCrossRefPubMed
50.
go back to reference Buie T, Campbell DB, Fuchs GJ, Furuta GT, Levy J, Vandewater J, Whitaker AH, Atkins D, Bauman ML, Beaudet AL, Carr EG, Gershon MD, Hyman SL, Jirapinyo P, Jyonouchi H, Kooros K, Kushak R, Levitt P, Levy SE, Lewis JD, Murray KF, Natowicz MR, Sabra A, Wershil BK, Weston SC, Zeltzer L, Winter H:Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics. 2010, 125 (Suppl 1): S1-S18.CrossRefPubMed Buie T, Campbell DB, Fuchs GJ, Furuta GT, Levy J, Vandewater J, Whitaker AH, Atkins D, Bauman ML, Beaudet AL, Carr EG, Gershon MD, Hyman SL, Jirapinyo P, Jyonouchi H, Kooros K, Kushak R, Levitt P, Levy SE, Lewis JD, Murray KF, Natowicz MR, Sabra A, Wershil BK, Weston SC, Zeltzer L, Winter H:Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics. 2010, 125 (Suppl 1): S1-S18.CrossRefPubMed
Metadata
Title
A pilot open-label trial of minocycline in patients with autism and regressive features
Authors
Carlos A Pardo
Ashura Buckley
Audrey Thurm
Li-Ching Lee
Arun Azhagiri
David M Neville
Susan E Swedo
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2013
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/1866-1955-5-9

Other articles of this Issue 1/2013

Journal of Neurodevelopmental Disorders 1/2013 Go to the issue