Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2012

Open Access 01-12-2012 | Research

The immunosuppressive factors IL-10, TGF-β, and VEGF do not affect the antigen-presenting function of CD40-activated B cells

Authors: Alexander Shimabukuro-Vornhagen, Andreas Draube, Tanja M Liebig, Achim Rothe, Matthias Kochanek, Michael S von Bergwelt-Baildon

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2012

Login to get access

Abstract

Background

Progress in recent years strengthened the concept of cellular tumor vaccinations. However, a crucial barrier to successful cancer immunotherapy is tumor-mediated immunosuppression. Tumor-derived soluble factors such as IL-10, TGF-β, and VEGF suppress effector cells either directly or indirectly by disruption of dendritic cell (DC) differentiation, migration and antigen presentation. Human B cells acquire potent immunostimulatory properties when activated via CD40 and have been shown to be an alternative source of antigen-presenting cells (APCs) for cellular cancer vaccines. Nevertheless, in contrast to DCs little knowledge exists about their susceptibility to tumor derived immunosuppressive factors. Thus, we assessed whether IL-10, TGF-β, or VEGF do affect key aspects of the immunostimulatory function of human CD40-activated B cells.

Methods

Cell surface expression of adhesion and costimulatory molecules and the proliferation capacity of CD40-activated B cells were compared to untreated controls by flow cytometry. Migration towards important chemokines of secondary lymph organs was measured with or without exposure to the immunosuppressive cytokines. Finally, an influence on T cell stimulation was investigated by allogeneic mixed lymphocyte reactions. For statistical analysis Student’s t test or two-way analysis of variance followed by Bonferroni's post-hoc test was used to compare groups. P values of <0.05 were considered statistically significant.

Results

Neither cell adhesion nor the expression of MHC class II and costimulatory molecules CD80 and CD86 was inhibited by addition of IL-10, TGF-β, or VEGF. Likewise, the proliferation of CD40-activated B cells was not impaired. Despite being exposed to IL-10, TGF-β, or VEGF the B cells migrated equally well as untreated controls to the chemokines SLC and SDF-1α. Most importantly, the capacity of CD40-activated B cells to stimulate CD4+ and CD8+ T cells remained unaffected.

Conclusion

Our findings suggest that key immunostimulatory functions of CD40-activated B cells are resistant to inhibition by the immunosuppressive factors IL-10, TGF-β, and VEGF. This supports considerations to use ex vivo generated CD40-activated B cells as a promising alternative or additional APC for cellular immunotherapy, especially in settings where these immunosuppressive cytokines are present in tumor environment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ilett EJ, Prestwich RJ, Melcher AA: The evolving role of dendritic cells in cancer therapy. Expert Opin Biol Ther. 2010, 10: 369-379. 10.1517/14712590903559830.CrossRefPubMed Ilett EJ, Prestwich RJ, Melcher AA: The evolving role of dendritic cells in cancer therapy. Expert Opin Biol Ther. 2010, 10: 369-379. 10.1517/14712590903559830.CrossRefPubMed
2.
go back to reference Du C, Wang Y: The immunoregulatory mechanisms of carcinoma for its survival and development. J Exp Clin Cancer Res. 2011, 30: 12-10.1186/1756-9966-30-12.PubMedCentralCrossRefPubMed Du C, Wang Y: The immunoregulatory mechanisms of carcinoma for its survival and development. J Exp Clin Cancer Res. 2011, 30: 12-10.1186/1756-9966-30-12.PubMedCentralCrossRefPubMed
3.
go back to reference Zou W: Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006, 6: 295-307. 10.1038/nri1806.CrossRefPubMed Zou W: Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006, 6: 295-307. 10.1038/nri1806.CrossRefPubMed
4.
go back to reference Huang FP, Chen YX, To CK: Guiding the "misguided" - functional conditioning of dendritic cells for the DC-based immunotherapy against tumours. Eur J Immunol. 2011, 41: 18-25. 10.1002/eji.201040543.CrossRefPubMed Huang FP, Chen YX, To CK: Guiding the "misguided" - functional conditioning of dendritic cells for the DC-based immunotherapy against tumours. Eur J Immunol. 2011, 41: 18-25. 10.1002/eji.201040543.CrossRefPubMed
5.
go back to reference Sabat R, Grutz G, Warszawska K, Kirsch S, Witte E, Wolk K, Geginat J: Biology of interleukin-10. Cytokine Growth Factor Rev. 2010, 21: 331-344. 10.1016/j.cytogfr.2010.09.002.CrossRefPubMed Sabat R, Grutz G, Warszawska K, Kirsch S, Witte E, Wolk K, Geginat J: Biology of interleukin-10. Cytokine Growth Factor Rev. 2010, 21: 331-344. 10.1016/j.cytogfr.2010.09.002.CrossRefPubMed
6.
go back to reference Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH: Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood. 1999, 93: 1634-1642.PubMed Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH: Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood. 1999, 93: 1634-1642.PubMed
7.
go back to reference Yang L: TGFbeta, a potent regulator of tumor microenvironment and host immune response, implication for therapy. Curr Mol Med. 2010, 10: 374-380. 10.2174/156652410791317039.CrossRefPubMed Yang L: TGFbeta, a potent regulator of tumor microenvironment and host immune response, implication for therapy. Curr Mol Med. 2010, 10: 374-380. 10.2174/156652410791317039.CrossRefPubMed
8.
go back to reference Geissmann F, Revy P, Regnault A, Lepelletier Y, Dy M, Brousse N, Amigorena S, Hermine O, Durandy A: TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol. 1999, 162: 4567-4575.PubMed Geissmann F, Revy P, Regnault A, Lepelletier Y, Dy M, Brousse N, Amigorena S, Hermine O, Durandy A: TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol. 1999, 162: 4567-4575.PubMed
9.
go back to reference Johnson BF, Clay TM, Hobeika AC, Lyerly HK, Morse MA: Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy. Expert Opin Biol Ther. 2007, 7: 449-460. 10.1517/14712598.7.4.449.CrossRefPubMed Johnson BF, Clay TM, Hobeika AC, Lyerly HK, Morse MA: Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy. Expert Opin Biol Ther. 2007, 7: 449-460. 10.1517/14712598.7.4.449.CrossRefPubMed
10.
go back to reference Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996, 2: 1096-1103. 10.1038/nm1096-1096.CrossRefPubMed Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996, 2: 1096-1103. 10.1038/nm1096-1096.CrossRefPubMed
11.
go back to reference Gabrilovich D: Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 2004, 4: 941-952. 10.1038/nri1498.CrossRefPubMed Gabrilovich D: Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 2004, 4: 941-952. 10.1038/nri1498.CrossRefPubMed
12.
go back to reference Martin F, Chan AC: B cell immunobiology in disease: evolving concepts from the clinic. Annu Rev Immunol. 2006, 24: 467-496. 10.1146/annurev.immunol.24.021605.090517.CrossRefPubMed Martin F, Chan AC: B cell immunobiology in disease: evolving concepts from the clinic. Annu Rev Immunol. 2006, 24: 467-496. 10.1146/annurev.immunol.24.021605.090517.CrossRefPubMed
13.
go back to reference Chan OT, Hannum LG, Haberman AM, Madaio MP, Shlomchik MJ: A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med. 1999, 189: 1639-1648. 10.1084/jem.189.10.1639.PubMedCentralCrossRefPubMed Chan OT, Hannum LG, Haberman AM, Madaio MP, Shlomchik MJ: A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med. 1999, 189: 1639-1648. 10.1084/jem.189.10.1639.PubMedCentralCrossRefPubMed
14.
go back to reference Kleindienst P, Brocker T: Concerted antigen presentation by dendritic cells and B cells is necessary for optimal CD4 T-cell immunity in vivo. Immunology. 2005, 115: 556-564. 10.1111/j.1365-2567.2005.02196.x.PubMedCentralCrossRefPubMed Kleindienst P, Brocker T: Concerted antigen presentation by dendritic cells and B cells is necessary for optimal CD4 T-cell immunity in vivo. Immunology. 2005, 115: 556-564. 10.1111/j.1365-2567.2005.02196.x.PubMedCentralCrossRefPubMed
15.
go back to reference Yan J, Harvey BP, Gee RJ, Shlomchik MJ, Mamula MJ: B cells drive early T cell autoimmunity in vivo prior to dendritic cell-mediated autoantigen presentation. J Immunol. 2006, 177: 4481-4487.CrossRefPubMed Yan J, Harvey BP, Gee RJ, Shlomchik MJ, Mamula MJ: B cells drive early T cell autoimmunity in vivo prior to dendritic cell-mediated autoantigen presentation. J Immunol. 2006, 177: 4481-4487.CrossRefPubMed
16.
go back to reference Shimabukuro-Vornhagen A, Hallek MJ, Storb RF, von Bergwelt-Baildon MS: The role of B cells in the pathogenesis of graft-versus-host disease. Blood. 2009, 114: 4919-4927. 10.1182/blood-2008-10-161638.CrossRefPubMed Shimabukuro-Vornhagen A, Hallek MJ, Storb RF, von Bergwelt-Baildon MS: The role of B cells in the pathogenesis of graft-versus-host disease. Blood. 2009, 114: 4919-4927. 10.1182/blood-2008-10-161638.CrossRefPubMed
17.
go back to reference Constant S, Schweitzer N, West J, Ranney P, Bottomly K: B lymphocytes can be competent antigen-presenting cells for priming CD4+ T cells to protein antigens in vivo. J Immunol. 1995, 155: 3734-3741.PubMed Constant S, Schweitzer N, West J, Ranney P, Bottomly K: B lymphocytes can be competent antigen-presenting cells for priming CD4+ T cells to protein antigens in vivo. J Immunol. 1995, 155: 3734-3741.PubMed
18.
go back to reference Kondo E, Topp MS, Kiem HP, Obata Y, Morishima Y, Kuzushima K, Tanimoto M, Harada M, Takahashi T, Akatsuka Y: Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. J Immunol. 2002, 169: 2164-2171.CrossRefPubMed Kondo E, Topp MS, Kiem HP, Obata Y, Morishima Y, Kuzushima K, Tanimoto M, Harada M, Takahashi T, Akatsuka Y: Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. J Immunol. 2002, 169: 2164-2171.CrossRefPubMed
19.
go back to reference Fujiwara H, Melenhorst JJ, El Ouriaghli F, Kajigaya S, Grube M, Sconocchia G, Rezvani K, Price DA, Hensel NF, Douek DC, Barrett AJ: In vitro induction of myeloid leukemia-specific CD4 and CD8 T cells by CD40 ligand-activated B cells gene modified to express primary granule proteins. Clin Cancer Res. 2005, 11: 4495-4503. 10.1158/1078-0432.CCR-04-2363.PubMedCentralCrossRefPubMed Fujiwara H, Melenhorst JJ, El Ouriaghli F, Kajigaya S, Grube M, Sconocchia G, Rezvani K, Price DA, Hensel NF, Douek DC, Barrett AJ: In vitro induction of myeloid leukemia-specific CD4 and CD8 T cells by CD40 ligand-activated B cells gene modified to express primary granule proteins. Clin Cancer Res. 2005, 11: 4495-4503. 10.1158/1078-0432.CCR-04-2363.PubMedCentralCrossRefPubMed
20.
go back to reference von Bergwelt-Baildon MS, Vonderheide RH, Maecker B, Hirano N, Anderson KS, Butler MO, Xia Z, Zeng WY, Wucherpfennig KW, Nadler LM, Schultze JL: Human primary and memory cytotoxic T lymphocyte responses are efficiently induced by means of CD40-activated B cells as antigen-presenting cells: potential for clinical application. Blood. 2002, 99: 3319-3325. 10.1182/blood.V99.9.3319.CrossRefPubMed von Bergwelt-Baildon MS, Vonderheide RH, Maecker B, Hirano N, Anderson KS, Butler MO, Xia Z, Zeng WY, Wucherpfennig KW, Nadler LM, Schultze JL: Human primary and memory cytotoxic T lymphocyte responses are efficiently induced by means of CD40-activated B cells as antigen-presenting cells: potential for clinical application. Blood. 2002, 99: 3319-3325. 10.1182/blood.V99.9.3319.CrossRefPubMed
21.
go back to reference Coughlin CM, Vance BA, Grupp SA, Vonderheide RH: RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. Blood. 2004, 103: 2046-2054. 10.1182/blood-2003-07-2379.CrossRefPubMed Coughlin CM, Vance BA, Grupp SA, Vonderheide RH: RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. Blood. 2004, 103: 2046-2054. 10.1182/blood-2003-07-2379.CrossRefPubMed
22.
go back to reference Guo S, Xu J, Denning W, Hel Z: Induction of protective cytotoxic T-cell responses by a B-cell-based cellular vaccine requires stable expression of antigen. Gene Ther. 2009, 16: 1300-1313. 10.1038/gt.2009.93.PubMedCentralCrossRefPubMed Guo S, Xu J, Denning W, Hel Z: Induction of protective cytotoxic T-cell responses by a B-cell-based cellular vaccine requires stable expression of antigen. Gene Ther. 2009, 16: 1300-1313. 10.1038/gt.2009.93.PubMedCentralCrossRefPubMed
23.
go back to reference Kim SK, Nguyen Pham TN, Nguyen Hoang TM, Kang HK, Jin CJ, Nam JH, Chung SY, Choi SJ, Yang DH, Kim YK, et al: Induction of myeloma-specific cytotoxic T lymphocytes ex vivo by CD40-activated B cells loaded with myeloma tumor antigens. Ann Hematol. 2009, 88: 1113-1123. 10.1007/s00277-009-0721-y.CrossRefPubMed Kim SK, Nguyen Pham TN, Nguyen Hoang TM, Kang HK, Jin CJ, Nam JH, Chung SY, Choi SJ, Yang DH, Kim YK, et al: Induction of myeloma-specific cytotoxic T lymphocytes ex vivo by CD40-activated B cells loaded with myeloma tumor antigens. Ann Hematol. 2009, 88: 1113-1123. 10.1007/s00277-009-0721-y.CrossRefPubMed
24.
go back to reference Lee J, Dollins CM, Boczkowski D, Sullenger BA, Nair S: Activated B cells modified by electroporation of multiple mRNAs encoding immune stimulatory molecules are comparable to mature dendritic cells in inducing in vitro antigen-specific T-cell responses. Immunology. 2008, 125: 229-240. 10.1111/j.1365-2567.2008.02833.x.PubMedCentralCrossRefPubMed Lee J, Dollins CM, Boczkowski D, Sullenger BA, Nair S: Activated B cells modified by electroporation of multiple mRNAs encoding immune stimulatory molecules are comparable to mature dendritic cells in inducing in vitro antigen-specific T-cell responses. Immunology. 2008, 125: 229-240. 10.1111/j.1365-2567.2008.02833.x.PubMedCentralCrossRefPubMed
25.
go back to reference Mason NJ, Coughlin CM, Overley B, Cohen JN, Mitchell EL, Colligon TA, Clifford CA, Zurbriggen A, Sorenmo KU, Vonderheide RH: RNA-loaded CD40-activated B cells stimulate antigen-specific T-cell responses in dogs with spontaneous lymphoma. Gene Ther. 2008, 15: 955-965. 10.1038/gt.2008.22.CrossRefPubMed Mason NJ, Coughlin CM, Overley B, Cohen JN, Mitchell EL, Colligon TA, Clifford CA, Zurbriggen A, Sorenmo KU, Vonderheide RH: RNA-loaded CD40-activated B cells stimulate antigen-specific T-cell responses in dogs with spontaneous lymphoma. Gene Ther. 2008, 15: 955-965. 10.1038/gt.2008.22.CrossRefPubMed
26.
go back to reference Shen SN, Xu Z, Qian XP, Ding YT, Yu LX, Liu BR: RNA-electroporated CD40-activated B cells induce functional T-cell responses against HepG2 cells. Eur J Cancer Care (Engl). 2008, 17: 404-411. 10.1111/j.1365-2354.2007.00841.x.CrossRef Shen SN, Xu Z, Qian XP, Ding YT, Yu LX, Liu BR: RNA-electroporated CD40-activated B cells induce functional T-cell responses against HepG2 cells. Eur J Cancer Care (Engl). 2008, 17: 404-411. 10.1111/j.1365-2354.2007.00841.x.CrossRef
27.
go back to reference Sorenmo KU, Krick E, Coughlin CM, Overley B, Gregor TP, Vonderheide RH, Mason NJ: CD40-activated B cell cancer vaccine improves second clinical remission and survival in privately owned dogs with non-Hodgkin's lymphoma. PLoS One. 2011, 6: e24167-10.1371/journal.pone.0024167.PubMedCentralCrossRefPubMed Sorenmo KU, Krick E, Coughlin CM, Overley B, Gregor TP, Vonderheide RH, Mason NJ: CD40-activated B cell cancer vaccine improves second clinical remission and survival in privately owned dogs with non-Hodgkin's lymphoma. PLoS One. 2011, 6: e24167-10.1371/journal.pone.0024167.PubMedCentralCrossRefPubMed
28.
go back to reference Kondo E, Gryschok L, Klein-Gonzalez N, Rademacher S, Weihrauch MR, Liebig T, Shimabukuro-Vornhagen A, Kochanek M, Draube A, von Bergwelt-Baildon MS: CD40-activated B cells can be generated in high number and purity in cancer patients: analysis of immunogenicity and homing potential. Clin Exp Immunol. 2009, 155: 249-256. 10.1111/j.1365-2249.2008.03820.x.PubMedCentralCrossRefPubMed Kondo E, Gryschok L, Klein-Gonzalez N, Rademacher S, Weihrauch MR, Liebig T, Shimabukuro-Vornhagen A, Kochanek M, Draube A, von Bergwelt-Baildon MS: CD40-activated B cells can be generated in high number and purity in cancer patients: analysis of immunogenicity and homing potential. Clin Exp Immunol. 2009, 155: 249-256. 10.1111/j.1365-2249.2008.03820.x.PubMedCentralCrossRefPubMed
29.
go back to reference Liebig TM, Fiedler A, Zoghi S, Shimabukuro-Vornhagen A, von Bergwelt-Baildon MS: Generation of human CD40-activated B cells. J Vis Exp. 2009, 32: pii:1373 Liebig TM, Fiedler A, Zoghi S, Shimabukuro-Vornhagen A, von Bergwelt-Baildon MS: Generation of human CD40-activated B cells. J Vis Exp. 2009, 32: pii:1373
30.
go back to reference Rousset F, Garcia E, Defrance T, Peronne C, Vezzio N, Hsu DH, Kastelein R, Moore KW, Banchereau J: Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci U S A. 1992, 89: 1890-1893. 10.1073/pnas.89.5.1890.PubMedCentralCrossRefPubMed Rousset F, Garcia E, Defrance T, Peronne C, Vezzio N, Hsu DH, Kastelein R, Moore KW, Banchereau J: Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci U S A. 1992, 89: 1890-1893. 10.1073/pnas.89.5.1890.PubMedCentralCrossRefPubMed
31.
go back to reference von Bergwelt-Baildon M, Shimabukuro-Vornhagen A, Popov A, Klein-Gonzalez N, Fiore F, Debey S, Draube A, Maecker B, Menezes I, Nadler LM, Schultze JL: CD40-activated B cells express full lymph node homing triad and induce T-cell chemotaxis: potential as cellular adjuvants. Blood. 2006, 107: 2786-2789. 10.1182/blood-2004-01-0113.PubMedCentralCrossRefPubMed von Bergwelt-Baildon M, Shimabukuro-Vornhagen A, Popov A, Klein-Gonzalez N, Fiore F, Debey S, Draube A, Maecker B, Menezes I, Nadler LM, Schultze JL: CD40-activated B cells express full lymph node homing triad and induce T-cell chemotaxis: potential as cellular adjuvants. Blood. 2006, 107: 2786-2789. 10.1182/blood-2004-01-0113.PubMedCentralCrossRefPubMed
33.
go back to reference Steinman RM, Hawiger D, Nussenzweig MC: Tolerogenic dendritic cells. Annu Rev Immunol. 2003, 21: 685-711. 10.1146/annurev.immunol.21.120601.141040.CrossRefPubMed Steinman RM, Hawiger D, Nussenzweig MC: Tolerogenic dendritic cells. Annu Rev Immunol. 2003, 21: 685-711. 10.1146/annurev.immunol.21.120601.141040.CrossRefPubMed
34.
go back to reference Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysiek R, Knutson KL, Daniel B, Zimmermann MC, et al: Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med. 2003, 9: 562-567. 10.1038/nm863.CrossRefPubMed Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysiek R, Knutson KL, Daniel B, Zimmermann MC, et al: Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med. 2003, 9: 562-567. 10.1038/nm863.CrossRefPubMed
35.
go back to reference Gross S, Walden P: Immunosuppressive mechanisms in human tumors: why we still cannot cure cancer. Immunol Lett. 2008, 116: 7-14. 10.1016/j.imlet.2007.11.012.CrossRefPubMed Gross S, Walden P: Immunosuppressive mechanisms in human tumors: why we still cannot cure cancer. Immunol Lett. 2008, 116: 7-14. 10.1016/j.imlet.2007.11.012.CrossRefPubMed
36.
go back to reference Bianchi G, Borgonovo G, Pistoia V, Raffaghello L: Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells. Histol Histopathol. 2011, 26: 941-951.PubMed Bianchi G, Borgonovo G, Pistoia V, Raffaghello L: Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells. Histol Histopathol. 2011, 26: 941-951.PubMed
37.
go back to reference O'Hara RJ, Greenman J, MacDonald AW, Gaskell KM, Topping KP, Duthie GS, Kerin MJ, Lee PW, Monson JR: Advanced colorectal cancer is associated with impaired interleukin 12 and enhanced interleukin 10 production. Clin Cancer Res. 1998, 4: 1943-1948.PubMed O'Hara RJ, Greenman J, MacDonald AW, Gaskell KM, Topping KP, Duthie GS, Kerin MJ, Lee PW, Monson JR: Advanced colorectal cancer is associated with impaired interleukin 12 and enhanced interleukin 10 production. Clin Cancer Res. 1998, 4: 1943-1948.PubMed
38.
go back to reference Shim KS, Kim KH, Han WS, Park EB: Elevated serum levels of transforming growth factor-beta1 in patients with colorectal carcinoma: its association with tumor progression and its significant decrease after curative surgical resection. Cancer. 1999, 85: 554-561. 10.1002/(SICI)1097-0142(19990201)85:3<554::AID-CNCR6>3.0.CO;2-X.CrossRefPubMed Shim KS, Kim KH, Han WS, Park EB: Elevated serum levels of transforming growth factor-beta1 in patients with colorectal carcinoma: its association with tumor progression and its significant decrease after curative surgical resection. Cancer. 1999, 85: 554-561. 10.1002/(SICI)1097-0142(19990201)85:3<554::AID-CNCR6>3.0.CO;2-X.CrossRefPubMed
39.
go back to reference Toi M, Kondo S, Suzuki H, Yamamoto Y, Inada K, Imazawa T, Taniguchi T, Tominaga T: Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer. 1996, 77: 1101-1106. 10.1002/(SICI)1097-0142(19960315)77:6<1101::AID-CNCR15>3.0.CO;2-5.CrossRefPubMed Toi M, Kondo S, Suzuki H, Yamamoto Y, Inada K, Imazawa T, Taniguchi T, Tominaga T: Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer. 1996, 77: 1101-1106. 10.1002/(SICI)1097-0142(19960315)77:6<1101::AID-CNCR15>3.0.CO;2-5.CrossRefPubMed
40.
go back to reference Sato T, Terai M, Tamura Y, Alexeev V, Mastrangelo MJ, Selvan SR: Interleukin 10 in the tumor microenvironment: a target for anticancer immunotherapy. Immunol Res. 2011, 51: 170-182. 10.1007/s12026-011-8262-6.CrossRefPubMed Sato T, Terai M, Tamura Y, Alexeev V, Mastrangelo MJ, Selvan SR: Interleukin 10 in the tumor microenvironment: a target for anticancer immunotherapy. Immunol Res. 2011, 51: 170-182. 10.1007/s12026-011-8262-6.CrossRefPubMed
41.
go back to reference Demangel C, Bertolino P, Britton WJ: Autocrine IL-10 impairs dendritic cell (DC)-derived immune responses to mycobacterial infection by suppressing DC trafficking to draining lymph nodes and local IL-12 production. Eur J Immunol. 2002, 32: 994-1002. 10.1002/1521-4141(200204)32:4<994::AID-IMMU994>3.0.CO;2-6.CrossRefPubMed Demangel C, Bertolino P, Britton WJ: Autocrine IL-10 impairs dendritic cell (DC)-derived immune responses to mycobacterial infection by suppressing DC trafficking to draining lymph nodes and local IL-12 production. Eur J Immunol. 2002, 32: 994-1002. 10.1002/1521-4141(200204)32:4<994::AID-IMMU994>3.0.CO;2-6.CrossRefPubMed
42.
go back to reference Ludewig B, Graf D, Gelderblom HR, Becker Y, Kroczek RA, Pauli G: Spontaneous apoptosis of dendritic cells is efficiently inhibited by TRAP (CD40-ligand) and TNF-alpha, but strongly enhanced by interleukin-10. Eur J Immunol. 1995, 25: 1943-1950. 10.1002/eji.1830250722.CrossRefPubMed Ludewig B, Graf D, Gelderblom HR, Becker Y, Kroczek RA, Pauli G: Spontaneous apoptosis of dendritic cells is efficiently inhibited by TRAP (CD40-ligand) and TNF-alpha, but strongly enhanced by interleukin-10. Eur J Immunol. 1995, 25: 1943-1950. 10.1002/eji.1830250722.CrossRefPubMed
43.
go back to reference Yang AS, Lattime EC: Tumor-induced interleukin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res. 2003, 63: 2150-2157.PubMed Yang AS, Lattime EC: Tumor-induced interleukin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res. 2003, 63: 2150-2157.PubMed
44.
go back to reference Steinbrink K, Graulich E, Kubsch S, Knop J, Enk AH: CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood. 2002, 99: 2468-2476. 10.1182/blood.V99.7.2468.CrossRefPubMed Steinbrink K, Graulich E, Kubsch S, Knop J, Enk AH: CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood. 2002, 99: 2468-2476. 10.1182/blood.V99.7.2468.CrossRefPubMed
45.
go back to reference Sato K, Kawasaki H, Nagayama H, Enomoto M, Morimoto C, Tadokoro K, Juji T, Takahashi TA: TGF-beta 1 reciprocally controls chemotaxis of human peripheral blood monocyte-derived dendritic cells via chemokine receptors. J Immunol. 2000, 164: 2285-2295.CrossRefPubMed Sato K, Kawasaki H, Nagayama H, Enomoto M, Morimoto C, Tadokoro K, Juji T, Takahashi TA: TGF-beta 1 reciprocally controls chemotaxis of human peripheral blood monocyte-derived dendritic cells via chemokine receptors. J Immunol. 2000, 164: 2285-2295.CrossRefPubMed
46.
go back to reference Roncarolo MG, Levings MK, Traversari C: Differentiation of T regulatory cells by immature dendritic cells. J Exp Med. 2001, 193: F5-F9. 10.1084/jem.193.2.F5.PubMedCentralCrossRefPubMed Roncarolo MG, Levings MK, Traversari C: Differentiation of T regulatory cells by immature dendritic cells. J Exp Med. 2001, 193: F5-F9. 10.1084/jem.193.2.F5.PubMedCentralCrossRefPubMed
47.
go back to reference Terabe M, Ambrosino E, Takaku S, O'Konek JJ, Venzon D, Lonning S, McPherson JM, Berzofsky JA: Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-beta monoclonal antibody. Clin Cancer Res. 2009, 15: 6560-6569. 10.1158/1078-0432.CCR-09-1066.PubMedCentralCrossRefPubMed Terabe M, Ambrosino E, Takaku S, O'Konek JJ, Venzon D, Lonning S, McPherson JM, Berzofsky JA: Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-beta monoclonal antibody. Clin Cancer Res. 2009, 15: 6560-6569. 10.1158/1078-0432.CCR-09-1066.PubMedCentralCrossRefPubMed
48.
go back to reference Vicari AP, Chiodoni C, Vaure C, Ait-Yahia S, Dercamp C, Matsos F, Reynard O, Taverne C, Merle P, Colombo MP, et al: Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J Exp Med. 2002, 196: 541-549. 10.1084/jem.20020732.PubMedCentralCrossRefPubMed Vicari AP, Chiodoni C, Vaure C, Ait-Yahia S, Dercamp C, Matsos F, Reynard O, Taverne C, Merle P, Colombo MP, et al: Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J Exp Med. 2002, 196: 541-549. 10.1084/jem.20020732.PubMedCentralCrossRefPubMed
49.
go back to reference Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP: Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res. 1999, 5: 2963-2970.PubMed Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP: Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res. 1999, 5: 2963-2970.PubMed
50.
go back to reference Park MY, Kim HS, Woo SJ, Kim CH, Park JS, Sohn HJ, Kim HJ, Oh ST, Kim TG: Efficient antitumor immunity in a murine colorectal cancer model induced by CEA RNA-electroporated B cells. Eur J Immunol. 2008, 38: 2106-2117. 10.1002/eji.200737960.CrossRefPubMed Park MY, Kim HS, Woo SJ, Kim CH, Park JS, Sohn HJ, Kim HJ, Oh ST, Kim TG: Efficient antitumor immunity in a murine colorectal cancer model induced by CEA RNA-electroporated B cells. Eur J Immunol. 2008, 38: 2106-2117. 10.1002/eji.200737960.CrossRefPubMed
51.
go back to reference Ahmadi T, Flies A, Efebera Y, Sherr DH: CD40 Ligand-activated, antigen-specific B cells are comparable to mature dendritic cells in presenting protein antigens and major histocompatibility complex class I- and class II-binding peptides. Immunology. 2008, 124: 129-140. 10.1111/j.1365-2567.2007.02749.x.PubMedCentralCrossRefPubMed Ahmadi T, Flies A, Efebera Y, Sherr DH: CD40 Ligand-activated, antigen-specific B cells are comparable to mature dendritic cells in presenting protein antigens and major histocompatibility complex class I- and class II-binding peptides. Immunology. 2008, 124: 129-140. 10.1111/j.1365-2567.2007.02749.x.PubMedCentralCrossRefPubMed
52.
go back to reference Mathieu M, Cotta-Grand N, Daudelin JF, Boulet S, Lapointe R, Labrecque N: CD40-activated B cells can efficiently prime antigen-specific naive CD8+ T cells to generate effector but not memory T cells. PLoS One. 2012, 7: e30139-10.1371/journal.pone.0030139.PubMedCentralCrossRefPubMed Mathieu M, Cotta-Grand N, Daudelin JF, Boulet S, Lapointe R, Labrecque N: CD40-activated B cells can efficiently prime antigen-specific naive CD8+ T cells to generate effector but not memory T cells. PLoS One. 2012, 7: e30139-10.1371/journal.pone.0030139.PubMedCentralCrossRefPubMed
53.
go back to reference Kobayashi N, Nagumo H, Agematsu K: IL-10 enhances B-cell IgE synthesis by promoting differentiation into plasma cells, a process that is inhibited by CD27/CD70 interaction. Clin Exp Immunol. 2002, 129: 446-452. 10.1046/j.1365-2249.2002.01932.x.PubMedCentralCrossRefPubMed Kobayashi N, Nagumo H, Agematsu K: IL-10 enhances B-cell IgE synthesis by promoting differentiation into plasma cells, a process that is inhibited by CD27/CD70 interaction. Clin Exp Immunol. 2002, 129: 446-452. 10.1046/j.1365-2249.2002.01932.x.PubMedCentralCrossRefPubMed
54.
go back to reference Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA: Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006, 24: 99-146. 10.1146/annurev.immunol.24.021605.090737.CrossRefPubMed Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA: Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006, 24: 99-146. 10.1146/annurev.immunol.24.021605.090737.CrossRefPubMed
55.
go back to reference Huang Y, Chen X, Dikov MM, Novitskiy SV, Mosse CA, Yang L, Carbone DP: Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood. 2007, 110: 624-631. 10.1182/blood-2007-01-065714.PubMedCentralCrossRefPubMed Huang Y, Chen X, Dikov MM, Novitskiy SV, Mosse CA, Yang L, Carbone DP: Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood. 2007, 110: 624-631. 10.1182/blood-2007-01-065714.PubMedCentralCrossRefPubMed
56.
go back to reference Clinchy B, Bjorck P, Paulie S, Moller G: Interleukin-10 inhibits motility in murine and human B lymphocytes. Immunology. 1994, 82: 376-382.PubMedCentralPubMed Clinchy B, Bjorck P, Paulie S, Moller G: Interleukin-10 inhibits motility in murine and human B lymphocytes. Immunology. 1994, 82: 376-382.PubMedCentralPubMed
57.
go back to reference Parekh VV, Prasad DV, Banerjee PP, Joshi BN, Kumar A, Mishra GC: B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-beta 1. J Immunol. 2003, 170: 5897-5911.CrossRefPubMed Parekh VV, Prasad DV, Banerjee PP, Joshi BN, Kumar A, Mishra GC: B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-beta 1. J Immunol. 2003, 170: 5897-5911.CrossRefPubMed
58.
go back to reference Patil S, Wildey GM, Brown TL, Choy L, Derynck R, Howe PH: Smad7 is induced by CD40 and protects WEHI 231 B-lymphocytes from transforming growth factor-beta -induced growth inhibition and apoptosis. J Biol Chem. 2000, 275: 38363-38370.CrossRefPubMed Patil S, Wildey GM, Brown TL, Choy L, Derynck R, Howe PH: Smad7 is induced by CD40 and protects WEHI 231 B-lymphocytes from transforming growth factor-beta -induced growth inhibition and apoptosis. J Biol Chem. 2000, 275: 38363-38370.CrossRefPubMed
Metadata
Title
The immunosuppressive factors IL-10, TGF-β, and VEGF do not affect the antigen-presenting function of CD40-activated B cells
Authors
Alexander Shimabukuro-Vornhagen
Andreas Draube
Tanja M Liebig
Achim Rothe
Matthias Kochanek
Michael S von Bergwelt-Baildon
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2012
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-31-47

Other articles of this Issue 1/2012

Journal of Experimental & Clinical Cancer Research 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine