Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2010

Open Access 01-12-2010 | Research

Effects of valproic acid on the cell cycle and apoptosis through acetylation of histone and tubulin in a scirrhous gastric cancer cell line

Authors: Yasumichi Yagi, Sachio Fushida, Shinichi Harada, Jun Kinoshita, Isamu Makino, Katsunobu Oyama, Hidehiro Tajima, Hideto Fujita, Hiroyuki Takamura, Itasu Ninomiya, Takashi Fujimura, Tetsuo Ohta, Masakazu Yashiro, Kosei Hirakawa

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2010

Login to get access

Abstract

Background

Management of peritoneal dissemination is the most critical problem in gastric cancer. This study was performed to investigate the inhibitory effects of valproic acid (VPA) on a highly peritoneal-seeding cell line of human scirrhous gastric cancer, OCUM-2MD3, and to explore the mechanism and the potential of VPA.

Methods

The effects of VPA on the growth of OCUM-2MD3 cells were assessed by MTT assay. In addition, paclitaxel (PTX) was combined with VPA to evaluate their synergistic effects. HDAC1 and HDAC2 expression were evaluated by western blotting in OCUM-2MD3 cells and other gastric cancer cell lines (TMK-1, MKN-28). The acetylation status of histone H3 and α-tubulin after exposure to VPA were analyzed by western blotting. The activities of cell cycle regulatory proteins and apoptosis-modulating proteins were also examined by western blotting. The effects of VPA in vivo were evaluated in a xenograft model, and apoptotic activity was assessed by TUNEL assay.

Results

OCUM-2MD3 cells showed high levels of HDAC1 and HDAC2 expression compared with TMK-1 and MKN-28. The concentration of VPA required for significant inhibition of cell viability (P < 0.05) was 5 mM at 24 h and 0.5 mM at 48 h and 72 h. The inhibition of VPA with PTX showed dose-dependent and combinatorial effects. VPA increased acetyl-histone H3, acetyl-α-tubulin, and p21WAF1 levels accompanied by upregulation of p27, caspase 3, and caspase 9, and downregulation of bcl-2, cyclin D1, and survivin. In the xenograft model experiment, the mean tumor volume of the VPA-treated group was significantly reduced by 36.4%, compared with that of the control group at 4 weeks after treatment (P < 0.01). The apoptotic index was significantly higher in the VPA-treated group (42.3% ± 3.5%) than in the control group (7.7% ± 2.5%) (P < 0.001).

Conclusions

VPA induced dynamic modulation of histone H3 and α-tubulin acetylation in relation with the anticancer effect and the enhancement of PTX in the OCUM-2MD3 cell line. Therefore, VPA in combination with PTX is expected to be a promising therapy for peritoneal dissemination of scirrhous gastric cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Souza RF, Spechler SJ: Concepts in the prevention of adenocarcinoma of the distal esophagus and proximal stomach. CA cancer J Clin. 2005, 55: 334-51.CrossRef Souza RF, Spechler SJ: Concepts in the prevention of adenocarcinoma of the distal esophagus and proximal stomach. CA cancer J Clin. 2005, 55: 334-51.CrossRef
2.
go back to reference Ikeguchi M, Miyake T, Matsunaga T, et al: Recent results of therapy for scirrhous gastric cancer. Surg Today. 2009, 39: 290-4.CrossRef Ikeguchi M, Miyake T, Matsunaga T, et al: Recent results of therapy for scirrhous gastric cancer. Surg Today. 2009, 39: 290-4.CrossRef
3.
go back to reference Chen CY, Wu CW, Lo SS, Hsieh MC, Lui WY, Shen KH: Peritoneal carcinomatosis and lymph node metastasis are prognostic indicators in patients with Borrmann type IV gastric carcinoma. Hepatogastroenterology. 2002, 49: 874-7. Chen CY, Wu CW, Lo SS, Hsieh MC, Lui WY, Shen KH: Peritoneal carcinomatosis and lymph node metastasis are prognostic indicators in patients with Borrmann type IV gastric carcinoma. Hepatogastroenterology. 2002, 49: 874-7.
4.
go back to reference Ishigami H, Kitayama J, Kaisaki S, et al: Phase II study of weekly intravenous and intraperitoneal paclitaxel combined with S-1 for advanced gastric cancer with peritoneal metastasis. Ann Oncol. 2010, 21: 67-70.CrossRef Ishigami H, Kitayama J, Kaisaki S, et al: Phase II study of weekly intravenous and intraperitoneal paclitaxel combined with S-1 for advanced gastric cancer with peritoneal metastasis. Ann Oncol. 2010, 21: 67-70.CrossRef
5.
go back to reference Fushida S, Kinoshita J, Yagi Y, et al: Dual anti-cancer effects of weekly intraperitoneal docetaxel in treatment of advanced gastric cancer patients with peritoneal carcinomatosis: a feasibility and pharmacokinetic study. Oncol Rep. 2008, 19: 1305-10. Fushida S, Kinoshita J, Yagi Y, et al: Dual anti-cancer effects of weekly intraperitoneal docetaxel in treatment of advanced gastric cancer patients with peritoneal carcinomatosis: a feasibility and pharmacokinetic study. Oncol Rep. 2008, 19: 1305-10.
6.
go back to reference Shah MA, Ramanathan RK, Ilson DH, et al: Multicenter phase II study of irinotecan, cisplatin, and bevacizumab in patients with metastatic gastric or gastroesophageal junction adenocarcinoma. J Clin Oncol. 2006, 24: 5201-6.CrossRef Shah MA, Ramanathan RK, Ilson DH, et al: Multicenter phase II study of irinotecan, cisplatin, and bevacizumab in patients with metastatic gastric or gastroesophageal junction adenocarcinoma. J Clin Oncol. 2006, 24: 5201-6.CrossRef
7.
go back to reference Pinto C, Di Fabio F, Siena S, et al: Phase II study of cetuximab in combination with FOLFIRI in patients with untreated advanced gastric or gastroesophageal junction adenocarcinoma (FOLCETUX study). Ann Oncol. 2007, 18: 510-7.CrossRef Pinto C, Di Fabio F, Siena S, et al: Phase II study of cetuximab in combination with FOLFIRI in patients with untreated advanced gastric or gastroesophageal junction adenocarcinoma (FOLCETUX study). Ann Oncol. 2007, 18: 510-7.CrossRef
8.
go back to reference Schniewind B, Christgen M, Kurdow R, et al: Resistance of pancreatic cancer to gemcitabine treatment is dependent on mitochondria-mediated apoptosis. Int J Cancer. 2004, 109: 182-8.CrossRef Schniewind B, Christgen M, Kurdow R, et al: Resistance of pancreatic cancer to gemcitabine treatment is dependent on mitochondria-mediated apoptosis. Int J Cancer. 2004, 109: 182-8.CrossRef
9.
go back to reference Fang JY, Lu YY: Effects of histone acetylation and DNA methylation on p21 (WAF1) regulation. World J Gastroenterol. 2002, 8: 400-5. Fang JY, Lu YY: Effects of histone acetylation and DNA methylation on p21 (WAF1) regulation. World J Gastroenterol. 2002, 8: 400-5.
10.
go back to reference Jenuwein T, Alli's CD: Translating the histone code. Science. 2001, 293: 1074-80.CrossRef Jenuwein T, Alli's CD: Translating the histone code. Science. 2001, 293: 1074-80.CrossRef
11.
go back to reference Davie JR, Moniwa M: Control of chromatin remodeling. Crit Rev Eukaryotic Gene Expression. 2000, 10: 303-25.CrossRef Davie JR, Moniwa M: Control of chromatin remodeling. Crit Rev Eukaryotic Gene Expression. 2000, 10: 303-25.CrossRef
12.
go back to reference Grozinger CM, Schreiber SL: Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol. 2002, 9: 3-16.CrossRef Grozinger CM, Schreiber SL: Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol. 2002, 9: 3-16.CrossRef
13.
go back to reference Gray SG, Ekström TJ: The human histone deacetylase family. Exp Cell Res. 2001, 262: 75-83.CrossRef Gray SG, Ekström TJ: The human histone deacetylase family. Exp Cell Res. 2001, 262: 75-83.CrossRef
14.
go back to reference Monneret C: Histone deacetylase inhibitors. Eur J Med Chem. 2005, 40: 1-13.CrossRef Monneret C: Histone deacetylase inhibitors. Eur J Med Chem. 2005, 40: 1-13.CrossRef
15.
go back to reference Carey N, La Thangue NB: Histone deacetylase inhibitors:gathering pace. Curr Opin Pharmacol. 2006, 6: 369-75.CrossRef Carey N, La Thangue NB: Histone deacetylase inhibitors:gathering pace. Curr Opin Pharmacol. 2006, 6: 369-75.CrossRef
16.
go back to reference Suzuki T, Yokozaki H, Kuniyasu H, et al: Effect of Trichostatin A on cell growth and expression of cell cycle-and apoptosis-related molecules in human gastric and oral carcinoma cell lines. Int J Cancer. 2000, 88: 992-7.CrossRef Suzuki T, Yokozaki H, Kuniyasu H, et al: Effect of Trichostatin A on cell growth and expression of cell cycle-and apoptosis-related molecules in human gastric and oral carcinoma cell lines. Int J Cancer. 2000, 88: 992-7.CrossRef
17.
go back to reference Zhang X, Yashiro M, Ren J, et al: Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncol Rep. 2006, 16: 563-8. Zhang X, Yashiro M, Ren J, et al: Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncol Rep. 2006, 16: 563-8.
18.
go back to reference Sami S, Höti N, Xu HM, Shen Z, Huang X: Valproic acid inhibits the growth of cervical cancer both in vitro and in vivo. J Biochem. 2008, 144: 357-62.CrossRef Sami S, Höti N, Xu HM, Shen Z, Huang X: Valproic acid inhibits the growth of cervical cancer both in vitro and in vivo. J Biochem. 2008, 144: 357-62.CrossRef
19.
go back to reference Kramer OH, Zhu P, Ostendorff HP, et al: The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 2003, 22: 3411-20.CrossRef Kramer OH, Zhu P, Ostendorff HP, et al: The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 2003, 22: 3411-20.CrossRef
20.
go back to reference Göttlicher M, Minucci S, Zhu P, et al: Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 2001, 20: 6969-78.CrossRef Göttlicher M, Minucci S, Zhu P, et al: Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 2001, 20: 6969-78.CrossRef
21.
go back to reference Hrzenjak A, Moinfar F, Kremser ML, et al: Valproate inhibition of histone deacetylase 2 affects differentiation and decreases proliferation of endometrial stromal sarcoma cells. Mol Cancer Ther. 2006, 5: 2203-10.CrossRef Hrzenjak A, Moinfar F, Kremser ML, et al: Valproate inhibition of histone deacetylase 2 affects differentiation and decreases proliferation of endometrial stromal sarcoma cells. Mol Cancer Ther. 2006, 5: 2203-10.CrossRef
22.
go back to reference Rocchi P, Tonelli R, Camerin C, et al: p21Waf1/Cip1 is a common target induced by short-chain fatty acid HDAC inhibitors (valproic acid, tributyrin and sodium butyrate) in neuroblastoma cells. Oncol Rep. 2005, 13: 1139-44,. Rocchi P, Tonelli R, Camerin C, et al: p21Waf1/Cip1 is a common target induced by short-chain fatty acid HDAC inhibitors (valproic acid, tributyrin and sodium butyrate) in neuroblastoma cells. Oncol Rep. 2005, 13: 1139-44,.
23.
go back to reference Takai N, Narahara H: Human endometrial and ovarian cancer cells: histone deacetylase inhibitors exhibit antiproliferative activity, potently induce cell cycle arrest, and stimulate apoptosis. Curr Med Chem. 2007, 14: 2548-53.CrossRef Takai N, Narahara H: Human endometrial and ovarian cancer cells: histone deacetylase inhibitors exhibit antiproliferative activity, potently induce cell cycle arrest, and stimulate apoptosis. Curr Med Chem. 2007, 14: 2548-53.CrossRef
24.
go back to reference Yu X, Guo ZS, Marcu MG, et al: Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst. 2002, 94: 504-13.CrossRef Yu X, Guo ZS, Marcu MG, et al: Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst. 2002, 94: 504-13.CrossRef
25.
go back to reference Blagosklonny MV, Robey R, Sackett DL, et al: Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol Cancer Ther. 2002, 1: 37-41.CrossRef Blagosklonny MV, Robey R, Sackett DL, et al: Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol Cancer Ther. 2002, 1: 37-41.CrossRef
26.
go back to reference Catalano MG, Poli R, Pugliese M, Fortunati N, Boccuzzi G: Valproic acid enhances tubulin acetylation and apoptotic activity of paclitaxel on anaplastic thyroid cancer cell lines. Endocr Relat Cancer. 2007, 14: 839-45.CrossRef Catalano MG, Poli R, Pugliese M, Fortunati N, Boccuzzi G: Valproic acid enhances tubulin acetylation and apoptotic activity of paclitaxel on anaplastic thyroid cancer cell lines. Endocr Relat Cancer. 2007, 14: 839-45.CrossRef
27.
go back to reference Gelmon K: The taxoids: paclitaxel and docetaxel. Lancet. 344: 1267-72. Gelmon K: The taxoids: paclitaxel and docetaxel. Lancet. 344: 1267-72.
28.
go back to reference Markman M, Bundy BN, Alberts DS, et al: Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: an intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J Clin Oncol. 2001, 19: 1001-7. Markman M, Bundy BN, Alberts DS, et al: Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: an intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J Clin Oncol. 2001, 19: 1001-7.
29.
go back to reference Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS: Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 2004, 64: 1079-86.CrossRef Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS: Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 2004, 64: 1079-86.CrossRef
30.
go back to reference Johnson DG, Walker CL: Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol. 1999, 39: 295-312.CrossRef Johnson DG, Walker CL: Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol. 1999, 39: 295-312.CrossRef
31.
go back to reference Joseph J, Wajapeyee N, Somasundaram K: Role of p53 status in chemosensitivity determination of cancer cells against histone deacetylase inhibitor sodium butyrate. Int J Cancer. 2005, 115: 11-8.CrossRef Joseph J, Wajapeyee N, Somasundaram K: Role of p53 status in chemosensitivity determination of cancer cells against histone deacetylase inhibitor sodium butyrate. Int J Cancer. 2005, 115: 11-8.CrossRef
32.
go back to reference Kitazono M, Bates S, Fok P, Fojo T, Blagosklonny MV: The histone deacetylase inhibitor FR901228 (desipeptide) restores expression and function of pseudo-null p53. Cancer Biol Ther. 2002, 1: 665-8.CrossRef Kitazono M, Bates S, Fok P, Fojo T, Blagosklonny MV: The histone deacetylase inhibitor FR901228 (desipeptide) restores expression and function of pseudo-null p53. Cancer Biol Ther. 2002, 1: 665-8.CrossRef
33.
go back to reference Yashiro M, Chung YS, Nishimura S, Inoue T, Sowa M: Fibrosis in the peritoneum induced by scirrhous gastric cancer cells may act as 'soil' for peritoneal dissemination. Cancer. 1996, 77: 1668-75.CrossRef Yashiro M, Chung YS, Nishimura S, Inoue T, Sowa M: Fibrosis in the peritoneum induced by scirrhous gastric cancer cells may act as 'soil' for peritoneal dissemination. Cancer. 1996, 77: 1668-75.CrossRef
34.
go back to reference Shinto O, Yashiro M, Kawajiri H, et al: Inhibitory effect of a TGFbeta receptor type-I inhibitor, Ki26894, on invasiveness of scirrhous gastric cancer cells. Br J Cancer. 2010, 102: 844-51.CrossRef Shinto O, Yashiro M, Kawajiri H, et al: Inhibitory effect of a TGFbeta receptor type-I inhibitor, Ki26894, on invasiveness of scirrhous gastric cancer cells. Br J Cancer. 2010, 102: 844-51.CrossRef
35.
go back to reference Kinugasa S, Abe S, Tachibana M, et al: Over expression of transforming growth factor-beta1 in scirrhous carcinoma of the stomach correlates with decreased survival. Oncology. 1998, 55: 582-7.CrossRef Kinugasa S, Abe S, Tachibana M, et al: Over expression of transforming growth factor-beta1 in scirrhous carcinoma of the stomach correlates with decreased survival. Oncology. 1998, 55: 582-7.CrossRef
36.
go back to reference Inoue T, Chung YS, Yashiro M, et al: Transforming growth factor-beta and hepatocyte growth factor produced by gastric fibroblasts stimulate the invasiveness of scirrhous gastric cancer cells. Jpn J Cancer Res. 1997, 88: 152-9.CrossRef Inoue T, Chung YS, Yashiro M, et al: Transforming growth factor-beta and hepatocyte growth factor produced by gastric fibroblasts stimulate the invasiveness of scirrhous gastric cancer cells. Jpn J Cancer Res. 1997, 88: 152-9.CrossRef
37.
go back to reference Koyama T, Yashiro M, Inoue T, et al: TGF-beta1 secreted by gastric fibroblasts up-regulates CD44 H expression and stimulates the peritoneal metastatic ability of scirrhous gastric cancer cells. Int J Oncol. 2000, 16: 355-62. Koyama T, Yashiro M, Inoue T, et al: TGF-beta1 secreted by gastric fibroblasts up-regulates CD44 H expression and stimulates the peritoneal metastatic ability of scirrhous gastric cancer cells. Int J Oncol. 2000, 16: 355-62.
38.
go back to reference Taylor MA, Parvani JG, Schiemann WP: The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia. 2010, 15: 169-90.CrossRef Taylor MA, Parvani JG, Schiemann WP: The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia. 2010, 15: 169-90.CrossRef
39.
go back to reference Miyazono K: Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci. 2009, 85: 314-23.CrossRef Miyazono K: Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci. 2009, 85: 314-23.CrossRef
40.
go back to reference Gos M, Miłoszewska J, Przybyszewska M: Epithelial-mesenchymal transition in cancer progression. Postepy Biochem. 2009, 55: 121-8. Gos M, Miłoszewska J, Przybyszewska M: Epithelial-mesenchymal transition in cancer progression. Postepy Biochem. 2009, 55: 121-8.
41.
go back to reference Glenisson W, Castronovo V, Waltregny D: Histone deacetylase 4 is required for TGFbeta1-induced myofibroblastic differentiation. Biochim Biophys Acta. 2007, 1773: 1572-82.CrossRef Glenisson W, Castronovo V, Waltregny D: Histone deacetylase 4 is required for TGFbeta1-induced myofibroblastic differentiation. Biochim Biophys Acta. 2007, 1773: 1572-82.CrossRef
42.
go back to reference Khan N, Jeffers M, Kumar S, et al: Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J. 2008, 409: 581-9.CrossRef Khan N, Jeffers M, Kumar S, et al: Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J. 2008, 409: 581-9.CrossRef
43.
go back to reference Zhang Y, Li N, Caron C, et al: HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 2003, 22: 1168-79.CrossRef Zhang Y, Li N, Caron C, et al: HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 2003, 22: 1168-79.CrossRef
44.
go back to reference Blagosklonny MV, Robey R, Sackett DL, et al: Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol Cancer Ther. 2002, 1: 937-41. Blagosklonny MV, Robey R, Sackett DL, et al: Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol Cancer Ther. 2002, 1: 937-41.
45.
go back to reference Hubbert C, Guardiola A, Shao R, et al: HDAC6 is a microtubule-associated deacetylase. Nature. 2002, 417: 455-8.CrossRef Hubbert C, Guardiola A, Shao R, et al: HDAC6 is a microtubule-associated deacetylase. Nature. 2002, 417: 455-8.CrossRef
46.
go back to reference Dowdy SC, Jiang S, Zhou XC, et al: Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells. Mol Cancer Ther. 2006, 5: 2767-76.CrossRef Dowdy SC, Jiang S, Zhou XC, et al: Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells. Mol Cancer Ther. 2006, 5: 2767-76.CrossRef
47.
go back to reference Zhang D, Sun L, Xian W, et al: Low-dose paclitaxel ameliorates renal fibrosis in rat UUO model by inhibition of TGF-beta/Smad activity. Lab Invest. 2010, 90: 436-47.CrossRef Zhang D, Sun L, Xian W, et al: Low-dose paclitaxel ameliorates renal fibrosis in rat UUO model by inhibition of TGF-beta/Smad activity. Lab Invest. 2010, 90: 436-47.CrossRef
48.
go back to reference Choi HS, Savard CE, Choi JW, Kuver R, Lee SP: Paclitaxel interrupts TGF-beta1 signaling between gallbladder epithelial cells and myofibroblasts. J Surg Res. 2007, 141: 183-91.CrossRef Choi HS, Savard CE, Choi JW, Kuver R, Lee SP: Paclitaxel interrupts TGF-beta1 signaling between gallbladder epithelial cells and myofibroblasts. J Surg Res. 2007, 141: 183-91.CrossRef
49.
go back to reference Liu X, Zhu S, Wang T, et al: Paclitaxel modulates TGFbeta signaling in scleroderma skin grafts in immunodeficient mice. PLoS Med. 2005, 2: e354-CrossRef Liu X, Zhu S, Wang T, et al: Paclitaxel modulates TGFbeta signaling in scleroderma skin grafts in immunodeficient mice. PLoS Med. 2005, 2: e354-CrossRef
50.
go back to reference Guo W, Shan B, Klingsberg RC, Qin X, Lasky JA: Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am J Physiol Lung Cell Mol Physiol. 2009, 297: L864-70.CrossRef Guo W, Shan B, Klingsberg RC, Qin X, Lasky JA: Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am J Physiol Lung Cell Mol Physiol. 2009, 297: L864-70.CrossRef
51.
go back to reference Atmaca A, Al-Batran SE, Maurer A, et al: Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating phase I clinical trial. Br J Cancer. 2007, 97: 177-82.CrossRef Atmaca A, Al-Batran SE, Maurer A, et al: Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating phase I clinical trial. Br J Cancer. 2007, 97: 177-82.CrossRef
52.
go back to reference Rocca A, Minucci S, Tosti G, et al: A phase I-II study of the histone deacetylase inhibitor valproic acid plus chemoimmunotherapy in patients with advanced melanoma. Br J Cancer. 2009, 100: 28-36.CrossRef Rocca A, Minucci S, Tosti G, et al: A phase I-II study of the histone deacetylase inhibitor valproic acid plus chemoimmunotherapy in patients with advanced melanoma. Br J Cancer. 2009, 100: 28-36.CrossRef
53.
go back to reference Hardy JR, Rees EA, Gwilliam B, Ling J, Broadley K, A'Hern R: A phase II study to establish the efficacy and toxicity of sodium valproate in patients with cancer-related neuropathic pain. J Pain Symptom Manage. 2001, 21: 204-9.CrossRef Hardy JR, Rees EA, Gwilliam B, Ling J, Broadley K, A'Hern R: A phase II study to establish the efficacy and toxicity of sodium valproate in patients with cancer-related neuropathic pain. J Pain Symptom Manage. 2001, 21: 204-9.CrossRef
54.
go back to reference Rodriguez-Menendez V, Tremolizzo L, Cavaletti G: Targeting cancer and neuropathy with histone deacetylase inhibitors: two birds with one stone?. Curr Cancer Drug Targets. 2008, 8: 266-74.CrossRef Rodriguez-Menendez V, Tremolizzo L, Cavaletti G: Targeting cancer and neuropathy with histone deacetylase inhibitors: two birds with one stone?. Curr Cancer Drug Targets. 2008, 8: 266-74.CrossRef
55.
go back to reference Braiteh F, Soriano AO, Garcia-Manero G, et al: Phase I study of epigenetic modulation with 5-azacytidine and valproic acid in patients with advanced cancers. Clin Cancer Res. 2008, 14: 6296-301.CrossRef Braiteh F, Soriano AO, Garcia-Manero G, et al: Phase I study of epigenetic modulation with 5-azacytidine and valproic acid in patients with advanced cancers. Clin Cancer Res. 2008, 14: 6296-301.CrossRef
56.
go back to reference Munster P, Marchion D, Bicaku E, et al: Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC. Clin Cancer Res. 2009, 15: 2488-96.CrossRef Munster P, Marchion D, Bicaku E, et al: Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC. Clin Cancer Res. 2009, 15: 2488-96.CrossRef
57.
go back to reference Nakagawa M, Oda Y, Eguchi T, et al: Expression profile of class I histone deacetylases in human cancer tissues. Oncol Rep. 2007, 18: 769-74. Nakagawa M, Oda Y, Eguchi T, et al: Expression profile of class I histone deacetylases in human cancer tissues. Oncol Rep. 2007, 18: 769-74.
58.
go back to reference Weichert W, Röske A, Gekeler V, et al: Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol. 2008, 9: 139-48.CrossRef Weichert W, Röske A, Gekeler V, et al: Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol. 2008, 9: 139-48.CrossRef
59.
go back to reference Choi JH, Kwon HJ, Yoon BI, et al: Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res. 2001, 92: 1300-4.CrossRef Choi JH, Kwon HJ, Yoon BI, et al: Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res. 2001, 92: 1300-4.CrossRef
60.
go back to reference Song J, Noh JH, Lee JH, et al: Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS. 2005, 113: 264-8.CrossRef Song J, Noh JH, Lee JH, et al: Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS. 2005, 113: 264-8.CrossRef
61.
go back to reference Weichert W, Röske A, Gekeler V, et al: Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol. 2008, 9: 139-48.CrossRef Weichert W, Röske A, Gekeler V, et al: Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol. 2008, 9: 139-48.CrossRef
Metadata
Title
Effects of valproic acid on the cell cycle and apoptosis through acetylation of histone and tubulin in a scirrhous gastric cancer cell line
Authors
Yasumichi Yagi
Sachio Fushida
Shinichi Harada
Jun Kinoshita
Isamu Makino
Katsunobu Oyama
Hidehiro Tajima
Hideto Fujita
Hiroyuki Takamura
Itasu Ninomiya
Takashi Fujimura
Tetsuo Ohta
Masakazu Yashiro
Kosei Hirakawa
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2010
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-29-149

Other articles of this Issue 1/2010

Journal of Experimental & Clinical Cancer Research 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine