Skip to main content
Top
Published in: Journal of Ovarian Research 1/2009

Open Access 01-12-2009 | Review

Oocyte-granulosa-theca cell interactions during preantral follicular development

Authors: Makoto Orisaka, Kimihisa Tajima, Benjamin K Tsang, Fumikazu Kotsuji

Published in: Journal of Ovarian Research | Issue 1/2009

Login to get access

Abstract

The preantral-early antral follicle transition is the penultimate stage of follicular development in terms of gonadotropin dependence and follicle destiny (growth versus atresia). Follicular growth during this period is tightly regulated by oocyte-granulosa-theca cell interactions. Formation of the theca cell layer is a key event that occurs during this transitional stage. Granulosal factor(s) stimulates the recruitment of theca cells from cortical stromal cells, while oocyte-derived growth differentiation factor-9 (GDF-9) is involved in the differentiation of theca cells during this early stage of follicular development. The preantral to early antral transition is most susceptible to follicular atresia. GDF-9 promotes follicular survival and growth during transition from preantral stage to early antral stage by suppressing granulosa cell apoptosis and follicular atresia. GDF-9 also enhances preantral follicle growth by up-regulating theca cell androgen production. Thecal factor(s) promotes granulosa cell proliferation and suppress granulosa cell apoptosis. Understanding the intraovarian mechanisms in the regulation of follicular growth and atresia during this stage may be of clinical significance in the selection of the best quality germ cells for assisted reproduction. In addition, since certain ovarian dysfunctions, such as polycystic ovarian syndrome and gonadotropin poor-responsiveness, are consequences of dysregulated follicle growth at this transitional stage, understanding the molecular and cellular mechanisms in the control of follicular development during the preantral-early antral transition may provide important insight into the pathophysiology and rational treatment of these conditions.
Appendix
Available only for authorised users
Literature
1.
go back to reference McGee EA, Hsueh AJ: Initial and cyclic recruitment of ovarian follicles. Endocr Rev 2000, 21: 200–14.PubMed McGee EA, Hsueh AJ: Initial and cyclic recruitment of ovarian follicles. Endocr Rev 2000, 21: 200–14.PubMed
2.
go back to reference McNatty KP, Reader K, Smith P, Heath DA, Juengel JL: Control of ovarian follicular development to the gonadotrophin-dependent phase: a 2006 perspective. Soc Reprod Fertil Suppl 2007, 64: 55–68.PubMed McNatty KP, Reader K, Smith P, Heath DA, Juengel JL: Control of ovarian follicular development to the gonadotrophin-dependent phase: a 2006 perspective. Soc Reprod Fertil Suppl 2007, 64: 55–68.PubMed
3.
go back to reference Craig J, Orisaka M, Wang H, Orisaka S, Thompson W, Zhu C, Kotsuji F, Tsang BK: Gonadotropin and intra-ovarian signals regulating follicle development and atresia: the delicate balance between life and death. Front Biosci 2007, 12: 3628–39.PubMedCrossRef Craig J, Orisaka M, Wang H, Orisaka S, Thompson W, Zhu C, Kotsuji F, Tsang BK: Gonadotropin and intra-ovarian signals regulating follicle development and atresia: the delicate balance between life and death. Front Biosci 2007, 12: 3628–39.PubMedCrossRef
4.
go back to reference Kumar TR, Wang Y, Lu N, Matzuk MM: Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 1997, 15: 201–4.PubMedCrossRef Kumar TR, Wang Y, Lu N, Matzuk MM: Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 1997, 15: 201–4.PubMedCrossRef
5.
go back to reference Cattanach BM, Iddon CA, Charlton HM, Chiappa SA, Fink G: Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 1977, 269: 338–40.PubMedCrossRef Cattanach BM, Iddon CA, Charlton HM, Chiappa SA, Fink G: Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 1977, 269: 338–40.PubMedCrossRef
6.
go back to reference Halpin DM, Charlton HM, Faddy MJ: Effects of gonadotrophin deficiency on follicular development in hypogonadal (hpg) mice. J Reprod Fertil 1986, 78: 119–25.PubMedCrossRef Halpin DM, Charlton HM, Faddy MJ: Effects of gonadotrophin deficiency on follicular development in hypogonadal (hpg) mice. J Reprod Fertil 1986, 78: 119–25.PubMedCrossRef
7.
go back to reference Richards JS: Perspective: the ovarian follicle – a perspective in 2001. Endocrinology 2001, 142: 2184–93.PubMed Richards JS: Perspective: the ovarian follicle – a perspective in 2001. Endocrinology 2001, 142: 2184–93.PubMed
8.
go back to reference Fortune JE: The early stages of follicular development: activation of primordial follicles and growth of preantral follicles. Anim Reprod Sci 2003, 78: 135–63.PubMedCrossRef Fortune JE: The early stages of follicular development: activation of primordial follicles and growth of preantral follicles. Anim Reprod Sci 2003, 78: 135–63.PubMedCrossRef
9.
go back to reference Orisaka M, Orisaka S, Jiang JY, Craig J, Wang Y, Kotsuji F, Tsang BK: Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol Endocrinol 2006, 20: 2456–68.PubMedCrossRef Orisaka M, Orisaka S, Jiang JY, Craig J, Wang Y, Kotsuji F, Tsang BK: Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol Endocrinol 2006, 20: 2456–68.PubMedCrossRef
10.
go back to reference Hu CL, Cowan RG, Harman RM, Quirk SM: Cell cycle progression and activation of Akt kinase are required for insulin-like growth factor I-mediated suppression of apoptosis in granulosa cells. Mol Endocrinol 2004, 18: 326–38.PubMedCrossRef Hu CL, Cowan RG, Harman RM, Quirk SM: Cell cycle progression and activation of Akt kinase are required for insulin-like growth factor I-mediated suppression of apoptosis in granulosa cells. Mol Endocrinol 2004, 18: 326–38.PubMedCrossRef
11.
12.
go back to reference Tajima K, Orisaka M, Mori T, Kotsuji F: Ovarian theca cells in follicular function. Reprod Biomed Online 2007, 15: 591–609.PubMedCrossRef Tajima K, Orisaka M, Mori T, Kotsuji F: Ovarian theca cells in follicular function. Reprod Biomed Online 2007, 15: 591–609.PubMedCrossRef
13.
go back to reference Wandji SA, Srsen V, Voss AK, Eppig JJ, Fortune JE: Initiation in vitro of growth of bovine primordial follicles. Biol Reprod 1996, 55: 942–8.PubMedCrossRef Wandji SA, Srsen V, Voss AK, Eppig JJ, Fortune JE: Initiation in vitro of growth of bovine primordial follicles. Biol Reprod 1996, 55: 942–8.PubMedCrossRef
14.
go back to reference Gutierrez CG, Ralph JH, Telfer EE, Wilmut I, Webb R: Growth and antrum formation of bovine preantral follicles in long-term culture in vitro. Biol Reprod 2000, 62: 1322–8.PubMedCrossRef Gutierrez CG, Ralph JH, Telfer EE, Wilmut I, Webb R: Growth and antrum formation of bovine preantral follicles in long-term culture in vitro. Biol Reprod 2000, 62: 1322–8.PubMedCrossRef
15.
go back to reference Gougeon A: Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev 1996, 17: 121–55.PubMedCrossRef Gougeon A: Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev 1996, 17: 121–55.PubMedCrossRef
16.
go back to reference Braw-Tal R, Yossefi S: Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary. J Reprod Fertil 1997, 109: 165–71.PubMedCrossRef Braw-Tal R, Yossefi S: Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary. J Reprod Fertil 1997, 109: 165–71.PubMedCrossRef
17.
go back to reference Vendola KA, Zhou J, Adesanya OO, Weil SJ, Bondy CA: Androgens stimulate early stages of follicular growth in the primate ovary. J Clin Invest 1998, 101: 2622–9.PubMedCentralPubMedCrossRef Vendola KA, Zhou J, Adesanya OO, Weil SJ, Bondy CA: Androgens stimulate early stages of follicular growth in the primate ovary. J Clin Invest 1998, 101: 2622–9.PubMedCentralPubMedCrossRef
18.
go back to reference Weil S, Vendola K, Zhou J, Bondy CA: Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab 1999, 84: 2951–6.PubMedCrossRef Weil S, Vendola K, Zhou J, Bondy CA: Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab 1999, 84: 2951–6.PubMedCrossRef
19.
go back to reference Murray AA, Gosden RG, Allison V, Spears N: Effect of androgens on the development of mouse follicles growing in vitro. J Reprod Fertil 1998, 113: 27–33.PubMedCrossRef Murray AA, Gosden RG, Allison V, Spears N: Effect of androgens on the development of mouse follicles growing in vitro. J Reprod Fertil 1998, 113: 27–33.PubMedCrossRef
20.
go back to reference Spears N, Murray AA, Allison V, Boland NI, Gosden RG: Role of gonadotrophins and ovarian steroids in the development of mouse follicles in vitro. J Reprod Fertil 1998, 113: 19–26.PubMedCrossRef Spears N, Murray AA, Allison V, Boland NI, Gosden RG: Role of gonadotrophins and ovarian steroids in the development of mouse follicles in vitro. J Reprod Fertil 1998, 113: 19–26.PubMedCrossRef
21.
go back to reference Wang H, Andoh K, Hagiwara H, Xiaowei L, Kikuchi N, Abe Y, Yamada K, Fatima R, Mizunuma H: Effect of adrenal and ovarian androgens on type 4 follicles unresponsive to FSH in immature mice. Endocrinology 2001, 142: 4930–6.PubMedCrossRef Wang H, Andoh K, Hagiwara H, Xiaowei L, Kikuchi N, Abe Y, Yamada K, Fatima R, Mizunuma H: Effect of adrenal and ovarian androgens on type 4 follicles unresponsive to FSH in immature mice. Endocrinology 2001, 142: 4930–6.PubMedCrossRef
22.
go back to reference Kotsuji F, Kamitani N, Goto K, Tominaga T: Bovine theca and granulosa cell interactions modulate their growth, morphology, and function. Biol Reprod 1990, 43: 726–32.PubMedCrossRef Kotsuji F, Kamitani N, Goto K, Tominaga T: Bovine theca and granulosa cell interactions modulate their growth, morphology, and function. Biol Reprod 1990, 43: 726–32.PubMedCrossRef
23.
go back to reference Orisaka M, Mizutani T, Tajima K, Orisaka S, Shukunami K, Miyamoto K, Kotsuji F: Effects of ovarian theca cells on granulosa cell differentiation during gonadotropin-independent follicular growth in cattle. Mol Reprod Dev 2006, 73: 737–44.PubMedCrossRef Orisaka M, Mizutani T, Tajima K, Orisaka S, Shukunami K, Miyamoto K, Kotsuji F: Effects of ovarian theca cells on granulosa cell differentiation during gonadotropin-independent follicular growth in cattle. Mol Reprod Dev 2006, 73: 737–44.PubMedCrossRef
24.
go back to reference Orisaka M, Tajima K, Mizutani T, Miyamoto K, Tsang BK, Fukuda S, Yoshida Y, Kotsuji F: Granulosa cells promote differentiation of cortical stromal cells into theca cells in the bovine ovary. Biol Reprod 2006, 75: 734–40.PubMedCrossRef Orisaka M, Tajima K, Mizutani T, Miyamoto K, Tsang BK, Fukuda S, Yoshida Y, Kotsuji F: Granulosa cells promote differentiation of cortical stromal cells into theca cells in the bovine ovary. Biol Reprod 2006, 75: 734–40.PubMedCrossRef
25.
go back to reference Magoffin DA, ed: The role of the ovary in the genesis of hyperandrogenism. 2nd edition. San Diego: Elsevier Academic Press; 2004. Magoffin DA, ed: The role of the ovary in the genesis of hyperandrogenism. 2nd edition. San Diego: Elsevier Academic Press; 2004.
26.
go back to reference Huang CT, Weitsman SR, Dykes BN, Magoffin DA: Stem cell factor and insulin-like growth factor-I stimulate luteinizing hormone-independent differentiation of rat ovarian theca cells. Biol Reprod 2001, 64: 451–6.PubMedCrossRef Huang CT, Weitsman SR, Dykes BN, Magoffin DA: Stem cell factor and insulin-like growth factor-I stimulate luteinizing hormone-independent differentiation of rat ovarian theca cells. Biol Reprod 2001, 64: 451–6.PubMedCrossRef
27.
go back to reference Parrott JA, Skinner MK: Kit ligand actions on ovarian stromal cells: effects on theca cell recruitment and steroid production. Mol Reprod Dev 2000, 55: 55–64.PubMedCrossRef Parrott JA, Skinner MK: Kit ligand actions on ovarian stromal cells: effects on theca cell recruitment and steroid production. Mol Reprod Dev 2000, 55: 55–64.PubMedCrossRef
28.
go back to reference Eppig JJ, Wigglesworth K, Pendola FL: The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci USA 2002, 99: 2890–4.PubMedCentralPubMedCrossRef Eppig JJ, Wigglesworth K, Pendola FL: The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci USA 2002, 99: 2890–4.PubMedCentralPubMedCrossRef
29.
go back to reference Matzuk MM, Burns KH, Viveiros MM, Eppig JJ: Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 2002, 296: 2178–80.PubMedCrossRef Matzuk MM, Burns KH, Viveiros MM, Eppig JJ: Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 2002, 296: 2178–80.PubMedCrossRef
30.
go back to reference Vanderhyden BC, Caron PJ, Buccione R, Eppig JJ: Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation. Dev Biol 1990, 140: 307–17.PubMedCrossRef Vanderhyden BC, Caron PJ, Buccione R, Eppig JJ: Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation. Dev Biol 1990, 140: 307–17.PubMedCrossRef
31.
go back to reference Vanderhyden BC, Telfer EE, Eppig JJ: Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol Reprod 1992, 46: 1196–204.PubMedCrossRef Vanderhyden BC, Telfer EE, Eppig JJ: Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol Reprod 1992, 46: 1196–204.PubMedCrossRef
32.
go back to reference Chang H, Brown CW, Matzuk MM: Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 2002, 23: 787–823.PubMedCrossRef Chang H, Brown CW, Matzuk MM: Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 2002, 23: 787–823.PubMedCrossRef
33.
go back to reference Shimasaki S, Moore RK, Otsuka F, Erickson GF: The bone morphogenetic protein system in mammalian reproduction. Endocr Rev 2004, 25: 72–101.PubMedCrossRef Shimasaki S, Moore RK, Otsuka F, Erickson GF: The bone morphogenetic protein system in mammalian reproduction. Endocr Rev 2004, 25: 72–101.PubMedCrossRef
34.
go back to reference Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM: Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol 1999, 13: 1018–34.PubMedCrossRef Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM: Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol 1999, 13: 1018–34.PubMedCrossRef
35.
go back to reference Wu X, Chen L, Brown CA, Yan C, Matzuk MM: Interrelationship of growth differentiation factor 9 and inhibin in early folliculogenesis and ovarian tumorigenesis in mice. Mol Endocrinol 2004, 18: 1509–19.PubMedCrossRef Wu X, Chen L, Brown CA, Yan C, Matzuk MM: Interrelationship of growth differentiation factor 9 and inhibin in early folliculogenesis and ovarian tumorigenesis in mice. Mol Endocrinol 2004, 18: 1509–19.PubMedCrossRef
36.
go back to reference Solovyeva EV, Hayashi M, Margi K, Barkats C, Klein C, Amsterdam A, Hsueh AJ, Tsafriri A: Growth differentiation factor-9 stimulates rat theca-interstitial cell androgen biosynthesis. Biol Reprod 2000, 63: 1214–8.PubMedCrossRef Solovyeva EV, Hayashi M, Margi K, Barkats C, Klein C, Amsterdam A, Hsueh AJ, Tsafriri A: Growth differentiation factor-9 stimulates rat theca-interstitial cell androgen biosynthesis. Biol Reprod 2000, 63: 1214–8.PubMedCrossRef
37.
go back to reference Spicer LJ, Aad PY, Allen DT, Mazerbourg S, Payne AH, Hsueh AJ: Growth differentiation factor 9 (GDF9) stimulates proliferation and inhibits steroidogenesis by bovine theca cells: influence of follicle size on responses to GDF9. Biol Reprod 2008, 78: 243–53.PubMedCrossRef Spicer LJ, Aad PY, Allen DT, Mazerbourg S, Payne AH, Hsueh AJ: Growth differentiation factor 9 (GDF9) stimulates proliferation and inhibits steroidogenesis by bovine theca cells: influence of follicle size on responses to GDF9. Biol Reprod 2008, 78: 243–53.PubMedCrossRef
38.
go back to reference Orisaka M, Jiang JY, Orisaka S, Kotsuji F, Tsang BK: Growth differentiation factor 9 promotes rat preantral follicle growth by up-regulating follicular androgen biosynthesis. Endocrinology 2009, 150: 2740–8.PubMedCrossRef Orisaka M, Jiang JY, Orisaka S, Kotsuji F, Tsang BK: Growth differentiation factor 9 promotes rat preantral follicle growth by up-regulating follicular androgen biosynthesis. Endocrinology 2009, 150: 2740–8.PubMedCrossRef
39.
go back to reference Johnson AL: Intracellular mechanisms regulating cell survival in ovarian follicles. Anim Reprod Sci 2003, 78: 185–201.PubMedCrossRef Johnson AL: Intracellular mechanisms regulating cell survival in ovarian follicles. Anim Reprod Sci 2003, 78: 185–201.PubMedCrossRef
40.
41.
go back to reference Boone DL, Carnegie JA, Rippstein PU, Tsang BK: Induction of apoptosis in equine chorionic gonadotropin (eCG)-primed rat ovaries by anti-eCG antibody. Biol Reprod 1997, 57: 420–7.PubMedCrossRef Boone DL, Carnegie JA, Rippstein PU, Tsang BK: Induction of apoptosis in equine chorionic gonadotropin (eCG)-primed rat ovaries by anti-eCG antibody. Biol Reprod 1997, 57: 420–7.PubMedCrossRef
42.
43.
go back to reference Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM: Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996, 383: 531–5.PubMedCrossRef Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM: Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996, 383: 531–5.PubMedCrossRef
44.
go back to reference Hayashi M, McGee EA, Min G, Klein C, Rose UM, van Duin M, Hsueh AJ: Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology 1999, 140: 1236–44.PubMed Hayashi M, McGee EA, Min G, Klein C, Rose UM, van Duin M, Hsueh AJ: Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology 1999, 140: 1236–44.PubMed
45.
go back to reference Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, Hsueh AJ, Hovatta O: Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab. 2002,87(1):316–321.PubMedCrossRef Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, Hsueh AJ, Hovatta O: Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab. 2002,87(1):316–321.PubMedCrossRef
46.
go back to reference Jayawardana BC, Shimizu T, Nishimoto H, Kaneko E, Tetsuka M, Miyamoto A: Hormonal regulation of expression of growth differentiation factor-9 receptor type I and II genes in the bovine ovarian follicle. Reproduction 2006, 131: 545–53.PubMedCrossRef Jayawardana BC, Shimizu T, Nishimoto H, Kaneko E, Tetsuka M, Miyamoto A: Hormonal regulation of expression of growth differentiation factor-9 receptor type I and II genes in the bovine ovarian follicle. Reproduction 2006, 131: 545–53.PubMedCrossRef
48.
go back to reference Hu YC, Wang PH, Yeh S, Wang RS, Xie C, Xu Q, Zhou X, Chao HT, Tsai MY, Chang C: Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc Natl Acad Sci USA 2004, 101: 11209–14.PubMedCentralPubMedCrossRef Hu YC, Wang PH, Yeh S, Wang RS, Xie C, Xu Q, Zhou X, Chao HT, Tsai MY, Chang C: Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc Natl Acad Sci USA 2004, 101: 11209–14.PubMedCentralPubMedCrossRef
49.
go back to reference Shiina H, Matsumoto T, Sato T, Igarashi K, Miyamoto J, Takemasa S, Sakari M, Takada I, Nakamura T, Metzger D, Chambon P, Kanno J, Yoshikawa H, Kato S: Premature ovarian failure in androgen receptor-deficient mice. Proc Natl Acad Sci USA 2006, 103: 224–9.PubMedCentralPubMedCrossRef Shiina H, Matsumoto T, Sato T, Igarashi K, Miyamoto J, Takemasa S, Sakari M, Takada I, Nakamura T, Metzger D, Chambon P, Kanno J, Yoshikawa H, Kato S: Premature ovarian failure in androgen receptor-deficient mice. Proc Natl Acad Sci USA 2006, 103: 224–9.PubMedCentralPubMedCrossRef
50.
go back to reference Tetsuka M, Whitelaw PF, Bremner WJ, Millar MR, Smyth CD, Hillier SG: Developmental regulation of androgen receptor in rat ovary. J Endocrinol 1995, 145: 535–43.PubMedCrossRef Tetsuka M, Whitelaw PF, Bremner WJ, Millar MR, Smyth CD, Hillier SG: Developmental regulation of androgen receptor in rat ovary. J Endocrinol 1995, 145: 535–43.PubMedCrossRef
51.
go back to reference Bagnell CA, Mills TM, Costoff A, Mahesh VB: A model for the study of androgen effects on follicular atresia and ovulation. Biol Reprod 1982, 27: 903–14.PubMedCrossRef Bagnell CA, Mills TM, Costoff A, Mahesh VB: A model for the study of androgen effects on follicular atresia and ovulation. Biol Reprod 1982, 27: 903–14.PubMedCrossRef
52.
go back to reference Billig H, Furuta I, Hsueh AJ: Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis. Endocrinology 1993, 133: 2204–12.PubMed Billig H, Furuta I, Hsueh AJ: Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis. Endocrinology 1993, 133: 2204–12.PubMed
53.
go back to reference Yang MY, Fortune JE: Testosterone stimulates the primary to secondary follicle transition in bovine follicles in vitro. Biol Reprod 2006, 75: 924–32.PubMedCrossRef Yang MY, Fortune JE: Testosterone stimulates the primary to secondary follicle transition in bovine follicles in vitro. Biol Reprod 2006, 75: 924–32.PubMedCrossRef
54.
go back to reference Otala M, Makinen S, Tuuri T, Sjoberg J, Pentikainen V, Matikainen T, Dunkel L: Effects of testosterone, dihydrotestosterone, and 17beta-estradiol on human ovarian tissue survival in culture. Fertil Steril 2004,82(Suppl 3):1077–85.PubMedCrossRef Otala M, Makinen S, Tuuri T, Sjoberg J, Pentikainen V, Matikainen T, Dunkel L: Effects of testosterone, dihydrotestosterone, and 17beta-estradiol on human ovarian tissue survival in culture. Fertil Steril 2004,82(Suppl 3):1077–85.PubMedCrossRef
55.
go back to reference Driancourt MA, Reynaud K, Cortvrindt R, Smitz J: Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod 2000, 5: 143–52.PubMedCrossRef Driancourt MA, Reynaud K, Cortvrindt R, Smitz J: Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod 2000, 5: 143–52.PubMedCrossRef
56.
go back to reference Nilsson E, Skinner MK: Cellular interactions that control primordial follicle development and folliculogenesis. J Soc Gynecol Investig 2001, 8: S17–20.PubMedCrossRef Nilsson E, Skinner MK: Cellular interactions that control primordial follicle development and folliculogenesis. J Soc Gynecol Investig 2001, 8: S17–20.PubMedCrossRef
57.
go back to reference Vitt UA, Hsueh AJ: Stage-dependent role of growth differentiation factor-9 in ovarian follicle development. Mol Cell Endocrinol 2001, 183: 171–7.PubMedCrossRef Vitt UA, Hsueh AJ: Stage-dependent role of growth differentiation factor-9 in ovarian follicle development. Mol Cell Endocrinol 2001, 183: 171–7.PubMedCrossRef
58.
go back to reference Monget P, Fabre S, Mulsant P, Lecerf F, Elsen JM, Mazerbourg S, Pisselet C, Monniaux D: Regulation of ovarian folliculogenesis by IGF and BMP system in domestic animals. Domest Anim Endocrinol 2002, 23: 139–54.PubMedCrossRef Monget P, Fabre S, Mulsant P, Lecerf F, Elsen JM, Mazerbourg S, Pisselet C, Monniaux D: Regulation of ovarian folliculogenesis by IGF and BMP system in domestic animals. Domest Anim Endocrinol 2002, 23: 139–54.PubMedCrossRef
59.
go back to reference Hillier SG, van den Boogaard AM, Reichert LE Jr, van Hall EV: Intraovarian sex steroid hormone interactions and the regulation of follicular maturation: aromatization of androgens by human granulosa cells in vitro. J Clin Endocrinol Metab 1980, 50: 640–7.PubMedCrossRef Hillier SG, van den Boogaard AM, Reichert LE Jr, van Hall EV: Intraovarian sex steroid hormone interactions and the regulation of follicular maturation: aromatization of androgens by human granulosa cells in vitro. J Clin Endocrinol Metab 1980, 50: 640–7.PubMedCrossRef
60.
go back to reference Cardenas H, Herrick JR, Pope WF: Increased ovulation rate in gilts treated with dihydrotestosterone. Reproduction 2002, 123: 527–33.PubMedCrossRef Cardenas H, Herrick JR, Pope WF: Increased ovulation rate in gilts treated with dihydrotestosterone. Reproduction 2002, 123: 527–33.PubMedCrossRef
61.
go back to reference Hickey TE, Marrocco DL, Gilchrist RB, Norman RJ, Armstrong DT: Interactions between androgen and growth factors in granulosa cell subtypes of porcine antral follicles. Biol Reprod 2004, 71: 45–52.PubMedCrossRef Hickey TE, Marrocco DL, Gilchrist RB, Norman RJ, Armstrong DT: Interactions between androgen and growth factors in granulosa cell subtypes of porcine antral follicles. Biol Reprod 2004, 71: 45–52.PubMedCrossRef
62.
go back to reference Pakarainen T, Zhang FP, Nurmi L, Poutanen M, Huhtaniemi I: Knockout of luteinizing hormone receptor abolishes the effects of follicle-stimulating hormone on preovulatory maturation and ovulation of mouse graafian follicles. Mol Endocrinol 2005, 19: 2591–602.PubMedCrossRef Pakarainen T, Zhang FP, Nurmi L, Poutanen M, Huhtaniemi I: Knockout of luteinizing hormone receptor abolishes the effects of follicle-stimulating hormone on preovulatory maturation and ovulation of mouse graafian follicles. Mol Endocrinol 2005, 19: 2591–602.PubMedCrossRef
63.
go back to reference Mihm M, Baker PJ, Ireland JL, Smith GW, Coussens PM, Evans AC, Ireland JJ: Molecular evidence that growth of dominant follicles involves a reduction in follicle-stimulating hormone dependence and an increase in luteinizing hormone dependence in cattle. Biol Reprod 2006, 74: 1051–9.PubMedCrossRef Mihm M, Baker PJ, Ireland JL, Smith GW, Coussens PM, Evans AC, Ireland JJ: Molecular evidence that growth of dominant follicles involves a reduction in follicle-stimulating hormone dependence and an increase in luteinizing hormone dependence in cattle. Biol Reprod 2006, 74: 1051–9.PubMedCrossRef
64.
go back to reference Balasch J, Fabregues F: LH in the follicular phase: neither too high nor too low. Reprod Biomed Online 2006, 12: 406–15.PubMedCrossRef Balasch J, Fabregues F: LH in the follicular phase: neither too high nor too low. Reprod Biomed Online 2006, 12: 406–15.PubMedCrossRef
65.
go back to reference Sato C, Shimada M, Mori T, Kumasako Y, Otsu E, Watanabe H, Utsunomiya T: Assessment of human oocyte developmental competence by cumulus cell morphology and circulating hormone profile. Reprod Biomed Online 2007, 14: 49–56.PubMedCrossRef Sato C, Shimada M, Mori T, Kumasako Y, Otsu E, Watanabe H, Utsunomiya T: Assessment of human oocyte developmental competence by cumulus cell morphology and circulating hormone profile. Reprod Biomed Online 2007, 14: 49–56.PubMedCrossRef
66.
go back to reference Mori T, Nonoguchi K, Watanabe H, Ishikawa H, Tamura I, Kinoshita K: Morphogenesis of polycystic ovaries as assessed by pituitary-ovarian androgenic function. Reprod Biomed Online 2009, 18: 635–43.PubMedCrossRef Mori T, Nonoguchi K, Watanabe H, Ishikawa H, Tamura I, Kinoshita K: Morphogenesis of polycystic ovaries as assessed by pituitary-ovarian androgenic function. Reprod Biomed Online 2009, 18: 635–43.PubMedCrossRef
67.
go back to reference Hsueh AJ, Billig H, Tsafriri A: Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev 1994, 15: 707–24.PubMed Hsueh AJ, Billig H, Tsafriri A: Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev 1994, 15: 707–24.PubMed
68.
go back to reference Tilly JL, Billig H, Kowalski KI, Hsueh AJ: Epidermal growth factor and basic fibroblast growth factor suppress the spontaneous onset of apoptosis in cultured rat ovarian granulosa cells and follicles by a tyrosine kinase-dependent mechanism. Mol Endocrinol 1992, 6: 1942–50.PubMed Tilly JL, Billig H, Kowalski KI, Hsueh AJ: Epidermal growth factor and basic fibroblast growth factor suppress the spontaneous onset of apoptosis in cultured rat ovarian granulosa cells and follicles by a tyrosine kinase-dependent mechanism. Mol Endocrinol 1992, 6: 1942–50.PubMed
69.
go back to reference McGee EA, Chun SY, Lai S, He Y, Hsueh AJ: Keratinocyte growth factor promotes the survival, growth, and differentiation of preantral ovarian follicles. Fertil Steril 1999, 71: 732–8.PubMedCrossRef McGee EA, Chun SY, Lai S, He Y, Hsueh AJ: Keratinocyte growth factor promotes the survival, growth, and differentiation of preantral ovarian follicles. Fertil Steril 1999, 71: 732–8.PubMedCrossRef
70.
go back to reference Lee WS, Otsuka F, Moore RK, Shimasaki S: Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat. Biol Reprod 2001, 65: 994–9.PubMedCrossRef Lee WS, Otsuka F, Moore RK, Shimasaki S: Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat. Biol Reprod 2001, 65: 994–9.PubMedCrossRef
71.
go back to reference Wang Y, Asselin E, Tsang BK: Involvement of transforming growth factor alpha in the regulation of rat ovarian X-linked inhibitor of apoptosis protein expression and follicular growth by follicle-stimulating hormone. Biol Reprod 2002, 66: 1672–80.PubMedCrossRef Wang Y, Asselin E, Tsang BK: Involvement of transforming growth factor alpha in the regulation of rat ovarian X-linked inhibitor of apoptosis protein expression and follicular growth by follicle-stimulating hormone. Biol Reprod 2002, 66: 1672–80.PubMedCrossRef
Metadata
Title
Oocyte-granulosa-theca cell interactions during preantral follicular development
Authors
Makoto Orisaka
Kimihisa Tajima
Benjamin K Tsang
Fumikazu Kotsuji
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2009
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/1757-2215-2-9

Other articles of this Issue 1/2009

Journal of Ovarian Research 1/2009 Go to the issue