Skip to main content
Top
Published in: BMC Sports Science, Medicine and Rehabilitation 1/2010

Open Access 01-12-2010 | Research

Grip strength measurements at two different wrist extension positions in chronic lateral epicondylitis-comparison of involved vs. uninvolved side in athletes and non athletes: a case-control study

Authors: Arti S Bhargava, Charu Eapen, Senthil P Kumar

Published in: BMC Sports Science, Medicine and Rehabilitation | Issue 1/2010

Login to get access

Abstract

Background

Lateral epicondylitis is a common sports injury of the elbow caused due to altered muscle activation during repetitive wrist extension in many athletic and non-athletic endeavours. The amount of muscle activity and timing of contraction eventually is directly dependent upon joint position during the activity. The purpose of our study was to compare the grip strength in athletes with lateral epicondylalgia in two different wrist extension positions and compare them between involved and uninvolved sides of athletes and non-athletes.

Methods

An assessor-blinded case-control study of eight athletes and twenty-two non-athletes was done. The grip strength was measured using JAMAR® hand dynamometer in kilograms-force at 15 degrees (slightly extended) and 35 degrees (moderately extended) wrist extension positions (maintained by wrist splints) on both involved and uninvolved sides of athletes and non-athletes with unilateral lateral epicondylitis of atleast 3 months duration. Their pain was to be elicited with local tenderness and two of three tests being positive- Cozen's, Mill's manoeuvre, resisted middle finger extension tests. For comparisons of grip strength, Wilcoxon signed rank test was used for within-group comparison (between 15 and 35 degrees wrist extension positions) and Mann-Whitney U test was used for between-group (athletes vs. non-athletes) comparisons at 95% confidence interval and were done using SPSS 11.5 for Windows.

Results

Statistically significant greater grip strength was found in 15 degrees (27.75 ± 4.2 kgms in athletes; 16.45 ± 4.2 kgms in non-athletes) wrist extension than at 35 degrees (25.25 ± 3.53 kgm in athletes and 14.18 ± 3.53 kgm in non-athletes). The athletes had greater grip strength than non-athletes in each of test positions (11.3 kgm at 15 degrees and 11.07 kgm at 35 degrees) measured. There was also a significant difference between involved and uninvolved sides' grip strength at both wrist positions (4.44 ± .95 kgm at 15 degrees and 4.44 ± .86 kgm in 35 degrees) which was significant (p < .05) only in non-athletes.

Conclusion

The grip strength was greater in 15 degrees wrist extension position and this position could then be used in athletes with lateral epicondylalgia for grip strength assessment and designing wrist splint in this population.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ashe MC, McCanley T, Khan KM: Tendinopathies in the upper extremity: a paradigm shift. J Hand Ther. 2004, 17: 329-334. 10.1197/j.jht.2004.04.002.CrossRefPubMed Ashe MC, McCanley T, Khan KM: Tendinopathies in the upper extremity: a paradigm shift. J Hand Ther. 2004, 17: 329-334. 10.1197/j.jht.2004.04.002.CrossRefPubMed
2.
go back to reference van Elk N, Faes M, Degens H: The application of an external wrist extension force reduces electromyographic activity of wrist extensor muscles during gripping. J Orthop Sports Phys Ther. 2004, 34: 228-234.CrossRefPubMed van Elk N, Faes M, Degens H: The application of an external wrist extension force reduces electromyographic activity of wrist extensor muscles during gripping. J Orthop Sports Phys Ther. 2004, 34: 228-234.CrossRefPubMed
3.
go back to reference Wuori Jennifer, Overend Thomas, Cramer John: Strength and pain measures associated with lateral epicondylitis bracing. Arch Phys Med Rehabil. 1998, 79: 124-130. 10.1016/S0003-9993(98)90366-5.CrossRef Wuori Jennifer, Overend Thomas, Cramer John: Strength and pain measures associated with lateral epicondylitis bracing. Arch Phys Med Rehabil. 1998, 79: 124-130. 10.1016/S0003-9993(98)90366-5.CrossRef
4.
go back to reference Morris M, Jobe FW: Electromyographic analysis of elbow function in tennis players. Am J Sports Med. 1989, 17: 241-247. 10.1177/036354658901700215.CrossRefPubMed Morris M, Jobe FW: Electromyographic analysis of elbow function in tennis players. Am J Sports Med. 1989, 17: 241-247. 10.1177/036354658901700215.CrossRefPubMed
5.
go back to reference Roetert E, Brody P, Dillman H: The biomechanics of tennis elbow- an integrated approach. Clin Sports Med. 1995, 14: 47-57.PubMed Roetert E, Brody P, Dillman H: The biomechanics of tennis elbow- an integrated approach. Clin Sports Med. 1995, 14: 47-57.PubMed
6.
go back to reference Borkholder CD: The efficiency of splinting in lateral epicondylitis: a systemic review. J Hand Ther. 2004, 17: 181-199. 10.1197/j.jht.2004.02.007.CrossRefPubMed Borkholder CD: The efficiency of splinting in lateral epicondylitis: a systemic review. J Hand Ther. 2004, 17: 181-199. 10.1197/j.jht.2004.02.007.CrossRefPubMed
7.
go back to reference Elva M: Principles of Orthopedic Surgery. 1999, W.B Saunders, 5 Elva M: Principles of Orthopedic Surgery. 1999, W.B Saunders, 5
8.
go back to reference Waugh EJ, Jaglal SB, Davis AM: Computer use associated with poor long-term prognosis of conservatively managed lateral epicondylalgia. J Orthop Sports Phys Ther. 2004, 34: 770-780.CrossRefPubMed Waugh EJ, Jaglal SB, Davis AM: Computer use associated with poor long-term prognosis of conservatively managed lateral epicondylalgia. J Orthop Sports Phys Ther. 2004, 34: 770-780.CrossRefPubMed
9.
go back to reference Marie QNH, Durand J, Loisel P: Physiotherapists' management of patients with lateral epicondylitis (extensor tendinosis): results of a provincial survey. Physiother Can. 2004, 56: 215-225. 10.2310/6640.2004.00023.CrossRef Marie QNH, Durand J, Loisel P: Physiotherapists' management of patients with lateral epicondylitis (extensor tendinosis): results of a provincial survey. Physiother Can. 2004, 56: 215-225. 10.2310/6640.2004.00023.CrossRef
10.
go back to reference Eygendaal D, Rahussen F, Th G, Diercks RL: Biomechanics of the elbow joint in tennis players and relation to pathology. Br J Sports Med. 2007, 41: 820-823. 10.1136/bjsm.2007.038307.CrossRefPubMedPubMedCentral Eygendaal D, Rahussen F, Th G, Diercks RL: Biomechanics of the elbow joint in tennis players and relation to pathology. Br J Sports Med. 2007, 41: 820-823. 10.1136/bjsm.2007.038307.CrossRefPubMedPubMedCentral
11.
go back to reference Meals RA: Turek's Orthopedics: Principles and their Applications. 1994, Lippincott Company, Philadelphia, 5 Meals RA: Turek's Orthopedics: Principles and their Applications. 1994, Lippincott Company, Philadelphia, 5
12.
go back to reference Balogun JA, Akomolafe CT, Amusa LO: Grip strength: effect of testing posture and elbow position. Arch Phys Med Rehabil. 1991, 72: 280-283.PubMed Balogun JA, Akomolafe CT, Amusa LO: Grip strength: effect of testing posture and elbow position. Arch Phys Med Rehabil. 1991, 72: 280-283.PubMed
13.
go back to reference Innes EV: Hand Grip Strength Testing: A Review of the Literature. Aus Occup Ther J. 1999, 46: 120-140. 10.1046/j.1440-1630.1999.00182.x.CrossRef Innes EV: Hand Grip Strength Testing: A Review of the Literature. Aus Occup Ther J. 1999, 46: 120-140. 10.1046/j.1440-1630.1999.00182.x.CrossRef
14.
go back to reference Fess EE: Documentation: essential elements of an upper extremity assessment battery. Rehabilitation of the Hand: Surgery and Therapy. Mosby. 1995, 210-211. 4 Fess EE: Documentation: essential elements of an upper extremity assessment battery. Rehabilitation of the Hand: Surgery and Therapy. Mosby. 1995, 210-211. 4
15.
go back to reference De Smet L, Fabry G: Grip strength in patients with tennis elbow: influence of elbow position. Acta Orthopedica Belgica. 1996, 42: 26-28. De Smet L, Fabry G: Grip strength in patients with tennis elbow: influence of elbow position. Acta Orthopedica Belgica. 1996, 42: 26-28.
16.
go back to reference Kuzala EA, Vargo MC: The relationship between elbow position and grip strength. Am J Occup Ther. 1992, 46: 509-12.CrossRefPubMed Kuzala EA, Vargo MC: The relationship between elbow position and grip strength. Am J Occup Ther. 1992, 46: 509-12.CrossRefPubMed
18.
go back to reference O'Driscoll SW, Horii E, Ness R, Cahalan TD, Richards RR, An KN: The relationship between wrist position, grasp size, and grip strength. J Hand Surg [Am]. 1992, 17: 169-77. 10.1016/0363-5023(92)90136-D.CrossRef O'Driscoll SW, Horii E, Ness R, Cahalan TD, Richards RR, An KN: The relationship between wrist position, grasp size, and grip strength. J Hand Surg [Am]. 1992, 17: 169-77. 10.1016/0363-5023(92)90136-D.CrossRef
19.
go back to reference Faes M, van Elk N, de Lint JA, Degens H, Kooloos JG, Hopman MT: A dynamic extensor brace reduces electromyographic activity of wrist extensor muscles in patients with lateral epicondylalgia. J Orthop Sports Phys Ther. 2006, 36: 170-178.CrossRefPubMed Faes M, van Elk N, de Lint JA, Degens H, Kooloos JG, Hopman MT: A dynamic extensor brace reduces electromyographic activity of wrist extensor muscles in patients with lateral epicondylalgia. J Orthop Sports Phys Ther. 2006, 36: 170-178.CrossRefPubMed
20.
go back to reference Jansen CW, Olson SL, Hasson SM: The effect of use of a wrist orthosis during functional activities on surface electromyography of the wrist extensors in normal subjects. J Hand Ther. 1997, 10: 283-289.CrossRefPubMed Jansen CW, Olson SL, Hasson SM: The effect of use of a wrist orthosis during functional activities on surface electromyography of the wrist extensors in normal subjects. J Hand Ther. 1997, 10: 283-289.CrossRefPubMed
21.
go back to reference Stratford PW, Norman GR, Mcintosh JM: Generalizability of grip strength measurements in patients with tennis elbow. Phys Ther. 1989, 69: 276-281.PubMed Stratford PW, Norman GR, Mcintosh JM: Generalizability of grip strength measurements in patients with tennis elbow. Phys Ther. 1989, 69: 276-281.PubMed
Metadata
Title
Grip strength measurements at two different wrist extension positions in chronic lateral epicondylitis-comparison of involved vs. uninvolved side in athletes and non athletes: a case-control study
Authors
Arti S Bhargava
Charu Eapen
Senthil P Kumar
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Sports Science, Medicine and Rehabilitation / Issue 1/2010
Electronic ISSN: 2052-1847
DOI
https://doi.org/10.1186/1758-2555-2-22

Other articles of this Issue 1/2010

BMC Sports Science, Medicine and Rehabilitation 1/2010 Go to the issue