Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2012

Open Access 01-12-2012 | Research

Measurement of tibial nerve excursion during ankle joint dorsiflexion in a weight-bearing position with ultrasound imaging

Authors: Matthew Carroll, Janet Yau, Keith Rome, Wayne Hing

Published in: Journal of Foot and Ankle Research | Issue 1/2012

Login to get access

Abstract

Background

The ability of peripheral nerves to stretch and slide is thought to be of paramount importance to maintain ideal neural function. Excursion in peripheral nerves such as the tibial can be measured by analysis of ultrasound images. The aim of this study was to assess the degree of longitudinal tibial nerve excursion as the ankle moved from plantar flexion to dorsiflexion in a standardised weight-bearing position. The reliability of ultrasound imaging to measure tibial nerve excursion was also quantified.

Methods

The tibial nerve was imaged over two separate sessions in sixteen asymptomatic participants in a weight-bearing position. Longitudinal nerve excursion was calculated from a three-second video loop captured by ultrasound imaging using frame-by-frame cross-correlation analysis. Intraclass correlation coefficients (ICC) with 95% confidence intervals (CI) were used to assess the intra-rater reliability. Standard error of the measurement (SEM) and smallest real difference (SRD) were calculated to assess measurement error.

Results

Mean nerve excursion was 2.99 mm SEM ± 0.22 mm. The SRD was 0.84 mm for session 1 and 0.66 mm for session 2. Intra-rater reliability was excellent with an ICC = 0.93.

Conclusions

Assessment of real-time ultrasound images of the tibial nerve via frame-by-frame cross-correlation analysis is a reliable non-invasive technique to assess longitudinal nerve excursion. The relationship between foot posture and nerve excursion can be further investigated.
Appendix
Available only for authorised users
Literature
1.
go back to reference Butler D: The Sensitive Nervous System. 2000, Adelaide: Noigroup Publications Butler D: The Sensitive Nervous System. 2000, Adelaide: Noigroup Publications
2.
go back to reference Shacklock M: Neurodynamics. Physiotherapy. 1995, 81: 9-16. 10.1016/S0031-9406(05)67024-1.CrossRef Shacklock M: Neurodynamics. Physiotherapy. 1995, 81: 9-16. 10.1016/S0031-9406(05)67024-1.CrossRef
3.
go back to reference Shacklock M: Clinical Neurodynamics: A new system of musculoskeletal treatment. 2005, Edingburgh: Elsevier Shacklock M: Clinical Neurodynamics: A new system of musculoskeletal treatment. 2005, Edingburgh: Elsevier
4.
go back to reference Brown C, Gilbert K, Brismee J-M, Sizer P, James C, Smith P: The effects of neurodynamic mobilization on fluid dispersion within the tibial nerve at the ankle: an unembalmed cadaveric study. J Man Manip Ther. 2011, 19: 26-34. 10.1179/2042618610Y.0000000003.CrossRefPubMedPubMedCentral Brown C, Gilbert K, Brismee J-M, Sizer P, James C, Smith P: The effects of neurodynamic mobilization on fluid dispersion within the tibial nerve at the ankle: an unembalmed cadaveric study. J Man Manip Ther. 2011, 19: 26-34. 10.1179/2042618610Y.0000000003.CrossRefPubMedPubMedCentral
5.
go back to reference Driscoll PJ, Glasby MA, Lawson GM: An in vivo study of peripheral nerves in continuity: biomechanical and physiological responses to elongation. J Orthop Res. 2002, 20: 370-375. 10.1016/S0736-0266(01)00104-8.CrossRefPubMed Driscoll PJ, Glasby MA, Lawson GM: An in vivo study of peripheral nerves in continuity: biomechanical and physiological responses to elongation. J Orthop Res. 2002, 20: 370-375. 10.1016/S0736-0266(01)00104-8.CrossRefPubMed
6.
go back to reference Lundborg G, Rydevik B: Effects of stretching the tibial nerve of the rabbit. A preliminary study of the intraneural circulation and the barrier function of the perineurium. J Bone Joint Surg Br. 1973, 55: 390-401.PubMed Lundborg G, Rydevik B: Effects of stretching the tibial nerve of the rabbit. A preliminary study of the intraneural circulation and the barrier function of the perineurium. J Bone Joint Surg Br. 1973, 55: 390-401.PubMed
7.
go back to reference Ogata K, Naito M: Blood flow of the peripheral nerve effects of dissection, stretching and compression. J Hand Surg Br. 1986, 11: 10-14. 10.1016/0266-7681(86)90003-3.CrossRefPubMed Ogata K, Naito M: Blood flow of the peripheral nerve effects of dissection, stretching and compression. J Hand Surg Br. 1986, 11: 10-14. 10.1016/0266-7681(86)90003-3.CrossRefPubMed
8.
go back to reference Coppieters MW, Alshami AM, Babri AS, Souvlis T, Kippers V, Hodges PW: Strain and excursion of the sciatic, tibial, and plantar nerves during a modified straight leg raising test. J Orthop Res. 2006, 24: 1883-1889. 10.1002/jor.20210.CrossRefPubMed Coppieters MW, Alshami AM, Babri AS, Souvlis T, Kippers V, Hodges PW: Strain and excursion of the sciatic, tibial, and plantar nerves during a modified straight leg raising test. J Orthop Res. 2006, 24: 1883-1889. 10.1002/jor.20210.CrossRefPubMed
9.
go back to reference Alshami A, Babri A, Souvlis T, Coppieters M: Biomechanical evaluation of two clinical tests for plantar heel pain: the dorsiflexion-eversion test for tarsal tunnel syndrome and the windlass test for plantar fasciitis. Foot Ankle Int. 2007, 28: 499-505. 10.3113/FAI.2007.0499.CrossRefPubMed Alshami A, Babri A, Souvlis T, Coppieters M: Biomechanical evaluation of two clinical tests for plantar heel pain: the dorsiflexion-eversion test for tarsal tunnel syndrome and the windlass test for plantar fasciitis. Foot Ankle Int. 2007, 28: 499-505. 10.3113/FAI.2007.0499.CrossRefPubMed
10.
go back to reference Dilley A, Greening J, Lynn B, Leary R, Morris V: The use of cross-sectional analysis between high-frequency ultrasound images to measure longitudinal median nerve movement. Ultrasound Med Biol. 2001, 27: 1211-1218. 10.1016/S0301-5629(01)00413-6.CrossRefPubMed Dilley A, Greening J, Lynn B, Leary R, Morris V: The use of cross-sectional analysis between high-frequency ultrasound images to measure longitudinal median nerve movement. Ultrasound Med Biol. 2001, 27: 1211-1218. 10.1016/S0301-5629(01)00413-6.CrossRefPubMed
11.
go back to reference Dilley A, Lynn B, Greening J, DeLeon N: Quantitative in vivo studies of median nerve sliding in response to wrist, elbow, shoulder and neck movements. Clin Biomech. 2003, 18: 899-907. 10.1016/S0268-0033(03)00176-1.CrossRef Dilley A, Lynn B, Greening J, DeLeon N: Quantitative in vivo studies of median nerve sliding in response to wrist, elbow, shoulder and neck movements. Clin Biomech. 2003, 18: 899-907. 10.1016/S0268-0033(03)00176-1.CrossRef
12.
go back to reference Dilley A, Lynn B, Pang S: Pressure and stretch mechanosensitivity of peripheral nerve fibers following local inflammation of the nerve trunk. Pain. 2005, 117: 462-472. 10.1016/j.pain.2005.08.018.CrossRefPubMedPubMedCentral Dilley A, Lynn B, Pang S: Pressure and stretch mechanosensitivity of peripheral nerve fibers following local inflammation of the nerve trunk. Pain. 2005, 117: 462-472. 10.1016/j.pain.2005.08.018.CrossRefPubMedPubMedCentral
13.
go back to reference Dilley A, Summerhayes C, Lynn B: An in vivo investigation of ulnar nerve sliding during upper limb movements. Clin Biomech. 2007, 22: 774-779. 10.1016/j.clinbiomech.2007.04.004.CrossRef Dilley A, Summerhayes C, Lynn B: An in vivo investigation of ulnar nerve sliding during upper limb movements. Clin Biomech. 2007, 22: 774-779. 10.1016/j.clinbiomech.2007.04.004.CrossRef
14.
go back to reference Dilley A, Odeyinde S, Greening J, Lynn B: Longitudinal sliding of the median nerve in patients with non-specific arm pain. Man Ther. 2008, 13: 536-543. 10.1016/j.math.2007.07.004.CrossRefPubMed Dilley A, Odeyinde S, Greening J, Lynn B: Longitudinal sliding of the median nerve in patients with non-specific arm pain. Man Ther. 2008, 13: 536-543. 10.1016/j.math.2007.07.004.CrossRefPubMed
15.
go back to reference Erel E, Dilley A, Greening J, Morris V, Cohen B, Lynn B: Longitudinal sliding of the median nerve in patients with carpal tunnel syndrome. J Hand Surg: J Br Soc Sur Hand. 2003, 28: 439-443.CrossRef Erel E, Dilley A, Greening J, Morris V, Cohen B, Lynn B: Longitudinal sliding of the median nerve in patients with carpal tunnel syndrome. J Hand Surg: J Br Soc Sur Hand. 2003, 28: 439-443.CrossRef
16.
go back to reference Erel E, Dilley A, Turner S, Kumar P, Bhatti WA, Lees VC: Sonographic measurements of longitudinal median nerve sliding in patients following nerve repair. Muscle Nerve. 2009, 41: 350-354.CrossRef Erel E, Dilley A, Turner S, Kumar P, Bhatti WA, Lees VC: Sonographic measurements of longitudinal median nerve sliding in patients following nerve repair. Muscle Nerve. 2009, 41: 350-354.CrossRef
17.
go back to reference Greening J, Dilley A, Lynn B: In vivo study of nerve movement and mechanosensitivity of the median nerve in whiplash and non-specific arm pain patients. Pain. 2005, 115: 248-253. 10.1016/j.pain.2005.02.023.CrossRefPubMed Greening J, Dilley A, Lynn B: In vivo study of nerve movement and mechanosensitivity of the median nerve in whiplash and non-specific arm pain patients. Pain. 2005, 115: 248-253. 10.1016/j.pain.2005.02.023.CrossRefPubMed
18.
go back to reference Echigo A, Aoki M, Ishiai S, Yamaguchi M, Nakamura M, Sawada Y: The Excursion of the Median Nerve during Nerve Gliding Exercise: An Observation with High-resolution Ultrasonography. J Hand Ther. 2008, 21: 221-228. 10.1197/j.jht.2007.11.001.CrossRefPubMed Echigo A, Aoki M, Ishiai S, Yamaguchi M, Nakamura M, Sawada Y: The Excursion of the Median Nerve during Nerve Gliding Exercise: An Observation with High-resolution Ultrasonography. J Hand Ther. 2008, 21: 221-228. 10.1197/j.jht.2007.11.001.CrossRefPubMed
19.
20.
go back to reference Coppieters MW, Hough AD, Dilley A: Different nerve-gliding exercises induce different magnitudes of median nerve longitudinal excursion: an in vivo study using dynamic ultrasound imaging. J Orthop Sports Phys Ther. 2009, 39: 164-171.CrossRefPubMed Coppieters MW, Hough AD, Dilley A: Different nerve-gliding exercises induce different magnitudes of median nerve longitudinal excursion: an in vivo study using dynamic ultrasound imaging. J Orthop Sports Phys Ther. 2009, 39: 164-171.CrossRefPubMed
21.
go back to reference Ellis R, Hing W, Dilley A, McNair P: Reliability of measuring sciatic and tibial nerve movement with diagnostic ultrasound during a neural mobilisation technique. Ultrasound Med Biol. 2008, 34: 1209-1216. 10.1016/j.ultrasmedbio.2008.01.003.CrossRefPubMed Ellis R, Hing W, Dilley A, McNair P: Reliability of measuring sciatic and tibial nerve movement with diagnostic ultrasound during a neural mobilisation technique. Ultrasound Med Biol. 2008, 34: 1209-1216. 10.1016/j.ultrasmedbio.2008.01.003.CrossRefPubMed
22.
go back to reference Gray H, Standring S, Ellis H, Berkovitz B: Gray's Anatomy: The anatomical basis of clinical practice. 2005, Edingburgh: Elsevier Churchill Livingstone, 39 Gray H, Standring S, Ellis H, Berkovitz B: Gray's Anatomy: The anatomical basis of clinical practice. 2005, Edingburgh: Elsevier Churchill Livingstone, 39
23.
go back to reference Fleiss J: The Design and Analysis of Clinical Experiments. 1986, New York: Wiley Fleiss J: The Design and Analysis of Clinical Experiments. 1986, New York: Wiley
24.
go back to reference Dudek F: The continuing misinterpretation of the standard error of measurement. Psychol Bull. 1979, 86: 335-337.CrossRef Dudek F: The continuing misinterpretation of the standard error of measurement. Psychol Bull. 1979, 86: 335-337.CrossRef
25.
go back to reference Ota S, Ward SR, Chen YJ, Tsai YJ, Powers CM: Concurrent criterion-related validity and reliability of a clinical device used to assess lateral patellar displacement. J Orthop Sports Phys Ther. 2006, 36: 645-652.CrossRefPubMed Ota S, Ward SR, Chen YJ, Tsai YJ, Powers CM: Concurrent criterion-related validity and reliability of a clinical device used to assess lateral patellar displacement. J Orthop Sports Phys Ther. 2006, 36: 645-652.CrossRefPubMed
26.
go back to reference Campanini I, Merlo A: Reliability, smallest real difference and concurrent validity of indicies computed from GRF components in gait of stroke patients. Gait Posture. 2009, 30: 127-131. 10.1016/j.gaitpost.2009.03.011.CrossRefPubMed Campanini I, Merlo A: Reliability, smallest real difference and concurrent validity of indicies computed from GRF components in gait of stroke patients. Gait Posture. 2009, 30: 127-131. 10.1016/j.gaitpost.2009.03.011.CrossRefPubMed
27.
go back to reference Cho R, Braun S, Ta K, Palesty J, Mine R, SA S, Chang D, Thomson J: Early passive mobilisation after digital nerve repair and grafting in a fresh cadaver. Plast Reconstr Surg. 2001, 108: 386-391. 10.1097/00006534-200108000-00017.CrossRef Cho R, Braun S, Ta K, Palesty J, Mine R, SA S, Chang D, Thomson J: Early passive mobilisation after digital nerve repair and grafting in a fresh cadaver. Plast Reconstr Surg. 2001, 108: 386-391. 10.1097/00006534-200108000-00017.CrossRef
28.
go back to reference Coppieters MW, Alshami AM, Coppieters MW, Alshami AM: Longitudinal excursion and strain in the median nerve during novel nerve gliding exercises for carpal tunnel syndrome. J Orthop Res. 2007, 25: 972-980. 10.1002/jor.20310.CrossRefPubMed Coppieters MW, Alshami AM, Coppieters MW, Alshami AM: Longitudinal excursion and strain in the median nerve during novel nerve gliding exercises for carpal tunnel syndrome. J Orthop Res. 2007, 25: 972-980. 10.1002/jor.20310.CrossRefPubMed
29.
go back to reference Alshami A, Babri A, Souvlis T, Coppieters M: Strain in the tibial and plantar nerves with foot and ankle movements and the influence of adjacent joint positions. J Appl Biomech. 2008, 24: 368-376.PubMed Alshami A, Babri A, Souvlis T, Coppieters M: Strain in the tibial and plantar nerves with foot and ankle movements and the influence of adjacent joint positions. J Appl Biomech. 2008, 24: 368-376.PubMed
30.
go back to reference Barker AR, Rosson GD, Dellon AL: Pressure changes in the medial and lateral plantar and tarsal tunnels related to ankle position: a cadaver study. Foot Ankle Int. 2007, 28: 250-254. 10.3113/FAI.2007.0250.CrossRefPubMed Barker AR, Rosson GD, Dellon AL: Pressure changes in the medial and lateral plantar and tarsal tunnels related to ankle position: a cadaver study. Foot Ankle Int. 2007, 28: 250-254. 10.3113/FAI.2007.0250.CrossRefPubMed
31.
go back to reference Daniels TR, Lau JT, Hearn TC: The effects of foot position and load on tibial nerve tension. Foot Ankle Int. 1998, 19: 73-78.CrossRefPubMed Daniels TR, Lau JT, Hearn TC: The effects of foot position and load on tibial nerve tension. Foot Ankle Int. 1998, 19: 73-78.CrossRefPubMed
32.
go back to reference Fenster A, Downey D, Cardinal N: Three-dimensional ultrasound imaging. Phys Med Biol. 2001, 46: R67-R99. 10.1088/0031-9155/46/5/201.CrossRefPubMed Fenster A, Downey D, Cardinal N: Three-dimensional ultrasound imaging. Phys Med Biol. 2001, 46: R67-R99. 10.1088/0031-9155/46/5/201.CrossRefPubMed
33.
go back to reference Patel S, Fessell D, Jacobson J, Hayes C, Holsbeeck M: Artifacts, anatomic variants and pitfalls in sonography of the foot and ankle. Am J Roentgenol. 2002, 178: 1247-1254.CrossRef Patel S, Fessell D, Jacobson J, Hayes C, Holsbeeck M: Artifacts, anatomic variants and pitfalls in sonography of the foot and ankle. Am J Roentgenol. 2002, 178: 1247-1254.CrossRef
Metadata
Title
Measurement of tibial nerve excursion during ankle joint dorsiflexion in a weight-bearing position with ultrasound imaging
Authors
Matthew Carroll
Janet Yau
Keith Rome
Wayne Hing
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2012
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/1757-1146-5-5

Other articles of this Issue 1/2012

Journal of Foot and Ankle Research 1/2012 Go to the issue