Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2014

Open Access 01-12-2014 | Research

Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery

Authors: Mingli Yang, Guohua Jiang, Wenjing Li, Kai Qiu, Min Zhang, Christopher M Carter, Samer Z Al-Quran, Ying Li

Published in: Journal of Hematology & Oncology | Issue 1/2014

Login to get access

Abstract

Background

The majority of patients with acute myelogenous leukemia (AML) still die of their disease. In order to improve survival rates in AML patients, new strategies are necessary to discover biomarkers for the detection and targeted therapy of AML. One of the advantages of the aptamer-based technology is the unique cell-based selection process, which allows us to efficiently select for cell-specific aptamers without knowing which target molecules are present on the cell surface.

Methods

The NB4 AML cell line was used as the target cell population for selecting single stranded DNA aptamers. After determining the affinity of selected aptamers to leukocytes, the aptamers were used to phenotype human bone marrow leukocytes and AML cells in clinical specimens. Then a biotin-labelled aptamer was used to enrich and identify its target surface protein.

Results

Three new aptamers were characterized from the selected aptamer pools (JH6, JH19, and K19). All of them can selectively recognize myeloid cells with Kd in the low nanomole range (2.77 to 12.37 nM). The target of the biotin-labelled K19 aptamer probe was identified as Siglec-5, a surface membrane protein in low abundance whose expression can serve as a biomarker of granulocytic maturation and be used to phenotype AML. More importantly, Siglec-5 expression can be used to detect low concentrations of AML cells in human bone marrow specimens, and functions as a potential target for leukemic therapy.

Conclusions

We have demonstrated a pipeline approach for developing single stranded DNA aptamer probes, phenotyping AML cells in clinical specimens, and then identifying the aptamer-recognized target protein. The developed aptamer probes and identified Siglec-5 protein may potentially be used for leukemic cell detection and therapy in our future clinical practice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Appelbaum FR, Gundacker H, Head DR, Slovak ML, Willman CL, Godwin JE, Anderson JE, Petersdorf SH: Age and acute myeloid leukemia. Blood. 2006, 107: 3481-3485. 10.1182/blood-2005-09-3724.PubMedCentralCrossRefPubMed Appelbaum FR, Gundacker H, Head DR, Slovak ML, Willman CL, Godwin JE, Anderson JE, Petersdorf SH: Age and acute myeloid leukemia. Blood. 2006, 107: 3481-3485. 10.1182/blood-2005-09-3724.PubMedCentralCrossRefPubMed
2.
go back to reference Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, Dombret H, Fenaux P: Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010, 115: 453-474. 10.1182/blood-2009-07-235358.CrossRefPubMed Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, Dombret H, Fenaux P: Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010, 115: 453-474. 10.1182/blood-2009-07-235358.CrossRefPubMed
3.
go back to reference O’Donnell MR, Abboud CN, Altman J, Appelbaum FR, Arber DA, Attar E, Borate U, Coutre SE: Acute myeloid leukemia. J Natl Compr Canc Netw. 2012, 10: 984-1021.PubMed O’Donnell MR, Abboud CN, Altman J, Appelbaum FR, Arber DA, Attar E, Borate U, Coutre SE: Acute myeloid leukemia. J Natl Compr Canc Netw. 2012, 10: 984-1021.PubMed
4.
go back to reference Sekeres MA: Treatment of older adults with acute myeloid leukemia: state of the art and current perspectives. Haematologica. 2008, 93: 1769-1772. 10.3324/haematol.2008.000497.CrossRefPubMed Sekeres MA: Treatment of older adults with acute myeloid leukemia: state of the art and current perspectives. Haematologica. 2008, 93: 1769-1772. 10.3324/haematol.2008.000497.CrossRefPubMed
5.
go back to reference Zaidi SZ, Owaidah T, Al SF, Ahmed SY, Chaudhri N, Aljurf M: The challenge of risk stratification in acute myeloid leukemia with normal karyotype. Hematol Oncol Stem Cell Ther. 2008, 1: 141-158.CrossRefPubMed Zaidi SZ, Owaidah T, Al SF, Ahmed SY, Chaudhri N, Aljurf M: The challenge of risk stratification in acute myeloid leukemia with normal karyotype. Hematol Oncol Stem Cell Ther. 2008, 1: 141-158.CrossRefPubMed
6.
go back to reference Gregory TK, Wald D, Chen Y, Vermaat JM, Xiong Y, Tse W: Molecular prognostic markers for adult acute myeloid leukemia with normal cytogenetics. J Hematol Oncol. 2009, 2: 23-10.1186/1756-8722-2-23.PubMedCentralCrossRefPubMed Gregory TK, Wald D, Chen Y, Vermaat JM, Xiong Y, Tse W: Molecular prognostic markers for adult acute myeloid leukemia with normal cytogenetics. J Hematol Oncol. 2009, 2: 23-10.1186/1756-8722-2-23.PubMedCentralCrossRefPubMed
7.
go back to reference Gold L, Janjic N, Jarvis T, Schneider D, Walker JJ, Wilcox SK, Zichi D: Aptamers and the RNA world, past and present. Cold Spring Harb Perspect Biol. 2012, 4: 1-9.CrossRef Gold L, Janjic N, Jarvis T, Schneider D, Walker JJ, Wilcox SK, Zichi D: Aptamers and the RNA world, past and present. Cold Spring Harb Perspect Biol. 2012, 4: 1-9.CrossRef
8.
go back to reference Barbas AS, Mi J, Clary BM, White RR: Aptamer applications for targeted cancer therapy. Future Oncol. 2010, 6: 1117-1126. 10.2217/fon.10.67.CrossRefPubMed Barbas AS, Mi J, Clary BM, White RR: Aptamer applications for targeted cancer therapy. Future Oncol. 2010, 6: 1117-1126. 10.2217/fon.10.67.CrossRefPubMed
9.
go back to reference Cerchia L, Giangrande PH, McNamara JO, de F,V: Cell-specific aptamers for targeted therapies. Methods Mol Biol. 2009, 535: 59-78. 10.1007/978-1-59745-557-2_5.PubMedCentralCrossRefPubMed Cerchia L, Giangrande PH, McNamara JO, de F,V: Cell-specific aptamers for targeted therapies. Methods Mol Biol. 2009, 535: 59-78. 10.1007/978-1-59745-557-2_5.PubMedCentralCrossRefPubMed
10.
go back to reference Ellington AD, Conrad R: Aptamers as potential nucleic acid pharmaceuticals. Biotechnol Annu Rev. 1995, 1: 185-214.CrossRefPubMed Ellington AD, Conrad R: Aptamers as potential nucleic acid pharmaceuticals. Biotechnol Annu Rev. 1995, 1: 185-214.CrossRefPubMed
11.
go back to reference Brody EN, Willis MC, Smith JD, Jayasena S, Zichi D, Gold L: The use of aptamers in large arrays for molecular diagnostics. Mol Diagn. 1999, 4: 381-388. 10.1016/S1084-8592(99)80014-9.CrossRefPubMed Brody EN, Willis MC, Smith JD, Jayasena S, Zichi D, Gold L: The use of aptamers in large arrays for molecular diagnostics. Mol Diagn. 1999, 4: 381-388. 10.1016/S1084-8592(99)80014-9.CrossRefPubMed
12.
go back to reference Bunka DH, Platonova O, Stockley PG: Development of aptamer therapeutics. Curr Opin Pharmacol. 2010, 10: 557-562. 10.1016/j.coph.2010.06.009.CrossRefPubMed Bunka DH, Platonova O, Stockley PG: Development of aptamer therapeutics. Curr Opin Pharmacol. 2010, 10: 557-562. 10.1016/j.coph.2010.06.009.CrossRefPubMed
13.
go back to reference Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ: Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA. 2006, 103: 11838-11843. 10.1073/pnas.0602615103.PubMedCentralCrossRefPubMed Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ: Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA. 2006, 103: 11838-11843. 10.1073/pnas.0602615103.PubMedCentralCrossRefPubMed
14.
go back to reference Dua P, Kim S, Lee DK: Nucleic acid aptamers targeting cell-surface proteins. Methods. 2011, 54: 215-225. 10.1016/j.ymeth.2011.02.002.CrossRefPubMed Dua P, Kim S, Lee DK: Nucleic acid aptamers targeting cell-surface proteins. Methods. 2011, 54: 215-225. 10.1016/j.ymeth.2011.02.002.CrossRefPubMed
15.
go back to reference Blank M, Weinschenk T, Priemer M, Schluesener H: Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J Biol Chem. 2001, 276: 16464-16468. 10.1074/jbc.M100347200.CrossRefPubMed Blank M, Weinschenk T, Priemer M, Schluesener H: Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J Biol Chem. 2001, 276: 16464-16468. 10.1074/jbc.M100347200.CrossRefPubMed
16.
go back to reference Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L: A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci USA. 2003, 100: 15416-15421. 10.1073/pnas.2136683100.PubMedCentralCrossRefPubMed Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L: A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci USA. 2003, 100: 15416-15421. 10.1073/pnas.2136683100.PubMedCentralCrossRefPubMed
17.
go back to reference Mallikaratchy P, Tang Z, Kwame S, Meng L, Shangguan D, Tan W: Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Mol Cell Proteomics. 2007, 6: 2230-2238. 10.1074/mcp.M700026-MCP200.CrossRefPubMed Mallikaratchy P, Tang Z, Kwame S, Meng L, Shangguan D, Tan W: Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Mol Cell Proteomics. 2007, 6: 2230-2238. 10.1074/mcp.M700026-MCP200.CrossRefPubMed
18.
go back to reference Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan W: Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res. 2008, 7: 2133-2139. 10.1021/pr700894d.PubMedCentralCrossRefPubMed Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan W: Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res. 2008, 7: 2133-2139. 10.1021/pr700894d.PubMedCentralCrossRefPubMed
19.
go back to reference Sefah K, Tang ZW, Shangguan DH, Chen H, Lopez-Colon D, Li Y, Parekh P, Martin J: Molecular recognition of acute myeloid leukemia using aptamers. Leukemia. 2009, 23: 235-244. 10.1038/leu.2008.335.PubMedCentralCrossRefPubMed Sefah K, Tang ZW, Shangguan DH, Chen H, Lopez-Colon D, Li Y, Parekh P, Martin J: Molecular recognition of acute myeloid leukemia using aptamers. Leukemia. 2009, 23: 235-244. 10.1038/leu.2008.335.PubMedCentralCrossRefPubMed
20.
go back to reference Jiang G, Zhang M, Yue B, Yang M, Carter C, Al-Quran SZ, Li B, Li Y: PTK7: A new biomarker for immunophenotypic characterization of maturing T cells and T cell acute lymphoblastic leukemia. Leuk Res. 2012, 36: 1347-1353. 10.1016/j.leukres.2012.07.004.PubMedCentralCrossRefPubMed Jiang G, Zhang M, Yue B, Yang M, Carter C, Al-Quran SZ, Li B, Li Y: PTK7: A new biomarker for immunophenotypic characterization of maturing T cells and T cell acute lymphoblastic leukemia. Leuk Res. 2012, 36: 1347-1353. 10.1016/j.leukres.2012.07.004.PubMedCentralCrossRefPubMed
21.
go back to reference Borowitz MJ, Guenther KL, Shults KE, Stelzer GT: Immunophenotyping of acute leukemia by flow cytometric analysis. Use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis. Am J Clin Pathol. 1993, 100: 534-540.PubMed Borowitz MJ, Guenther KL, Shults KE, Stelzer GT: Immunophenotyping of acute leukemia by flow cytometric analysis. Use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis. Am J Clin Pathol. 1993, 100: 534-540.PubMed
22.
go back to reference Wood BL: Ten-color immunophenotyping of hematopoietic cells. Curr Protoc Cytom. 2005, Chapter 6: 6.21.1-6.21.11. Wood BL: Ten-color immunophenotyping of hematopoietic cells. Curr Protoc Cytom. 2005, Chapter 6: 6.21.1-6.21.11.
23.
go back to reference Granvogl B, Ploscher M, Eichacker LA: Sample preparation by in-gel digestion for mass spectrometry-based proteomics. Anal Bioanal Chem. 2007, 389: 991-1002. 10.1007/s00216-007-1451-4.CrossRefPubMed Granvogl B, Ploscher M, Eichacker LA: Sample preparation by in-gel digestion for mass spectrometry-based proteomics. Anal Bioanal Chem. 2007, 389: 991-1002. 10.1007/s00216-007-1451-4.CrossRefPubMed
24.
go back to reference Cornish AL, Freeman S, Forbes G, Ni J, Zhang M, Cepeda M, Gentz R, Augustus M: Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood. 1998, 92: 2123-2132.PubMed Cornish AL, Freeman S, Forbes G, Ni J, Zhang M, Cepeda M, Gentz R, Augustus M: Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood. 1998, 92: 2123-2132.PubMed
25.
go back to reference Crocker PR, McMillan SJ, Richards HE: CD33-related siglecs as potential modulators of inflammatory responses. Ann N Y Acad Sci. 2012, 1253: 102-111. 10.1111/j.1749-6632.2011.06449.x.CrossRefPubMed Crocker PR, McMillan SJ, Richards HE: CD33-related siglecs as potential modulators of inflammatory responses. Ann N Y Acad Sci. 2012, 1253: 102-111. 10.1111/j.1749-6632.2011.06449.x.CrossRefPubMed
26.
go back to reference Virgo P, Denning-Kendall PA, Erickson-Miller CL, Singha S, Evely R, Hows JM, Freeman SD: Identification of the CD33-related Siglec receptor, Siglec-5 (CD170), as a useful marker in both normal myelopoiesis and acute myeloid leukaemias. Br J Haematol. 2003, 123: 420-430. 10.1046/j.1365-2141.2003.04625.x.CrossRefPubMed Virgo P, Denning-Kendall PA, Erickson-Miller CL, Singha S, Evely R, Hows JM, Freeman SD: Identification of the CD33-related Siglec receptor, Siglec-5 (CD170), as a useful marker in both normal myelopoiesis and acute myeloid leukaemias. Br J Haematol. 2003, 123: 420-430. 10.1046/j.1365-2141.2003.04625.x.CrossRefPubMed
27.
go back to reference Loken MR, Wells DA: The role of flow cytometry in myelodysplastic syndromes. J Natl Compr Canc Netw. 2008, 6: 935-941.PubMed Loken MR, Wells DA: The role of flow cytometry in myelodysplastic syndromes. J Natl Compr Canc Netw. 2008, 6: 935-941.PubMed
28.
go back to reference Stetler-Stevenson M, Arthur DC, Jabbour N, Xie XY, Molldrem J, Barrett AJ, Venzon D, Rick ME: Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood. 2001, 98: 979-987. 10.1182/blood.V98.4.979.CrossRefPubMed Stetler-Stevenson M, Arthur DC, Jabbour N, Xie XY, Molldrem J, Barrett AJ, Venzon D, Rick ME: Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood. 2001, 98: 979-987. 10.1182/blood.V98.4.979.CrossRefPubMed
29.
go back to reference Wood BL: Flow cytometric diagnosis of myelodysplasia and myeloproliferative disorders. J Biol Regul Homeost Agents. 2004, 18: 141-145.PubMed Wood BL: Flow cytometric diagnosis of myelodysplasia and myeloproliferative disorders. J Biol Regul Homeost Agents. 2004, 18: 141-145.PubMed
30.
go back to reference Savas JN, Stein BD, Wu CC, Yates JR: Mass spectrometry accelerates membrane protein analysis. Trends Biochem Sci. 2011, 36: 388-396.PubMedCentralPubMed Savas JN, Stein BD, Wu CC, Yates JR: Mass spectrometry accelerates membrane protein analysis. Trends Biochem Sci. 2011, 36: 388-396.PubMedCentralPubMed
31.
go back to reference Pass MB, Borregaard N, Cowland JB: Derangement of transcription factor profiles during in vitro differentiation of HL60 and NB4 cells. Leuk Res. 2007, 31: 827-837. 10.1016/j.leukres.2006.07.019.CrossRefPubMed Pass MB, Borregaard N, Cowland JB: Derangement of transcription factor profiles during in vitro differentiation of HL60 and NB4 cells. Leuk Res. 2007, 31: 827-837. 10.1016/j.leukres.2006.07.019.CrossRefPubMed
32.
go back to reference Ballerini P, Besancon F, Cayre YE: [Effect of translocation t(15;17) on the gene expression regulation of myeloblastin during all trans retinoic acid induced myeloid differentiation in human leukemic cells]. C R Seances Soc Biol Fil. 1995, 189: 521-530.PubMed Ballerini P, Besancon F, Cayre YE: [Effect of translocation t(15;17) on the gene expression regulation of myeloblastin during all trans retinoic acid induced myeloid differentiation in human leukemic cells]. C R Seances Soc Biol Fil. 1995, 189: 521-530.PubMed
33.
go back to reference Leupin N, Kuhn A, Hugli B, Grob TJ, Jaggi R, Tobler A, Delorenzi M, Fey MF: Gene expression profiling reveals consistent differences between clinical samples of human leukaemias and their model cell lines. Br J Haematol. 2006, 135: 520-523. 10.1111/j.1365-2141.2006.06342.x.PubMedCentralCrossRefPubMed Leupin N, Kuhn A, Hugli B, Grob TJ, Jaggi R, Tobler A, Delorenzi M, Fey MF: Gene expression profiling reveals consistent differences between clinical samples of human leukaemias and their model cell lines. Br J Haematol. 2006, 135: 520-523. 10.1111/j.1365-2141.2006.06342.x.PubMedCentralCrossRefPubMed
34.
go back to reference Walter RB, Appelbaum FR, Estey EH, Bernstein ID: Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012, 119: 6198-6208. 10.1182/blood-2011-11-325050.PubMedCentralCrossRefPubMed Walter RB, Appelbaum FR, Estey EH, Bernstein ID: Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012, 119: 6198-6208. 10.1182/blood-2011-11-325050.PubMedCentralCrossRefPubMed
35.
go back to reference O’Reilly MK, Paulson JC: Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol Sci. 2009, 30: 240-248. 10.1016/j.tips.2009.02.005.PubMedCentralCrossRefPubMed O’Reilly MK, Paulson JC: Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol Sci. 2009, 30: 240-248. 10.1016/j.tips.2009.02.005.PubMedCentralCrossRefPubMed
36.
go back to reference Nguyen DH, Ball ED, Varki A: Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs. Exp Hematol. 2006, 34: 728-735. 10.1016/j.exphem.2006.03.003.CrossRefPubMed Nguyen DH, Ball ED, Varki A: Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs. Exp Hematol. 2006, 34: 728-735. 10.1016/j.exphem.2006.03.003.CrossRefPubMed
37.
go back to reference Chu TC, Marks JW, Lavery LA, Faulkner S, Rosenblum MG, Ellington AD, Levy M: Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res. 2006, 66: 5989-5992. 10.1158/0008-5472.CAN-05-4583.CrossRefPubMed Chu TC, Marks JW, Lavery LA, Faulkner S, Rosenblum MG, Ellington AD, Levy M: Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res. 2006, 66: 5989-5992. 10.1158/0008-5472.CAN-05-4583.CrossRefPubMed
Metadata
Title
Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery
Authors
Mingli Yang
Guohua Jiang
Wenjing Li
Kai Qiu
Min Zhang
Christopher M Carter
Samer Z Al-Quran
Ying Li
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2014
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-7-5

Other articles of this Issue 1/2014

Journal of Hematology & Oncology 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine