Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2009

Open Access 01-02-2009 | Research

Effect of hypoxia-inducible factor-1α on transcription of survivin in non-small cell lung cancer

Authors: Yu-Qing Chen, Cheng-Ling Zhao, Wei Li

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2009

Login to get access

Abstract

Background

Survivin is a structurally and functionally unique member of the inhibitor of apoptosis protein (IAP) family. It plays an important role, not only in regulating mitosis but also in inhibiting apoptosis. The current literature contains few reports on the transcriptional regulation of survivin expression in lung cancer.

Methods

In this study, we investigated the effect of hypoxia-inducible factor-1α (HIF-1α) on the transcriptional activity of the survivin promoter in non-small cell lung cancer (NSCLC). Immunohistochemical staining was used to detect the expression of survivin and HIF-1α in the lung tissue of 120 patients with non-small cell lung cancer (NSCLC) and 40 patients with benign pulmonary disease. We also performed experiments with the lung adenocarcinoma cell line A549 cells, which were cultured under hypoxic conditions. The expression of survivin and HIF-1α was detected by real-time RT-PCR and Western blotting. In the survivin promoter the putative binding-site for HIF-1α, is -19 bp~-16 bp upstream of TSS. We performed site-directed mutagenesis of this binding site, and used luciferase reporter plasmids to determine the relative activity of the survivin promoter in A549 cells. We also studied the effect of HIF-1α on the expression of survivin by dsRNA targeting of HIF-1α mRNA.

Results

HIF-1α (58.33%) and survivin (81.60%) were both over-expressed in NSCLC and their expressions correlated with one another. They were also expressed in A549 cells under normal and hypoxic conditions, with a significant increase under hypoxic conditions. Site directed mutagenesis of the putative binding site for HIF-1α in the survivin promoter significantly decreased the activity of the survivin promoter in A549 cells. Inhibition of HIF-1α by RNAi decreased the expression of survivin in A549 cell lines.

Conclusion

Our results indicate that the binding of HIF-1α to the survivin promoter increases transcription of the survivin gene. Thus, HIF-1α is an important transcriptional regulator of survivin expression
Appendix
Available only for authorised users
Literature
1.
go back to reference Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature. 1998, 396 (6711): 580-584. 10.1038/25141.CrossRef Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature. 1998, 396 (6711): 580-584. 10.1038/25141.CrossRef
2.
go back to reference Li F, Ackermann EJ, Bennett CF, Rothermel AL, Plescia J, Tognin S, Villa A, Marchisio PC, Altieri DC: Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol. 1999, 1 (8): 461-466. 10.1038/70242.CrossRef Li F, Ackermann EJ, Bennett CF, Rothermel AL, Plescia J, Tognin S, Villa A, Marchisio PC, Altieri DC: Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol. 1999, 1 (8): 461-466. 10.1038/70242.CrossRef
3.
go back to reference Ambrosini G, Adida C, Altieri DC: A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997, 3 (8): 917-921. 10.1038/nm0897-917.CrossRef Ambrosini G, Adida C, Altieri DC: A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997, 3 (8): 917-921. 10.1038/nm0897-917.CrossRef
4.
go back to reference Deveraux QL, Reed JC: IAP family proteins – suppressors of apoptosis. Genes Dev. 1999, 13 (3): 239-252. 10.1101/gad.13.3.239.CrossRef Deveraux QL, Reed JC: IAP family proteins – suppressors of apoptosis. Genes Dev. 1999, 13 (3): 239-252. 10.1101/gad.13.3.239.CrossRef
5.
go back to reference Li F: Survivin study: what is the next wave?. J Cell Physiol. 2003, 197 (1): 8-29. 10.1002/jcp.10327.CrossRef Li F: Survivin study: what is the next wave?. J Cell Physiol. 2003, 197 (1): 8-29. 10.1002/jcp.10327.CrossRef
6.
go back to reference Rodel F, Hoffmann J, Distel L, Herrmann M, Noisternig T, Papadopoulos T, Sauer R, Rodel C: Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer. Cancer Res. 2005, 65 (11): 4881-4887. 10.1158/0008-5472.CAN-04-3028.CrossRef Rodel F, Hoffmann J, Distel L, Herrmann M, Noisternig T, Papadopoulos T, Sauer R, Rodel C: Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer. Cancer Res. 2005, 65 (11): 4881-4887. 10.1158/0008-5472.CAN-04-3028.CrossRef
7.
go back to reference Ling X, Li F: Silencing of antiapoptotic survivin gene by multiple approaches of RNA interference technology. Biotechniques. 2004, 36 (3): 450-454. Ling X, Li F: Silencing of antiapoptotic survivin gene by multiple approaches of RNA interference technology. Biotechniques. 2004, 36 (3): 450-454.
8.
go back to reference Tu SP, Jiang XH, Lin MC, Cui JT, Yang Y, Lum CT, Zou B, Zhu YB, Jiang SH, Wong WM, et al: Suppression of survivin expression inhibits in vivo tumorigenicity and angiogenesis in gastric cancer. Cancer Res. 2003, 63 (22): 7724-7732. Tu SP, Jiang XH, Lin MC, Cui JT, Yang Y, Lum CT, Zou B, Zhu YB, Jiang SH, Wong WM, et al: Suppression of survivin expression inhibits in vivo tumorigenicity and angiogenesis in gastric cancer. Cancer Res. 2003, 63 (22): 7724-7732.
9.
go back to reference Pennati M, Colella G, Folini M, Citti L, Daidone MG, Zaffaroni N: Ribozyme-mediated attenuation of survivin expression sensitizes human melanoma cells to cisplatin-induced apoptosis. J Clin Invest. 2002, 109 (2): 285-286.CrossRef Pennati M, Colella G, Folini M, Citti L, Daidone MG, Zaffaroni N: Ribozyme-mediated attenuation of survivin expression sensitizes human melanoma cells to cisplatin-induced apoptosis. J Clin Invest. 2002, 109 (2): 285-286.CrossRef
10.
go back to reference Pennati M, Binda M, Colella G, Zoppe M, Folini M, Vignati S, Valentini A, Citti L, De Cesare M, Pratesi G, et al: Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells. Oncogene. 2004, 23 (2): 386-394. 10.1038/sj.onc.1207071.CrossRef Pennati M, Binda M, Colella G, Zoppe M, Folini M, Vignati S, Valentini A, Citti L, De Cesare M, Pratesi G, et al: Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells. Oncogene. 2004, 23 (2): 386-394. 10.1038/sj.onc.1207071.CrossRef
11.
go back to reference Shen C, Buck A, Polat B, Schmid-Kotsas A, Matuschek C, Gross HJ, Bachem M, Reske SN: Triplex-forming oligodeoxynucleotides targeting survivin inhibit proliferation and induce apoptosis of human lung carcinoma cells. Cancer Gene Ther. 2003, 10 (5): 403-410. 10.1038/sj.cgt.7700581.CrossRef Shen C, Buck A, Polat B, Schmid-Kotsas A, Matuschek C, Gross HJ, Bachem M, Reske SN: Triplex-forming oligodeoxynucleotides targeting survivin inhibit proliferation and induce apoptosis of human lung carcinoma cells. Cancer Gene Ther. 2003, 10 (5): 403-410. 10.1038/sj.cgt.7700581.CrossRef
12.
go back to reference Zhang M, Yang J, Li F: Transcriptional and post-transcriptional controls of survivin in cancer cells: novel approaches for cancer treatment. J Exp Clin Cancer Res. 2006, 25 (3): 391-402. Zhang M, Yang J, Li F: Transcriptional and post-transcriptional controls of survivin in cancer cells: novel approaches for cancer treatment. J Exp Clin Cancer Res. 2006, 25 (3): 391-402.
13.
go back to reference Chun JY, Hu Y, Pinder E, Wu J, Li F, Gao AC: Selenium inhibition of survivin expression by preventing Sp1 binding to its promoter. Mol Cancer Ther. 2007, 6 (9): 2572-2580. 10.1158/1535-7163.MCT-07-0172.CrossRef Chun JY, Hu Y, Pinder E, Wu J, Li F, Gao AC: Selenium inhibition of survivin expression by preventing Sp1 binding to its promoter. Mol Cancer Ther. 2007, 6 (9): 2572-2580. 10.1158/1535-7163.MCT-07-0172.CrossRef
14.
go back to reference Li F, Altieri DC: Transcriptional analysis of human survivin gene expression. Biochem J. 1999, 344 (Pt 2): 305-311. 10.1042/0264-6021:3440305. Li F, Altieri DC: Transcriptional analysis of human survivin gene expression. Biochem J. 1999, 344 (Pt 2): 305-311. 10.1042/0264-6021:3440305.
15.
go back to reference Zhu N, Gu L, Findley HW, Chen C, Dong JT, Yang L, Zhou M: KLF5 Interacts with p53 in regulating survivin expression in acute lymphoblastic leukemia. J Biol Chem. 2006, 281 (21): 14711-14718. 10.1074/jbc.M513810200.CrossRef Zhu N, Gu L, Findley HW, Chen C, Dong JT, Yang L, Zhou M: KLF5 Interacts with p53 in regulating survivin expression in acute lymphoblastic leukemia. J Biol Chem. 2006, 281 (21): 14711-14718. 10.1074/jbc.M513810200.CrossRef
16.
go back to reference Harrison L, Blackwell K: Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy?. Oncologist. 2004, 9 (Suppl 5): 31-40. 10.1634/theoncologist.9-90005-31.CrossRef Harrison L, Blackwell K: Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy?. Oncologist. 2004, 9 (Suppl 5): 31-40. 10.1634/theoncologist.9-90005-31.CrossRef
17.
go back to reference Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P: Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996, 56 (19): 4509-4515. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P: Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996, 56 (19): 4509-4515.
18.
go back to reference Bottaro DP, Liotta LA: Cancer: Out of air is not out of action. Nature. 2003, 423 (6940): 593-595. 10.1038/423593a.CrossRef Bottaro DP, Liotta LA: Cancer: Out of air is not out of action. Nature. 2003, 423 (6940): 593-595. 10.1038/423593a.CrossRef
19.
go back to reference Chang Q, Qin R, Huang T, Gao J, Feng Y: Effect of antisense hypoxia-inducible factor 1alpha on progression, metastasis, and chemosensitivity of pancreatic cancer. Pancreas. 2006, 32 (3): 297-305. 10.1097/00006676-200604000-00010.CrossRef Chang Q, Qin R, Huang T, Gao J, Feng Y: Effect of antisense hypoxia-inducible factor 1alpha on progression, metastasis, and chemosensitivity of pancreatic cancer. Pancreas. 2006, 32 (3): 297-305. 10.1097/00006676-200604000-00010.CrossRef
20.
go back to reference Peng XH, Karna P, Cao Z, Jiang BH, Zhou M, Yang L: Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J Biol Chem. 2006, 281 (36): 25903-25914. 10.1074/jbc.M603414200.CrossRef Peng XH, Karna P, Cao Z, Jiang BH, Zhou M, Yang L: Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J Biol Chem. 2006, 281 (36): 25903-25914. 10.1074/jbc.M603414200.CrossRef
21.
go back to reference Sowter HM, Raval RR, Moore JW, Ratcliffe PJ, Harris AL: Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Res. 2003, 63 (19): 6130-6134. Sowter HM, Raval RR, Moore JW, Ratcliffe PJ, Harris AL: Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Res. 2003, 63 (19): 6130-6134.
22.
go back to reference Vucic D: Apoptotic pathways as targets for therapeutic intervention. Curr Cancer Drug Targets. 2008, 8 (2): 86-10.2174/156800908783769364.CrossRef Vucic D: Apoptotic pathways as targets for therapeutic intervention. Curr Cancer Drug Targets. 2008, 8 (2): 86-10.2174/156800908783769364.CrossRef
23.
go back to reference Blalock WL, Weinstein-Oppenheimer C, Chang F, Hoyle PE, Wang XY, Algate PA, Franklin RA, Oberhaus SM, Steelman LS, McCubrey JA: Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs. Leukemia. 1999, 13 (8): 1109-1166. 10.1038/sj/leu/2401493.CrossRef Blalock WL, Weinstein-Oppenheimer C, Chang F, Hoyle PE, Wang XY, Algate PA, Franklin RA, Oberhaus SM, Steelman LS, McCubrey JA: Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs. Leukemia. 1999, 13 (8): 1109-1166. 10.1038/sj/leu/2401493.CrossRef
24.
go back to reference Esteve PO, Chin HG, Pradhan S: Molecular mechanisms of transactivation and doxorubicin-mediated repression of survivin gene in cancer cells. J Biol Chem. 2007, 282 (4): 2615-2625. 10.1074/jbc.M606203200.CrossRef Esteve PO, Chin HG, Pradhan S: Molecular mechanisms of transactivation and doxorubicin-mediated repression of survivin gene in cancer cells. J Biol Chem. 2007, 282 (4): 2615-2625. 10.1074/jbc.M606203200.CrossRef
25.
go back to reference Kawamura K, Yu L, Tomizawa M, Shimozato O, Ma G, Li Q, Sato A, Yang Y, Suzuki T, Abdel-Aziz NM, et al: Transcriptional regulatory regions of the survivin gene activate an exogenous suicide gene in human tumors and enhance the sensitivity to a prodrug. Anticancer Res. 2007, 27 (1A): 89-93. Kawamura K, Yu L, Tomizawa M, Shimozato O, Ma G, Li Q, Sato A, Yang Y, Suzuki T, Abdel-Aziz NM, et al: Transcriptional regulatory regions of the survivin gene activate an exogenous suicide gene in human tumors and enhance the sensitivity to a prodrug. Anticancer Res. 2007, 27 (1A): 89-93.
26.
go back to reference Li B, Fan J, Liu X, Qi R, Bo L, Gu J, Qian C, Liu X: Suppression of colorectal tumor growth by regulated survivin targeting. J Mol Med. 2006, 84 (12): 1077-1086. 10.1007/s00109-006-0106-9.CrossRef Li B, Fan J, Liu X, Qi R, Bo L, Gu J, Qian C, Liu X: Suppression of colorectal tumor growth by regulated survivin targeting. J Mol Med. 2006, 84 (12): 1077-1086. 10.1007/s00109-006-0106-9.CrossRef
27.
go back to reference Wu J, Ling X, Pan D, Apontes P, Song L, Liang P, Altieri DC, Beerman T, Li F: Molecular mechanism of inhibition of survivin transcription by the GC-rich sequence-selective DNA binding antitumor agent, hedamycin: evidence of survivin down-regulation associated with drug sensitivity. J Biol Chem. 2005, 280 (10): 9745-9751. 10.1074/jbc.M409350200.CrossRef Wu J, Ling X, Pan D, Apontes P, Song L, Liang P, Altieri DC, Beerman T, Li F: Molecular mechanism of inhibition of survivin transcription by the GC-rich sequence-selective DNA binding antitumor agent, hedamycin: evidence of survivin down-regulation associated with drug sensitivity. J Biol Chem. 2005, 280 (10): 9745-9751. 10.1074/jbc.M409350200.CrossRef
28.
go back to reference Bos R, Groep van der P, Greijer AE, Shvarts A, Meijer S, Pinedo HM, Semenza GL, van Diest PJ, Wall van der E: Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer. 2003, 97 (6): 1573-1581. 10.1002/cncr.11246.CrossRef Bos R, Groep van der P, Greijer AE, Shvarts A, Meijer S, Pinedo HM, Semenza GL, van Diest PJ, Wall van der E: Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer. 2003, 97 (6): 1573-1581. 10.1002/cncr.11246.CrossRef
29.
go back to reference Teicher BA: Hypoxia and drug resistance. Cancer Metastasis Rev. 1994, 13 (2): 139-168. 10.1007/BF00689633.CrossRef Teicher BA: Hypoxia and drug resistance. Cancer Metastasis Rev. 1994, 13 (2): 139-168. 10.1007/BF00689633.CrossRef
Metadata
Title
Effect of hypoxia-inducible factor-1α on transcription of survivin in non-small cell lung cancer
Authors
Yu-Qing Chen
Cheng-Ling Zhao
Wei Li
Publication date
01-02-2009
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2009
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-28-29

Other articles of this Issue 1/2009

Journal of Experimental & Clinical Cancer Research 1/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine