Skip to main content
Top
Published in: Journal of Ovarian Research 1/2010

Open Access 01-12-2010 | Research

Mural granulosa cell gene expression associated with oocyte developmental competence

Authors: Jin-Yi Jiang, Huiling Xiong, Mingju Cao, Xuhua Xia, Marc-Andre Sirard, Benjamin K Tsang

Published in: Journal of Ovarian Research | Issue 1/2010

Login to get access

Abstract

Background

Ovarian follicle development is a complex process. Paracrine interactions between somatic and germ cells are critical for normal follicular development and oocyte maturation. Studies have suggested that the health and function of the granulosa and cumulus cells may be reflective of the health status of the enclosed oocyte. The objective of the present study is to assess, using an in vivo immature rat model, gene expression profile in granulosa cells, which may be linked to the developmental competence of the oocyte. We hypothesized that expression of specific genes in granulosa cells may be correlated with the developmental competence of the oocyte.

Methods

Immature rats were injected with eCG and 24 h thereafter with anti-eCG antibody to induce follicular atresia or with pre-immune serum to stimulate follicle development. A high percentage (30-50%, normal developmental competence, NDC) of oocytes from eCG/pre-immune serum group developed to term after embryo transfer compared to those from eCG/anti-eCG (0%, poor developmental competence, PDC). Gene expression profiles of mural granulosa cells from the above oocyte-collected follicles were assessed by Affymetrix rat whole genome array.

Results

The result showed that twelve genes were up-regulated, while one gene was down-regulated more than 1.5 folds in the NDC group compared with those in the PDC group. Gene ontology classification showed that the up-regulated genes included lysyl oxidase (Lox) and nerve growth factor receptor associated protein 1 (Ngfrap1), which are important in the regulation of protein-lysine 6-oxidase activity, and in apoptosis induction, respectively. The down-regulated genes included glycoprotein-4-beta galactosyltransferase 2 (Ggbt2), which is involved in the regulation of extracellular matrix organization and biogenesis.

Conclusions

The data in the present study demonstrate a close association between specific gene expression in mural granulosa cells and the developmental competence of oocytes. This finding suggests that the most differentially expressed gene, lysyl oxidase, may be a candidate biomarker of oocyte health and useful for the selection of good quality oocytes for assisted reproduction.
Appendix
Available only for authorised users
Literature
1.
go back to reference Eppig JJ: Oocyte control of ovarian follicular development and function in mammals. Reproduction 2001, 122: 829–838. 10.1530/rep.0.1220829CrossRefPubMed Eppig JJ: Oocyte control of ovarian follicular development and function in mammals. Reproduction 2001, 122: 829–838. 10.1530/rep.0.1220829CrossRefPubMed
2.
go back to reference Carabatsos MJ, Sellitto C, Goodenough DA, Albertini DF: Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol 2000, 226: 167–179. 10.1006/dbio.2000.9863CrossRefPubMed Carabatsos MJ, Sellitto C, Goodenough DA, Albertini DF: Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol 2000, 226: 167–179. 10.1006/dbio.2000.9863CrossRefPubMed
3.
go back to reference Brower PT, Schultz RM: Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev Biol 1982, 90: 144–153. 10.1016/0012-1606(82)90219-6CrossRefPubMed Brower PT, Schultz RM: Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev Biol 1982, 90: 144–153. 10.1016/0012-1606(82)90219-6CrossRefPubMed
4.
go back to reference Thomas FH, Vanderhyden BC: Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth. Reprod Biol Endocrinol 2006, 4: 19. 10.1186/1477-7827-4-19PubMedCentralCrossRefPubMed Thomas FH, Vanderhyden BC: Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth. Reprod Biol Endocrinol 2006, 4: 19. 10.1186/1477-7827-4-19PubMedCentralCrossRefPubMed
5.
go back to reference Chesnel F, Wigglesworth K, Eppig JJ: Acquisition of meiotic competence by denuded mouse oocytes: participation of somatic-cell product(s) and cAMP. Dev Biol 1994, 161: 285–295. 10.1006/dbio.1994.1028CrossRefPubMed Chesnel F, Wigglesworth K, Eppig JJ: Acquisition of meiotic competence by denuded mouse oocytes: participation of somatic-cell product(s) and cAMP. Dev Biol 1994, 161: 285–295. 10.1006/dbio.1994.1028CrossRefPubMed
6.
go back to reference de la Fuente R, Eppig JJ: Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Dev Biol 2001, 229: 224–236. 10.1006/dbio.2000.9947CrossRefPubMed de la Fuente R, Eppig JJ: Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Dev Biol 2001, 229: 224–236. 10.1006/dbio.2000.9947CrossRefPubMed
7.
go back to reference Matzuk MM, Burns KH, Viveiros MM, Eppig JJ: Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 2002, 296: 2178–2180. 10.1126/science.1071965CrossRefPubMed Matzuk MM, Burns KH, Viveiros MM, Eppig JJ: Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 2002, 296: 2178–2180. 10.1126/science.1071965CrossRefPubMed
8.
go back to reference Vanderhyden BC, Telfer EE, Eppig JJ: Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol Reprod 1992, 46: 1196–204. 10.1095/biolreprod46.6.1196CrossRefPubMed Vanderhyden BC, Telfer EE, Eppig JJ: Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol Reprod 1992, 46: 1196–204. 10.1095/biolreprod46.6.1196CrossRefPubMed
9.
go back to reference Vanderhyden BC, Caron PJ, Buccione R, Eppig JJ: Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation. Dev Biol 1990, 140: 307–17. 10.1016/0012-1606(90)90081-SCrossRefPubMed Vanderhyden BC, Caron PJ, Buccione R, Eppig JJ: Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation. Dev Biol 1990, 140: 307–17. 10.1016/0012-1606(90)90081-SCrossRefPubMed
10.
go back to reference Buccione R, Vanderhyden BC, Caron PJ, Eppig JJ: FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte. Dev Biol 1990, 138: 16–25. 10.1016/0012-1606(90)90172-FCrossRefPubMed Buccione R, Vanderhyden BC, Caron PJ, Eppig JJ: FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte. Dev Biol 1990, 138: 16–25. 10.1016/0012-1606(90)90172-FCrossRefPubMed
11.
go back to reference Otsuka F, Yamamoto S, Erickson GF, Shimasaki S: Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem 2001, 276: 11387–92. 10.1074/jbc.M010043200CrossRefPubMed Otsuka F, Yamamoto S, Erickson GF, Shimasaki S: Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem 2001, 276: 11387–92. 10.1074/jbc.M010043200CrossRefPubMed
12.
go back to reference Orisaka M, Orisaka S, Jiang JY, Craig J, Wang Y, Kotsuji F, et al.: Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol Endocrinol 2006, 20: 2456–2468. 10.1210/me.2005-0357CrossRefPubMed Orisaka M, Orisaka S, Jiang JY, Craig J, Wang Y, Kotsuji F, et al.: Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol Endocrinol 2006, 20: 2456–2468. 10.1210/me.2005-0357CrossRefPubMed
13.
go back to reference Hunter MG, Brankin V, Quinn RL, Ferguson EM, Edwards SA, Ashworth CJ: Oocyte-somatic cell-endocrine interactions in pigs. Domest Anim Endocrinol 2005, 29: 371–384. 10.1016/j.domaniend.2005.02.004CrossRefPubMed Hunter MG, Brankin V, Quinn RL, Ferguson EM, Edwards SA, Ashworth CJ: Oocyte-somatic cell-endocrine interactions in pigs. Domest Anim Endocrinol 2005, 29: 371–384. 10.1016/j.domaniend.2005.02.004CrossRefPubMed
14.
go back to reference McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, et al.: Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod 2004, 19: 2869–2874. 10.1093/humrep/deh535CrossRefPubMed McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, et al.: Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod 2004, 19: 2869–2874. 10.1093/humrep/deh535CrossRefPubMed
15.
go back to reference Rhodes TL, McCoy TP, Higdon HL III, Boone WR: Factors affecting assisted reproductive technology (ART) pregnancy rates: a multivariate analysis. J Assist Reprod Genet 2005, 22: 335–346. 10.1007/s10815-005-6794-1CrossRefPubMed Rhodes TL, McCoy TP, Higdon HL III, Boone WR: Factors affecting assisted reproductive technology (ART) pregnancy rates: a multivariate analysis. J Assist Reprod Genet 2005, 22: 335–346. 10.1007/s10815-005-6794-1CrossRefPubMed
16.
go back to reference Racowsky C: High rates of embryonic loss, yet high incidence of multiple births in human ART: is this paradoxical? Theriogenology 2002, 57: 87–96. 10.1016/S0093-691X(01)00659-8CrossRefPubMed Racowsky C: High rates of embryonic loss, yet high incidence of multiple births in human ART: is this paradoxical? Theriogenology 2002, 57: 87–96. 10.1016/S0093-691X(01)00659-8CrossRefPubMed
17.
go back to reference Jiang JY, Umezu M, Sato E: Improvement of follicular development rather than gonadotrophin secretion by thyroxine treatment in infertile immature hypothyroid rdw rats. J Reprod Fertil 2000, 119: 193–199. 10.1530/reprod/119.2.193CrossRefPubMed Jiang JY, Umezu M, Sato E: Improvement of follicular development rather than gonadotrophin secretion by thyroxine treatment in infertile immature hypothyroid rdw rats. J Reprod Fertil 2000, 119: 193–199. 10.1530/reprod/119.2.193CrossRefPubMed
18.
go back to reference Jiang JY, Miyoshi K, Umezu M, Sato E: Superovulation of immature hypothyroid rdw rats by thyroxine therapy and the development of eggs after in vitro fertilization. J Reprod Fertil 1999, 116: 19–24.CrossRefPubMed Jiang JY, Miyoshi K, Umezu M, Sato E: Superovulation of immature hypothyroid rdw rats by thyroxine therapy and the development of eggs after in vitro fertilization. J Reprod Fertil 1999, 116: 19–24.CrossRefPubMed
19.
go back to reference Mihm M, Baker PJ, Ireland JL, Smith GW, Coussens PM, Evans AC, et al.: Molecular evidence that growth of dominant follicles involves a reduction in follicle-stimulating hormone dependence and an increase in luteinizing hormone dependence in cattle. Biol Reprod 2006, 74: 1051–1059. 10.1095/biolreprod.105.045799CrossRefPubMed Mihm M, Baker PJ, Ireland JL, Smith GW, Coussens PM, Evans AC, et al.: Molecular evidence that growth of dominant follicles involves a reduction in follicle-stimulating hormone dependence and an increase in luteinizing hormone dependence in cattle. Biol Reprod 2006, 74: 1051–1059. 10.1095/biolreprod.105.045799CrossRefPubMed
20.
go back to reference Boone DL, Carnegie JA, Rippstein PU, Tsang BK: Induction of apoptosis in equine chorionic gonadotropin (eCG)-primed rat ovaries by anti-eCG antibody. Biol Reprod 1997, 57: 420–427. 10.1095/biolreprod57.2.420CrossRefPubMed Boone DL, Carnegie JA, Rippstein PU, Tsang BK: Induction of apoptosis in equine chorionic gonadotropin (eCG)-primed rat ovaries by anti-eCG antibody. Biol Reprod 1997, 57: 420–427. 10.1095/biolreprod57.2.420CrossRefPubMed
21.
go back to reference Kim JM, Boone DL, Auyeung A, Tsang BK: Granulosa cell apoptosis induced at the penultimate stage of follicular development is associated with increased levels of Fas and Fas ligand in the rat ovary. Biol Reprod 1998, 58: 1170–6. 10.1095/biolreprod58.5.1170CrossRefPubMed Kim JM, Boone DL, Auyeung A, Tsang BK: Granulosa cell apoptosis induced at the penultimate stage of follicular development is associated with increased levels of Fas and Fas ligand in the rat ovary. Biol Reprod 1998, 58: 1170–6. 10.1095/biolreprod58.5.1170CrossRefPubMed
22.
go back to reference Wang H, Jiang JY, Zhu C, Peng C, Tsang BK: Role and regulation of nodal/activin receptor-like kinase 7 signaling pathway in the control of ovarian follicular atresia. Mol Endocrinol 2006, 20: 2469–2482. 10.1210/me.2005-0446CrossRefPubMed Wang H, Jiang JY, Zhu C, Peng C, Tsang BK: Role and regulation of nodal/activin receptor-like kinase 7 signaling pathway in the control of ovarian follicular atresia. Mol Endocrinol 2006, 20: 2469–2482. 10.1210/me.2005-0446CrossRefPubMed
23.
go back to reference Jiang JY, Tsang BK: Optimal conditions for successful in vitro fertilization and subsequent embryonic development in Sprague-Dawley rats. Biol Reprod 2004, 71: 1974–1979. 10.1095/biolreprod.104.032839CrossRefPubMed Jiang JY, Tsang BK: Optimal conditions for successful in vitro fertilization and subsequent embryonic development in Sprague-Dawley rats. Biol Reprod 2004, 71: 1974–1979. 10.1095/biolreprod.104.032839CrossRefPubMed
24.
go back to reference Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19: 185–193. 10.1093/bioinformatics/19.2.185CrossRefPubMed Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19: 185–193. 10.1093/bioinformatics/19.2.185CrossRefPubMed
25.
go back to reference Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31: e15. 10.1093/nar/gng015PubMedCentralCrossRefPubMed Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31: e15. 10.1093/nar/gng015PubMedCentralCrossRefPubMed
26.
go back to reference Pelizzola M, Pavelka N, Foti M, Ricciardi-Castagnoli P: AMDA: an R package for the automated microarray data analysis. BMC Bioinformatics 2006, 7: 335. 10.1186/1471-2105-7-335PubMedCentralCrossRefPubMed Pelizzola M, Pavelka N, Foti M, Ricciardi-Castagnoli P: AMDA: an R package for the automated microarray data analysis. BMC Bioinformatics 2006, 7: 335. 10.1186/1471-2105-7-335PubMedCentralCrossRefPubMed
27.
go back to reference Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al.: TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003, 34: 374–378.PubMed Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al.: TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003, 34: 374–378.PubMed
28.
go back to reference Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al.: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003, 4: 3. 10.1186/gb-2003-4-5-p3CrossRef Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al.: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003, 4: 3. 10.1186/gb-2003-4-5-p3CrossRef
29.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25: 402–408. 10.1006/meth.2001.1262CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25: 402–408. 10.1006/meth.2001.1262CrossRefPubMed
30.
go back to reference Kendall NR, Marsters P, Scaramuzzi RJ, Campbell BK: Expression of lysyl oxidase and effect of copper chloride and ammonium tetrathiomolybdate on bovine ovarian follicle granulosa cells cultured in serum-free media. Reproduction 2003, 125: 657–665. 10.1530/rep.0.1250657CrossRefPubMed Kendall NR, Marsters P, Scaramuzzi RJ, Campbell BK: Expression of lysyl oxidase and effect of copper chloride and ammonium tetrathiomolybdate on bovine ovarian follicle granulosa cells cultured in serum-free media. Reproduction 2003, 125: 657–665. 10.1530/rep.0.1250657CrossRefPubMed
31.
go back to reference Nocentini G, Giunchi L, Ronchetti S, Krausz LT, Bartoli A, Moraca R, et al.: A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci USA 1997, 94: 6216–6221. 10.1073/pnas.94.12.6216PubMedCentralCrossRefPubMed Nocentini G, Giunchi L, Ronchetti S, Krausz LT, Bartoli A, Moraca R, et al.: A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci USA 1997, 94: 6216–6221. 10.1073/pnas.94.12.6216PubMedCentralCrossRefPubMed
32.
go back to reference Asano M, Furukawa K, Kido M, Matsumoto S, Umesaki Y, Kochibe N, et al.: Growth retardation and early death of beta-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J 1997, 16: 1850–1857. 10.1093/emboj/16.8.1850PubMedCentralCrossRefPubMed Asano M, Furukawa K, Kido M, Matsumoto S, Umesaki Y, Kochibe N, et al.: Growth retardation and early death of beta-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J 1997, 16: 1850–1857. 10.1093/emboj/16.8.1850PubMedCentralCrossRefPubMed
33.
go back to reference Harlow CR, Rae M, Davidson L, Trackman PC, Hillier SG: Lysyl oxidase gene expression and enzyme activity in the rat ovary: regulation by follicle-stimulating hormone, androgen, and transforming growth factor-beta superfamily members in vitro. Endocrinology 2003, 144: 154–162. 10.1210/en.2002-220652CrossRefPubMed Harlow CR, Rae M, Davidson L, Trackman PC, Hillier SG: Lysyl oxidase gene expression and enzyme activity in the rat ovary: regulation by follicle-stimulating hormone, androgen, and transforming growth factor-beta superfamily members in vitro. Endocrinology 2003, 144: 154–162. 10.1210/en.2002-220652CrossRefPubMed
34.
go back to reference Li W, Nellaiappan K, Strassmaier T, Graham L, Thomas KM, Kagan HM: Localization and activity of lysyl oxidase within nuclei of fibrogenic cells. Proc Natl Acad Sci USA 1997, 94: 12817–12822. 10.1073/pnas.94.24.12817PubMedCentralCrossRefPubMed Li W, Nellaiappan K, Strassmaier T, Graham L, Thomas KM, Kagan HM: Localization and activity of lysyl oxidase within nuclei of fibrogenic cells. Proc Natl Acad Sci USA 1997, 94: 12817–12822. 10.1073/pnas.94.24.12817PubMedCentralCrossRefPubMed
35.
go back to reference Kagan HM, Li W: Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 2003, 88: 660–672. 10.1002/jcb.10413CrossRefPubMed Kagan HM, Li W: Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 2003, 88: 660–672. 10.1002/jcb.10413CrossRefPubMed
36.
go back to reference Mello ML, Contente S, Vidal BC, Planding W, Schenck U: Modulation of ras transformation affecting chromatin supraorganization as assessed by image analysis. Exp Cell Res 1995, 220: 374–382. 10.1006/excr.1995.1328CrossRefPubMed Mello ML, Contente S, Vidal BC, Planding W, Schenck U: Modulation of ras transformation affecting chromatin supraorganization as assessed by image analysis. Exp Cell Res 1995, 220: 374–382. 10.1006/excr.1995.1328CrossRefPubMed
37.
go back to reference Grattarola M, Borghi C, Emionite L, Lulli P, Chessa L, Vergani L: Modifications of nuclear architecture and chromatin organization in ataxia telangiectasia cells are coupled to changes of gene transcription. J Cell Biochem 2006, 99: 1148–1164. 10.1002/jcb.20895CrossRefPubMed Grattarola M, Borghi C, Emionite L, Lulli P, Chessa L, Vergani L: Modifications of nuclear architecture and chromatin organization in ataxia telangiectasia cells are coupled to changes of gene transcription. J Cell Biochem 2006, 99: 1148–1164. 10.1002/jcb.20895CrossRefPubMed
38.
go back to reference Slee RB, Hillier SG, Largue P, Harlow CR, Miele G, Clinton M: Differentiation-dependent expression of connective tissue growth factor and lysyl oxidase messenger ribonucleic acids in rat granulosa cells. Endocrinology 2001, 142: 1082–1089. 10.1210/en.142.3.1082PubMed Slee RB, Hillier SG, Largue P, Harlow CR, Miele G, Clinton M: Differentiation-dependent expression of connective tissue growth factor and lysyl oxidase messenger ribonucleic acids in rat granulosa cells. Endocrinology 2001, 142: 1082–1089. 10.1210/en.142.3.1082PubMed
39.
go back to reference Langenau DM, Goetz FW, Roberts SB: The upregulation of messenger ribonucleic acids during 17alpha, 20beta-dihydroxy-4-pregnen-3-one-induced ovulation in the perch ovary. J Mol Endocrinol 1999, 23: 137–152. 10.1677/jme.0.0230137CrossRefPubMed Langenau DM, Goetz FW, Roberts SB: The upregulation of messenger ribonucleic acids during 17alpha, 20beta-dihydroxy-4-pregnen-3-one-induced ovulation in the perch ovary. J Mol Endocrinol 1999, 23: 137–152. 10.1677/jme.0.0230137CrossRefPubMed
40.
go back to reference Roy R, Polgar P, Wang Y, Goldstein RH, Taylor L, Kagan HM: Regulation of lysyl oxidase and cyclooxygenase expression in human lung fibroblasts: interactions among TGF-beta, IL-1 beta, and prostaglandin E. J Cell Biochem 1996, 62: 411–417. Publisher Full Text 10.1002/(SICI)1097-4644(199609)62:3<411::AID-JCB11>3.0.CO;2-LCrossRefPubMed Roy R, Polgar P, Wang Y, Goldstein RH, Taylor L, Kagan HM: Regulation of lysyl oxidase and cyclooxygenase expression in human lung fibroblasts: interactions among TGF-beta, IL-1 beta, and prostaglandin E. J Cell Biochem 1996, 62: 411–417. Publisher Full Text 10.1002/(SICI)1097-4644(199609)62:3<411::AID-JCB11>3.0.CO;2-LCrossRefPubMed
41.
go back to reference Turano C, Coppari S, Altieri F, Ferraro A: Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol 2002, 193: 154–163. 10.1002/jcp.10172CrossRefPubMed Turano C, Coppari S, Altieri F, Ferraro A: Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol 2002, 193: 154–163. 10.1002/jcp.10172CrossRefPubMed
42.
go back to reference Knizetova P, Vancova I, Kocakova P, Slovak M, Proost P, Kopacek J: New member of the protein disulfide isomerase (PDI) family identified in Amblyomma variegatum tick. Insect Biochem Mol Biol 2006, 36: 943–953. 10.1016/j.ibmb.2006.09.005CrossRefPubMed Knizetova P, Vancova I, Kocakova P, Slovak M, Proost P, Kopacek J: New member of the protein disulfide isomerase (PDI) family identified in Amblyomma variegatum tick. Insect Biochem Mol Biol 2006, 36: 943–953. 10.1016/j.ibmb.2006.09.005CrossRefPubMed
Metadata
Title
Mural granulosa cell gene expression associated with oocyte developmental competence
Authors
Jin-Yi Jiang
Huiling Xiong
Mingju Cao
Xuhua Xia
Marc-Andre Sirard
Benjamin K Tsang
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2010
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/1757-2215-3-6

Other articles of this Issue 1/2010

Journal of Ovarian Research 1/2010 Go to the issue