Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2014

Open Access 01-12-2014 | Research

Reference values for toe grip strength among Japanese adults aged 20 to 79 years: a cross-sectional study

Authors: Daisuke Uritani, Takahiko Fukumoto, Daisuke Matsumoto, Masayuki Shima

Published in: Journal of Foot and Ankle Research | Issue 1/2014

Login to get access

Abstract

Background

No standardised method has been adopted for measuring toe-grip strength (TGS), and no reference values have been established for evaluating it. The present study investigated age-related changes in TGS and the association of TGS with various descriptive characteristics.

Methods

TGS was measured in both feet of 1842 community-dwelling individuals aged 20–79 years using a toe-grip dynamometer. The participants were classified by decade into six age groups: 20–29, 30–39, 40–49, 50–59, 60–69, and 70–79 years. Correlations for TGS between the dominant and non-dominant sides were analysed according to decade and sex using Pearson’s correlation coefficient. The mean TGS and TGS-to-weight ratio (TGS/Wt%) were compared between sexes by each decade and among all decades by sex using two-way analysis of variance with post-hoc tests. To assess relationships between mean TGS and various descriptive characteristics, we determined Pearson’s correlation coefficient by sex and performed a stepwise multiple-regression analysis. Significance was set at 5%.

Results

Correlations for TGS between the dominant and non-dominant sides were significant in all decades by sex, ranging from 0.73 for men in their 70s to 0.91 for women in their 50s. Mean TGS and TGS/Wt% significantly differed between the sexes in all decades and in all decades except the 40s, respectively. In men, the mean TGS and TGS/Wt% significantly decreased with aging after the 50s and 60s, respectively. In women, both the mean TGS and TGS/Wt% significantly decreased between the 40s and 50s and between the 60s and 70s. TGS significantly correlated with age, height, and weight in both sexes. The stepwise multiple-regression analysis revealed TGS was significantly associated with sex, age, height, and weight (adjusted R2 = 0.31).

Conclusions

TGS was closely correlated between the dominant and non-dominant sides. TGS and TGS/Wt were significantly reduced with aging after the 50s in men and significantly reduced between the 40s and 50s and between the 60s and 70s in women. Age, sex, height, and weight accounted for only 30.8% of the variance in TGS. Therefore, other factors (e.g. toe flexibility, structural characteristics) should be considered for improving the accuracy of predicting TGS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Patla AE: Understanding the roles of vision in the control of human locomotion. Gait Posture. 1997, 5: 54-69. 10.1016/S0966-6362(96)01109-5.CrossRef Patla AE: Understanding the roles of vision in the control of human locomotion. Gait Posture. 1997, 5: 54-69. 10.1016/S0966-6362(96)01109-5.CrossRef
2.
go back to reference Perry SD, Santos LC, Patla AE: Contribution of vision and cutaneous sensation to the control of centre of mass (COM) during gait termination. Brain Res. 2001, 913: 27-34. 10.1016/S0006-8993(01)02748-2.CrossRefPubMed Perry SD, Santos LC, Patla AE: Contribution of vision and cutaneous sensation to the control of centre of mass (COM) during gait termination. Brain Res. 2001, 913: 27-34. 10.1016/S0006-8993(01)02748-2.CrossRefPubMed
3.
go back to reference Wade MG, Jones G: The role of vision and spatial orientation in the maintenance of posture. Phys Ther. 1997, 77: 619-628.PubMed Wade MG, Jones G: The role of vision and spatial orientation in the maintenance of posture. Phys Ther. 1997, 77: 619-628.PubMed
4.
go back to reference Eils E, Behrens S, Mers O, Thorwesten L, Völker K, Rosenbaum D: Reduced plantar sensation causes a cautious walking pattern. Gait Posture. 2004, 20: 54-60. 10.1016/S0966-6362(03)00095-X.CrossRefPubMed Eils E, Behrens S, Mers O, Thorwesten L, Völker K, Rosenbaum D: Reduced plantar sensation causes a cautious walking pattern. Gait Posture. 2004, 20: 54-60. 10.1016/S0966-6362(03)00095-X.CrossRefPubMed
5.
go back to reference Endo M, Ashton-Miller JA, Alexander NB: Effects of age and gender on toe flexor muscle strength. J Gerontol A Biol Sci Med Sci. 2002, 57: M392-M397. 10.1093/gerona/57.6.M392.CrossRefPubMed Endo M, Ashton-Miller JA, Alexander NB: Effects of age and gender on toe flexor muscle strength. J Gerontol A Biol Sci Med Sci. 2002, 57: M392-M397. 10.1093/gerona/57.6.M392.CrossRefPubMed
6.
go back to reference Morioka S, Yagi F: Influence of perceptual learning on standing posture balance: repeated training for hardness discrimination of foot sole. Gait Posture. 2004, 20: 36-40. 10.1016/S0966-6362(03)00090-0.CrossRefPubMed Morioka S, Yagi F: Influence of perceptual learning on standing posture balance: repeated training for hardness discrimination of foot sole. Gait Posture. 2004, 20: 36-40. 10.1016/S0966-6362(03)00090-0.CrossRefPubMed
7.
go back to reference Hughes J, Clark P, Klenerman L: The importance of the toes in walking. J Bone Joint Surg (Br). 1990, 72B: 245-251. Hughes J, Clark P, Klenerman L: The importance of the toes in walking. J Bone Joint Surg (Br). 1990, 72B: 245-251.
8.
go back to reference Mann RA, Hagy JL: The function of the toes in walking, jogging and running. Clin Orthop Relat Res. 1979, 142: 24-29.PubMed Mann RA, Hagy JL: The function of the toes in walking, jogging and running. Clin Orthop Relat Res. 1979, 142: 24-29.PubMed
9.
go back to reference Menz HB, Zammit GV, Munteanu SE, Scott G: Plantarflexion strength of the toes: age and gender differences and evaluation of a clinical screening test. Foot Ankle Int. 2006, 27: 1103-1108.PubMed Menz HB, Zammit GV, Munteanu SE, Scott G: Plantarflexion strength of the toes: age and gender differences and evaluation of a clinical screening test. Foot Ankle Int. 2006, 27: 1103-1108.PubMed
10.
go back to reference Scott G, Menz HB, Newcombe L: Age-related differences in foot structure and function. Gait Posture. 2007, 26: 68-75. 10.1016/j.gaitpost.2006.07.009.CrossRefPubMed Scott G, Menz HB, Newcombe L: Age-related differences in foot structure and function. Gait Posture. 2007, 26: 68-75. 10.1016/j.gaitpost.2006.07.009.CrossRefPubMed
11.
go back to reference Menz HB, Morris ME, Lord SR: Foot and ankle characteristics associated with impaired balance and functional ability in older people. J Gerontol A Biol Sci Med Sci. 2005, 60: 1546-1552. 10.1093/gerona/60.12.1546.CrossRefPubMed Menz HB, Morris ME, Lord SR: Foot and ankle characteristics associated with impaired balance and functional ability in older people. J Gerontol A Biol Sci Med Sci. 2005, 60: 1546-1552. 10.1093/gerona/60.12.1546.CrossRefPubMed
12.
go back to reference Menz HB, Morris ME, Lord SR: Foot and ankle risk factors for falls in older people: a prospective study. J Gerontol A Biol Sci Med Sci. 2006, 61: 866-870. 10.1093/gerona/61.8.866.CrossRefPubMed Menz HB, Morris ME, Lord SR: Foot and ankle risk factors for falls in older people: a prospective study. J Gerontol A Biol Sci Med Sci. 2006, 61: 866-870. 10.1093/gerona/61.8.866.CrossRefPubMed
13.
go back to reference Mickle KJ, Munro BJ, Lord SR, Menz HB, Steele JR: ISB Clinical Biomechanics Award 2009: toe weakness and deformity increase the risk of falls in older people. Clin Biomech. 2009, 24: 787-791. 10.1016/j.clinbiomech.2009.08.011.CrossRef Mickle KJ, Munro BJ, Lord SR, Menz HB, Steele JR: ISB Clinical Biomechanics Award 2009: toe weakness and deformity increase the risk of falls in older people. Clin Biomech. 2009, 24: 787-791. 10.1016/j.clinbiomech.2009.08.011.CrossRef
14.
go back to reference Caselli MA, George DH: Foot deformities: biomechanical and pathomechanical changes associated with aging, Part I. Clin Podiatr Med Surg. 2003, 20: 487-509. 10.1016/S0891-8422(03)00037-5.CrossRefPubMed Caselli MA, George DH: Foot deformities: biomechanical and pathomechanical changes associated with aging, Part I. Clin Podiatr Med Surg. 2003, 20: 487-509. 10.1016/S0891-8422(03)00037-5.CrossRefPubMed
15.
go back to reference Garth WP, Miller ST: Evaluation of claw toe deformity, weakness of the foot intrinsics, and posteromedial shin pain. Am J Sports Med. 1989, 17: 821-827. 10.1177/036354658901700617.CrossRefPubMed Garth WP, Miller ST: Evaluation of claw toe deformity, weakness of the foot intrinsics, and posteromedial shin pain. Am J Sports Med. 1989, 17: 821-827. 10.1177/036354658901700617.CrossRefPubMed
16.
go back to reference Shiroshita T, Fukubayashi T: Comparison of Towel-gathering Exercise and Toe Exercises for the Painful Accessory Navicular. J Phys Ther Sci. 2011, 23: 455-458. 10.1589/jpts.23.455.CrossRef Shiroshita T, Fukubayashi T: Comparison of Towel-gathering Exercise and Toe Exercises for the Painful Accessory Navicular. J Phys Ther Sci. 2011, 23: 455-458. 10.1589/jpts.23.455.CrossRef
17.
go back to reference Uritani D, Fukumoto T, Matsumoto D: Intrarater and Interrater Reliabilities for a Toe Grip Dynamometer. J Phys Ther Sci. 2012, 24: 639-643. 10.1589/jpts.24.639.CrossRef Uritani D, Fukumoto T, Matsumoto D: Intrarater and Interrater Reliabilities for a Toe Grip Dynamometer. J Phys Ther Sci. 2012, 24: 639-643. 10.1589/jpts.24.639.CrossRef
18.
go back to reference Garrow AP, Papageorgiou A, Silman AJ, Thomas E, Jayson MI, Macfarlane GJ: The grading of hallux valgus. The Manchester Scale. J Am Podiatr Med Assoc. 2001, 91: 74-78.CrossRefPubMed Garrow AP, Papageorgiou A, Silman AJ, Thomas E, Jayson MI, Macfarlane GJ: The grading of hallux valgus. The Manchester Scale. J Am Podiatr Med Assoc. 2001, 91: 74-78.CrossRefPubMed
19.
go back to reference Kamon M, Toufukuji N, Nakamura Y: Research regards to flexional force of foot. Tokai J Sports Med Sci. 2005, 17: 48-54. (In Japanese) Kamon M, Toufukuji N, Nakamura Y: Research regards to flexional force of foot. Tokai J Sports Med Sci. 2005, 17: 48-54. (In Japanese)
20.
go back to reference Chhibber SR, Singh I: Asymmetry in muscle weight and one-sided dominance in the human lower limbs. J Anat. 1970, 106: 553-556.PubMedPubMedCentral Chhibber SR, Singh I: Asymmetry in muscle weight and one-sided dominance in the human lower limbs. J Anat. 1970, 106: 553-556.PubMedPubMedCentral
21.
go back to reference Riskowski JL, Hagedorn TJ, Dufour AB, Hannan MT: Functional foot symmetry and its relation to lower extremity physical performance in older adults: the Framingham Foot Study. J Biomech. 2012, 45: 1796-1802. 10.1016/j.jbiomech.2012.04.019.CrossRefPubMedPubMedCentral Riskowski JL, Hagedorn TJ, Dufour AB, Hannan MT: Functional foot symmetry and its relation to lower extremity physical performance in older adults: the Framingham Foot Study. J Biomech. 2012, 45: 1796-1802. 10.1016/j.jbiomech.2012.04.019.CrossRefPubMedPubMedCentral
22.
go back to reference Mitsionis G, Pakos EE, Stafilas KS, Paschos N, Papakostas T, Beris AE: Normative data on hand grip strength in a Greek adult population. Int Orthop. 2009, 33: 713-717. 10.1007/s00264-008-0551-x.CrossRefPubMed Mitsionis G, Pakos EE, Stafilas KS, Paschos N, Papakostas T, Beris AE: Normative data on hand grip strength in a Greek adult population. Int Orthop. 2009, 33: 713-717. 10.1007/s00264-008-0551-x.CrossRefPubMed
23.
go back to reference Borges O: Isometric and isokinetic knee extension and flexion torque in men and women aged 20–70. Scand J Rehabil Med. 1989, 21: 45-53.PubMed Borges O: Isometric and isokinetic knee extension and flexion torque in men and women aged 20–70. Scand J Rehabil Med. 1989, 21: 45-53.PubMed
24.
go back to reference Daley MJ, Spinks WL: Exercise, mobility and aging. Sports Med. 2000, 29: 1-12. 10.2165/00007256-200029010-00001.CrossRefPubMed Daley MJ, Spinks WL: Exercise, mobility and aging. Sports Med. 2000, 29: 1-12. 10.2165/00007256-200029010-00001.CrossRefPubMed
25.
go back to reference DiPietro L: Physical activity in aging: changes in patterns and their relationship to health and function. J Gerontol A Biol Sci Med Sci. 2001, 2: 13-22. 56 Spec NoCrossRef DiPietro L: Physical activity in aging: changes in patterns and their relationship to health and function. J Gerontol A Biol Sci Med Sci. 2001, 2: 13-22. 56 Spec NoCrossRef
26.
go back to reference Wilmore JH: The aging of bone and muscle. Clin Sports Med. 1991, 10: 231-244.PubMed Wilmore JH: The aging of bone and muscle. Clin Sports Med. 1991, 10: 231-244.PubMed
27.
go back to reference Ryall JG, Schertzer JD, Lynch GS: Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology. 2008, 9: 213-228. 10.1007/s10522-008-9131-0.CrossRefPubMed Ryall JG, Schertzer JD, Lynch GS: Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology. 2008, 9: 213-228. 10.1007/s10522-008-9131-0.CrossRefPubMed
28.
go back to reference Faulkner JA, Larkin LM, Claflin DR, Brooks SV: Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol. 2007, 34: 1091-1096. 10.1111/j.1440-1681.2007.04752.x.CrossRefPubMed Faulkner JA, Larkin LM, Claflin DR, Brooks SV: Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol. 2007, 34: 1091-1096. 10.1111/j.1440-1681.2007.04752.x.CrossRefPubMed
29.
go back to reference Lexell J, Taylor CC, Sjöström M: What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988, 84: 275-294. 10.1016/0022-510X(88)90132-3.CrossRefPubMed Lexell J, Taylor CC, Sjöström M: What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988, 84: 275-294. 10.1016/0022-510X(88)90132-3.CrossRefPubMed
30.
31.
go back to reference Samson MM, Meeuwsen IB, Crowe A, Dessens JA, Duursma SA, Verhaar HJ: Relationships between physical performance measures, age, height and body weight in healthy adults. Age Ageing. 2000, 29: 235-242. 10.1093/ageing/29.3.235.CrossRefPubMed Samson MM, Meeuwsen IB, Crowe A, Dessens JA, Duursma SA, Verhaar HJ: Relationships between physical performance measures, age, height and body weight in healthy adults. Age Ageing. 2000, 29: 235-242. 10.1093/ageing/29.3.235.CrossRefPubMed
32.
go back to reference Lowe DA, Baltgalvis KA, Greising SM: Mechanisms behind estrogen’s beneficial effect on muscle strength in females. Exerc Sport Sci Rev. 2010, 38: 61-67. 10.1097/JES.0b013e3181d496bc.CrossRefPubMedPubMedCentral Lowe DA, Baltgalvis KA, Greising SM: Mechanisms behind estrogen’s beneficial effect on muscle strength in females. Exerc Sport Sci Rev. 2010, 38: 61-67. 10.1097/JES.0b013e3181d496bc.CrossRefPubMedPubMedCentral
33.
go back to reference Frontera WR, Hughes VA, Lutz KJ, Evans WJ: A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol. 1991, 71: 644-650.PubMed Frontera WR, Hughes VA, Lutz KJ, Evans WJ: A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol. 1991, 71: 644-650.PubMed
34.
go back to reference Bohannon RW: Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Arch Phys Med Rehabil. 1997, 78: 26-32. 10.1016/S0003-9993(97)90005-8.CrossRefPubMed Bohannon RW: Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Arch Phys Med Rehabil. 1997, 78: 26-32. 10.1016/S0003-9993(97)90005-8.CrossRefPubMed
35.
go back to reference Grant S, Hasler T, Davies C, Aitchison TC, Wilson J, Whittaker A: A comparison of the anthropometric, strength, endurance and flexibility characteristics of female elite and recreational climbers and non-climbers. J Sports Sci. 2001, 19: 499-505. 10.1080/026404101750238953.CrossRefPubMed Grant S, Hasler T, Davies C, Aitchison TC, Wilson J, Whittaker A: A comparison of the anthropometric, strength, endurance and flexibility characteristics of female elite and recreational climbers and non-climbers. J Sports Sci. 2001, 19: 499-505. 10.1080/026404101750238953.CrossRefPubMed
36.
go back to reference Rantanen T, Guralnik JM, Sakari-Rantala R, Leveille S, Simonsick EM, Ling S, Fried LP: Disability, physical activity, and muscle strength in older women: The women’s health and aging study. Arch Phys Med Rehabil. 1999, 80: 130-135. 10.1016/S0003-9993(99)90109-0.CrossRefPubMed Rantanen T, Guralnik JM, Sakari-Rantala R, Leveille S, Simonsick EM, Ling S, Fried LP: Disability, physical activity, and muscle strength in older women: The women’s health and aging study. Arch Phys Med Rehabil. 1999, 80: 130-135. 10.1016/S0003-9993(99)90109-0.CrossRefPubMed
37.
go back to reference Rantanen T, Sipilä S, Suominen H: Muscle strength and history of heavy manual work among elderly trained women and randomly chosen sample population. Eur J Appl Physiol Occup Physiol. 1993, 66: 514-517. 10.1007/BF00634301.CrossRefPubMed Rantanen T, Sipilä S, Suominen H: Muscle strength and history of heavy manual work among elderly trained women and randomly chosen sample population. Eur J Appl Physiol Occup Physiol. 1993, 66: 514-517. 10.1007/BF00634301.CrossRefPubMed
Metadata
Title
Reference values for toe grip strength among Japanese adults aged 20 to 79 years: a cross-sectional study
Authors
Daisuke Uritani
Takahiko Fukumoto
Daisuke Matsumoto
Masayuki Shima
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2014
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/1757-1146-7-28

Other articles of this Issue 1/2014

Journal of Foot and Ankle Research 1/2014 Go to the issue