Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2013

Open Access 01-12-2013 | Review

Fact or fiction - identifying the elusive multiple myeloma stem cell

Authors: Joshua Kellner, Bei Liu, Yubin Kang, Zihai Li

Published in: Journal of Hematology & Oncology | Issue 1/2013

Login to get access

Abstract

Multiple Myeloma (MM) is a debilitating disease of proliferating and malignant plasma cells that is currently incurable. The ability of monoclonal recurrence of disease suggests it might arise from a stem cell-like population capable of self-renewal. The difficulty to isolate the cancer stem-like cell in MM has introduced confusion toward this hypothesis. However, recent evidence has suggested that MM originates from the B cell lineage with memory-B cell like features, allowing for self-renewal of the progenitor-like status and differentiation to a monoclonal plasma cell population. Furthermore, this tumor-initiating cell uses signaling pathways and microenvironment similar to the hematopoietic stem cell, though hijacking these mechanisms to create and favor a more tumorigenic environment. The bone marrow niche allows for pertinent evasion, either through avoiding immunosurveillance or through direct interaction with the stroma, inducing quiescence and thus drug resistance. Understanding the interaction of the MM stem cell to the microenvironment and the mechanisms utilized by various stem cell-like populations to allow persistence and therapy-resistance can enable for better targeting of this cell population and potential eradication of the disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bergsagel DE, Valeriote FA: Growth characteristics of a mouse plasma cell tumor. Cancer Res. 1968, 28 (11): 2187-2196.PubMed Bergsagel DE, Valeriote FA: Growth characteristics of a mouse plasma cell tumor. Cancer Res. 1968, 28 (11): 2187-2196.PubMed
2.
go back to reference Park CH, Bergsagel DE, McCulloch EA: Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst. 1971, 46 (2): 411-422.PubMed Park CH, Bergsagel DE, McCulloch EA: Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst. 1971, 46 (2): 411-422.PubMed
3.
go back to reference Hamburger AW, Salmon SE: Primary bioassay of human tumor stem cells. Science. 1977, 197 (4302): 461-463.PubMedCrossRef Hamburger AW, Salmon SE: Primary bioassay of human tumor stem cells. Science. 1977, 197 (4302): 461-463.PubMedCrossRef
5.
go back to reference Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997, 3 (7): 730-737.PubMedCrossRef Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997, 3 (7): 730-737.PubMedCrossRef
6.
8.
go back to reference Boyd KD, et al: Understanding the molecular biology of myeloma and its therapeutic implications. Expert Rev Hematol. 2012, 5 (6): 603-617.PubMedCrossRef Boyd KD, et al: Understanding the molecular biology of myeloma and its therapeutic implications. Expert Rev Hematol. 2012, 5 (6): 603-617.PubMedCrossRef
9.
go back to reference Mahindra A, et al: Latest advances and current challenges in the treatment of multiple myeloma. Nat Rev Clin Oncol. 2012, 9 (3): 135-143.PubMedCrossRef Mahindra A, et al: Latest advances and current challenges in the treatment of multiple myeloma. Nat Rev Clin Oncol. 2012, 9 (3): 135-143.PubMedCrossRef
10.
go back to reference Bakkus MH, et al: Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood. 1992, 80 (9): 2326-2335.PubMed Bakkus MH, et al: Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood. 1992, 80 (9): 2326-2335.PubMed
11.
go back to reference Bakkus MH, et al: Evidence that the clonogenic cell in multiple myeloma originates from a pre-switched but somatically mutated B cell. Br J Haematol. 1994, 87 (1): 68-74.PubMedCrossRef Bakkus MH, et al: Evidence that the clonogenic cell in multiple myeloma originates from a pre-switched but somatically mutated B cell. Br J Haematol. 1994, 87 (1): 68-74.PubMedCrossRef
12.
go back to reference Bergsagel PL, et al: In multiple myeloma, clonotypic B lymphocytes are detectable among CD19+ peripheral blood cells expressing CD38, CD56, and monotypic Ig light chain. Blood. 1995, 85 (2): 436-447.PubMed Bergsagel PL, et al: In multiple myeloma, clonotypic B lymphocytes are detectable among CD19+ peripheral blood cells expressing CD38, CD56, and monotypic Ig light chain. Blood. 1995, 85 (2): 436-447.PubMed
13.
go back to reference Billadeau D, et al: The bone marrow of multiple myeloma patients contains B cell populations at different stages of differentiation that are clonally related to the malignant plasma cell. J Exp Med. 1993, 178 (3): 1023-1031.PubMedCrossRef Billadeau D, et al: The bone marrow of multiple myeloma patients contains B cell populations at different stages of differentiation that are clonally related to the malignant plasma cell. J Exp Med. 1993, 178 (3): 1023-1031.PubMedCrossRef
14.
go back to reference Pilarski LM, et al: In multiple myeloma, circulating hyperdiploid B cells have clonotypic immunoglobulin heavy chain rearrangements and may mediate spread of disease. Clin Cancer Res. 2000, 6 (2): 585-596.PubMed Pilarski LM, et al: In multiple myeloma, circulating hyperdiploid B cells have clonotypic immunoglobulin heavy chain rearrangements and may mediate spread of disease. Clin Cancer Res. 2000, 6 (2): 585-596.PubMed
15.
go back to reference Szczepek AJ, et al: A high frequency of circulating B cells share clonotypic Ig heavy-chain VDJ rearrangements with autologous bone marrow plasma cells in multiple myeloma, as measured by single-cell and in situ reverse transcriptase-polymerase chain reaction. Blood. 1998, 92 (8): 2844-2855.PubMed Szczepek AJ, et al: A high frequency of circulating B cells share clonotypic Ig heavy-chain VDJ rearrangements with autologous bone marrow plasma cells in multiple myeloma, as measured by single-cell and in situ reverse transcriptase-polymerase chain reaction. Blood. 1998, 92 (8): 2844-2855.PubMed
16.
go back to reference Bergui L, et al: Interleukin 3 and interleukin 6 synergistically promote the proliferation and differentiation of malignant plasma cell precursors in multiple myeloma. J Exp Med. 1989, 170 (2): 613-618.PubMedCrossRef Bergui L, et al: Interleukin 3 and interleukin 6 synergistically promote the proliferation and differentiation of malignant plasma cell precursors in multiple myeloma. J Exp Med. 1989, 170 (2): 613-618.PubMedCrossRef
17.
go back to reference Vescio RA, et al: Myeloma Ig heavy chain V region sequences reveal prior antigenic selection and marked somatic mutation but no intraclonal diversity. J Immunol. 1995, 155 (5): 2487-2497.PubMed Vescio RA, et al: Myeloma Ig heavy chain V region sequences reveal prior antigenic selection and marked somatic mutation but no intraclonal diversity. J Immunol. 1995, 155 (5): 2487-2497.PubMed
18.
go back to reference Rasmussen T, et al: In multiple myeloma clonotypic CD38- /CD19+ / CD27+ memory B cells recirculate through bone marrow, peripheral blood and lymph nodes. Leuk Lymphoma. 2004, 45 (7): 1413-1417.PubMedCrossRef Rasmussen T, et al: In multiple myeloma clonotypic CD38- /CD19+ / CD27+ memory B cells recirculate through bone marrow, peripheral blood and lymph nodes. Leuk Lymphoma. 2004, 45 (7): 1413-1417.PubMedCrossRef
19.
go back to reference Yaccoby S, Barlogie B, Epstein J: Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood. 1998, 92 (8): 2908-2913.PubMed Yaccoby S, Barlogie B, Epstein J: Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood. 1998, 92 (8): 2908-2913.PubMed
20.
go back to reference Yaccoby S, Epstein J: The proliferative potential of myeloma plasma cells manifest in the SCID-hu host. Blood. 1999, 94 (10): 3576-3582.PubMed Yaccoby S, Epstein J: The proliferative potential of myeloma plasma cells manifest in the SCID-hu host. Blood. 1999, 94 (10): 3576-3582.PubMed
21.
go back to reference Kim D, et al: CD19-CD45 low/- CD38 high/CD138+ plasma cells enrich for human tumorigenic myeloma cells. Leukemia. 2012, 26 (12): 2530-2537.PubMedCrossRef Kim D, et al: CD19-CD45 low/- CD38 high/CD138+ plasma cells enrich for human tumorigenic myeloma cells. Leukemia. 2012, 26 (12): 2530-2537.PubMedCrossRef
22.
go back to reference Pilarski LM, et al: Myeloma progenitors in the blood of patients with aggressive or minimal disease: engraftment and self-renewal of primary human myeloma in the bone marrow of NOD SCID mice. Blood. 2000, 95 (3): 1056-1065.PubMed Pilarski LM, et al: Myeloma progenitors in the blood of patients with aggressive or minimal disease: engraftment and self-renewal of primary human myeloma in the bone marrow of NOD SCID mice. Blood. 2000, 95 (3): 1056-1065.PubMed
23.
go back to reference Pilarski LM, et al: Leukemic B cells clonally identical to myeloma plasma cells are myelomagenic in NOD/SCID mice. Exp Hematol. 2002, 30 (3): 221-228.PubMedCrossRef Pilarski LM, et al: Leukemic B cells clonally identical to myeloma plasma cells are myelomagenic in NOD/SCID mice. Exp Hematol. 2002, 30 (3): 221-228.PubMedCrossRef
26.
go back to reference Reghunathan R, et al: Clonogenic multiple myeloma cells have shared stemness signature assocuated with patient survival. Oncotarget. 2013, 4 (8): 1230-1240.PubMedCentralPubMedCrossRef Reghunathan R, et al: Clonogenic multiple myeloma cells have shared stemness signature assocuated with patient survival. Oncotarget. 2013, 4 (8): 1230-1240.PubMedCentralPubMedCrossRef
27.
go back to reference Taipale J, Beachy PA: The Hedgehog and Wnt signalling pathways in cancer. Nature. 2001, 411 (6835): 349-354.PubMedCrossRef Taipale J, Beachy PA: The Hedgehog and Wnt signalling pathways in cancer. Nature. 2001, 411 (6835): 349-354.PubMedCrossRef
28.
go back to reference Ruizi Altaba AP, Sanchez N, Dahmane : Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer. 2002, 2 (5): 361-372.CrossRef Ruizi Altaba AP, Sanchez N, Dahmane : Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer. 2002, 2 (5): 361-372.CrossRef
30.
go back to reference Takebe N, et al: Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011, 8 (2): 97-106.PubMedCrossRef Takebe N, et al: Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011, 8 (2): 97-106.PubMedCrossRef
31.
go back to reference Peacock CD, et al: Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci U S A. 2007, 104 (10): 4048-4053.PubMedCentralPubMedCrossRef Peacock CD, et al: Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci U S A. 2007, 104 (10): 4048-4053.PubMedCentralPubMedCrossRef
32.
go back to reference Ingham PW, McMahon AP: Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001, 15 (23): 3059-3087.PubMedCrossRef Ingham PW, McMahon AP: Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001, 15 (23): 3059-3087.PubMedCrossRef
33.
go back to reference Vestergaard J, et al: Hedgehog signaling in small-cell lung cancer: frequent in vivo but a rare event in vitro. Lung Cancer. 2006, 52 (3): 281-290.PubMedCrossRef Vestergaard J, et al: Hedgehog signaling in small-cell lung cancer: frequent in vivo but a rare event in vitro. Lung Cancer. 2006, 52 (3): 281-290.PubMedCrossRef
34.
go back to reference Mimeault M, et al: Cytotoxic effects induced by docetaxel, gefitinib, and cyclopamine on side population and nonside population cell fractions from human invasive prostate cancer cells. Mol Cancer Ther. 2010, 9 (3): 617-630.PubMedCentralPubMedCrossRef Mimeault M, et al: Cytotoxic effects induced by docetaxel, gefitinib, and cyclopamine on side population and nonside population cell fractions from human invasive prostate cancer cells. Mol Cancer Ther. 2010, 9 (3): 617-630.PubMedCentralPubMedCrossRef
35.
go back to reference Von Hoff DD, et al: Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009, 361 (12): 1164-1172.PubMedCrossRef Von Hoff DD, et al: Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009, 361 (12): 1164-1172.PubMedCrossRef
36.
go back to reference Rudin CM, et al: Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009, 361 (12): 1173-1178.PubMedCrossRef Rudin CM, et al: Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009, 361 (12): 1173-1178.PubMedCrossRef
37.
go back to reference Angers S, Moon RT: Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009, 10 (7): 468-477.PubMedCrossRef Angers S, Moon RT: Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009, 10 (7): 468-477.PubMedCrossRef
38.
go back to reference Grigoryan T, et al: Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 2008, 22 (17): 2308-2341.PubMedCentralPubMedCrossRef Grigoryan T, et al: Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 2008, 22 (17): 2308-2341.PubMedCentralPubMedCrossRef
39.
40.
go back to reference Bueno C, Lopes LF, Menendez P: Bone marrow stromal cell-derived Wnt signals as a potential underlying mechanism for cyclin D1 deregulation in multiple myeloma lacking t(11;14)(q13;q32). Blood Cells Mol Dis. 2007, 39 (3): 366-368.PubMedCrossRef Bueno C, Lopes LF, Menendez P: Bone marrow stromal cell-derived Wnt signals as a potential underlying mechanism for cyclin D1 deregulation in multiple myeloma lacking t(11;14)(q13;q32). Blood Cells Mol Dis. 2007, 39 (3): 366-368.PubMedCrossRef
41.
go back to reference Chim CS, et al: Epigenetic dysregulation of Wnt signaling pathway in multiple myeloma. Leukemia. 2007, 21 (12): 2527-2536.PubMedCrossRef Chim CS, et al: Epigenetic dysregulation of Wnt signaling pathway in multiple myeloma. Leukemia. 2007, 21 (12): 2527-2536.PubMedCrossRef
42.
go back to reference Dutta-Simmons J, et al: Aurora kinase A is a target of Wnt/beta-catenin involved in multiple myeloma disease progression. Blood. 2009, 114 (13): 2699-2708.PubMedCrossRef Dutta-Simmons J, et al: Aurora kinase A is a target of Wnt/beta-catenin involved in multiple myeloma disease progression. Blood. 2009, 114 (13): 2699-2708.PubMedCrossRef
43.
44.
go back to reference Yao H, et al: AV-65, a novel Wnt/beta-catenin signal inhibitor, successfully suppresses progression of multiple myeloma in a mouse model. Blood Cancer J. 2011, 1 (11): e43-PubMedCentralPubMedCrossRef Yao H, et al: AV-65, a novel Wnt/beta-catenin signal inhibitor, successfully suppresses progression of multiple myeloma in a mouse model. Blood Cancer J. 2011, 1 (11): e43-PubMedCentralPubMedCrossRef
45.
go back to reference Narayanan BA, et al: Antagonistic effect of small-molecule inhibitors of Wnt/beta-catenin in multiple myeloma. Anticancer Res. 2012, 32 (11): 4697-4707.PubMedCentralPubMed Narayanan BA, et al: Antagonistic effect of small-molecule inhibitors of Wnt/beta-catenin in multiple myeloma. Anticancer Res. 2012, 32 (11): 4697-4707.PubMedCentralPubMed
47.
48.
go back to reference Hua Y, et al: Molecular chaperone gp96 is a novel therapeutic target of multiple myeloma. Clin Cancer Res. 2013, 19 (22): 6242-6251.PubMedCrossRef Hua Y, et al: Molecular chaperone gp96 is a novel therapeutic target of multiple myeloma. Clin Cancer Res. 2013, 19 (22): 6242-6251.PubMedCrossRef
49.
go back to reference Artavanis-Tsakonas S, Rand MD, Lake RJ: Notch signaling: cell fate control and signal integration in development. Science. 1999, 284 (5415): 770-776.PubMedCrossRef Artavanis-Tsakonas S, Rand MD, Lake RJ: Notch signaling: cell fate control and signal integration in development. Science. 1999, 284 (5415): 770-776.PubMedCrossRef
50.
go back to reference Hassan KA, et al: Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clin Cancer Res. 2013, 19 (8): 1972-1980.PubMedCentralPubMedCrossRef Hassan KA, et al: Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clin Cancer Res. 2013, 19 (8): 1972-1980.PubMedCentralPubMedCrossRef
51.
go back to reference Won HY, et al: Loss of Mel-18 enhances breast cancer stem cell activity and tumorigenicity through activating Notch signaling mediated by the Wnt/TCF pathway. FASEB J. 2012, 26 (12): 5002-5013.PubMedCrossRef Won HY, et al: Loss of Mel-18 enhances breast cancer stem cell activity and tumorigenicity through activating Notch signaling mediated by the Wnt/TCF pathway. FASEB J. 2012, 26 (12): 5002-5013.PubMedCrossRef
52.
go back to reference Bao B, et al: Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett. 2011, 307 (1): 26-36.PubMedCentralPubMedCrossRef Bao B, et al: Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett. 2011, 307 (1): 26-36.PubMedCentralPubMedCrossRef
53.
go back to reference Garcia Campelo MR, et al: Stem cell and lung cancer development: blaming the Wnt, Hh and Notch signalling pathway. Clin Transl Oncol. 2011, 13 (2): 77-83.PubMedCrossRef Garcia Campelo MR, et al: Stem cell and lung cancer development: blaming the Wnt, Hh and Notch signalling pathway. Clin Transl Oncol. 2011, 13 (2): 77-83.PubMedCrossRef
54.
go back to reference Hovinga KE, et al: Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells. 2010, 28 (6): 1019-1029.PubMedCrossRef Hovinga KE, et al: Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells. 2010, 28 (6): 1019-1029.PubMedCrossRef
55.
go back to reference Chiron D, et al: Critical role of the NOTCH ligand JAG2 in self-renewal of myeloma cells. Blood Cells Mol Dis. 2012, 48 (4): 247-253.PubMedCrossRef Chiron D, et al: Critical role of the NOTCH ligand JAG2 in self-renewal of myeloma cells. Blood Cells Mol Dis. 2012, 48 (4): 247-253.PubMedCrossRef
56.
go back to reference Xu D, et al: Dll1/Notch activation accelerates multiple myeloma disease development by promoting CD138+ MM-cell proliferation. Leukemia. 2012, 26 (6): 1402-1405.PubMedCrossRef Xu D, et al: Dll1/Notch activation accelerates multiple myeloma disease development by promoting CD138+ MM-cell proliferation. Leukemia. 2012, 26 (6): 1402-1405.PubMedCrossRef
57.
go back to reference Jundt F, et al: Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood. 2004, 103 (9): 3511-3515.PubMedCrossRef Jundt F, et al: Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood. 2004, 103 (9): 3511-3515.PubMedCrossRef
59.
go back to reference Nefedova Y, et al: Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood. 2008, 111 (4): 2220-2229.PubMedCrossRef Nefedova Y, et al: Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood. 2008, 111 (4): 2220-2229.PubMedCrossRef
60.
go back to reference Schwarzer R, et al: Notch inhibition blocks multiple myeloma cell-induced osteoclast activation. Leukemia. 2008, 22 (12): 2273-2277.PubMedCrossRef Schwarzer R, et al: Notch inhibition blocks multiple myeloma cell-induced osteoclast activation. Leukemia. 2008, 22 (12): 2273-2277.PubMedCrossRef
61.
go back to reference Mirandola L, et al: Anti-Notch treatment prevents multiple myeloma cells localization to the bone marrow via the chemokine system CXCR4/SDF-1. Leukemia. 2013, 27 (7): 1558-1566.PubMedCrossRef Mirandola L, et al: Anti-Notch treatment prevents multiple myeloma cells localization to the bone marrow via the chemokine system CXCR4/SDF-1. Leukemia. 2013, 27 (7): 1558-1566.PubMedCrossRef
63.
go back to reference Hoogstraten B, et al: Melphalan in multiple myeloma. Blood. 1967, 30 (1): 74-83.PubMed Hoogstraten B, et al: Melphalan in multiple myeloma. Blood. 1967, 30 (1): 74-83.PubMed
64.
go back to reference Korst DR, et al: Multiple myeloma. Ii. Analysis of cyclophosphamide therapy in 165 patients. JAMA. 1964, 189: 758-762.PubMedCrossRef Korst DR, et al: Multiple myeloma. Ii. Analysis of cyclophosphamide therapy in 165 patients. JAMA. 1964, 189: 758-762.PubMedCrossRef
65.
go back to reference Alexanian R, et al: Treatment for multiple myeloma. Combination chemother with different melphalan dose regimens. JAMA. 1969, 208 (9): 1680-1685.PubMedCrossRef Alexanian R, et al: Treatment for multiple myeloma. Combination chemother with different melphalan dose regimens. JAMA. 1969, 208 (9): 1680-1685.PubMedCrossRef
66.
go back to reference Cooper MR, et al: Single, sequential, and multiple alkylating agent therapy for multiple myeloma: a CALGB Study. J Clin Oncol. 1986, 4 (9): 1331-1339.PubMed Cooper MR, et al: Single, sequential, and multiple alkylating agent therapy for multiple myeloma: a CALGB Study. J Clin Oncol. 1986, 4 (9): 1331-1339.PubMed
67.
go back to reference Blade J, et al: Increased conventional chemotherapy does not improve survival in multiple myeloma: long-term results of two PETHEMA trials including 914 patients. Hematol J. 2001, 2 (4): 272-278.PubMedCrossRef Blade J, et al: Increased conventional chemotherapy does not improve survival in multiple myeloma: long-term results of two PETHEMA trials including 914 patients. Hematol J. 2001, 2 (4): 272-278.PubMedCrossRef
68.
go back to reference Singhal S, et al: Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999, 341 (21): 1565-1571.PubMedCrossRef Singhal S, et al: Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999, 341 (21): 1565-1571.PubMedCrossRef
69.
go back to reference Dimopoulos M, et al: Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med. 2007, 357 (21): 2123-2132.PubMedCrossRef Dimopoulos M, et al: Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med. 2007, 357 (21): 2123-2132.PubMedCrossRef
70.
go back to reference Usmani SZ, et al: The anti-myeloma activity of a novel purine scaffold HSP90 inhibitor PU-H71 is via inhibition of both HSP90A and HSP90B1. J Hematol Oncol. 2010, 3 (1): 40-PubMedCentralPubMedCrossRef Usmani SZ, et al: The anti-myeloma activity of a novel purine scaffold HSP90 inhibitor PU-H71 is via inhibition of both HSP90A and HSP90B1. J Hematol Oncol. 2010, 3 (1): 40-PubMedCentralPubMedCrossRef
72.
go back to reference Saini N, Mahindra A: Novel immunomodulatory compounds in multiple myeloma. Expert Opin Investig Drugs. 2013, 22 (2): 207-215.PubMedCrossRef Saini N, Mahindra A: Novel immunomodulatory compounds in multiple myeloma. Expert Opin Investig Drugs. 2013, 22 (2): 207-215.PubMedCrossRef
74.
go back to reference Clevers H: The cancer stem cell: premises, promises and challenges. Nat Med. 2011, 17 (3): 313-319.PubMedCrossRef Clevers H: The cancer stem cell: premises, promises and challenges. Nat Med. 2011, 17 (3): 313-319.PubMedCrossRef
75.
go back to reference Moser K, et al: Stromal niches, plasma cell differentiation and survival. Curr Opin Immunol. 2006, 18 (3): 265-270.PubMedCrossRef Moser K, et al: Stromal niches, plasma cell differentiation and survival. Curr Opin Immunol. 2006, 18 (3): 265-270.PubMedCrossRef
76.
go back to reference Tokoyoda K, et al: Organization of immunological memory by bone marrow stroma. Nat Rev Immunol. 2010, 10 (3): 193-200.PubMedCrossRef Tokoyoda K, et al: Organization of immunological memory by bone marrow stroma. Nat Rev Immunol. 2010, 10 (3): 193-200.PubMedCrossRef
77.
go back to reference Anjos-Afonso F, Bonnet D: Flexible and dynamic organization of bone marrow stromal compartment. Br J Haematol. 2007, 139 (3): 373-384.PubMedCrossRef Anjos-Afonso F, Bonnet D: Flexible and dynamic organization of bone marrow stromal compartment. Br J Haematol. 2007, 139 (3): 373-384.PubMedCrossRef
78.
go back to reference Nilsson SK, et al: Immunofluorescence characterization of key extracellular matrix proteins in murine bone marrow in situ. J Histochem Cytochem. 1998, 46 (3): 371-377.PubMedCrossRef Nilsson SK, et al: Immunofluorescence characterization of key extracellular matrix proteins in murine bone marrow in situ. J Histochem Cytochem. 1998, 46 (3): 371-377.PubMedCrossRef
79.
go back to reference Vanderkerken K, et al: Insulin-like growth factor-1 acts as a chemoattractant factor for 5 T2 multiple myeloma cells. Blood. 1999, 93 (1): 235-241.PubMed Vanderkerken K, et al: Insulin-like growth factor-1 acts as a chemoattractant factor for 5 T2 multiple myeloma cells. Blood. 1999, 93 (1): 235-241.PubMed
80.
go back to reference Podar K, et al: Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood. 2001, 98 (2): 428-435.PubMedCrossRef Podar K, et al: Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood. 2001, 98 (2): 428-435.PubMedCrossRef
81.
go back to reference Mitsiades CS, et al: Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell. 2004, 5 (3): 221-230.PubMedCrossRef Mitsiades CS, et al: Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell. 2004, 5 (3): 221-230.PubMedCrossRef
82.
go back to reference Chauhan D, et al: Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood. 1996, 87 (3): 1104-1112.PubMed Chauhan D, et al: Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood. 1996, 87 (3): 1104-1112.PubMed
83.
go back to reference Moreaux J, et al: BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood. 2004, 103 (8): 3148-3157.PubMedCentralPubMedCrossRef Moreaux J, et al: BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood. 2004, 103 (8): 3148-3157.PubMedCentralPubMedCrossRef
84.
go back to reference Dankbar B, et al: Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood. 2000, 95 (8): 2630-2636.PubMed Dankbar B, et al: Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood. 2000, 95 (8): 2630-2636.PubMed
85.
go back to reference Hideshima T, et al: The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene. 2001, 20 (33): 4519-4527.PubMedCrossRef Hideshima T, et al: The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene. 2001, 20 (33): 4519-4527.PubMedCrossRef
86.
go back to reference Gupta D, et al: Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia. 2001, 15 (12): 1950-1961.PubMedCrossRef Gupta D, et al: Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia. 2001, 15 (12): 1950-1961.PubMedCrossRef
88.
go back to reference Barille S, et al: Myeloma cells upregulate interleukin-6 secretion in osteoblastic cells through cell-to-cell contact but downregulate osteocalcin. Blood. 1995, 86 (8): 3151-3159.PubMed Barille S, et al: Myeloma cells upregulate interleukin-6 secretion in osteoblastic cells through cell-to-cell contact but downregulate osteocalcin. Blood. 1995, 86 (8): 3151-3159.PubMed
89.
go back to reference Shipman CM, Croucher PI: Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res. 2003, 63 (5): 912-916.PubMed Shipman CM, Croucher PI: Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res. 2003, 63 (5): 912-916.PubMed
90.
go back to reference Bataille R, et al: Mechanisms of bone destruction in multiple myeloma: the importance of an unbalanced process in determining the severity of lytic bone disease. J Clin Oncol. 1989, 7 (12): 1909-1914.PubMed Bataille R, et al: Mechanisms of bone destruction in multiple myeloma: the importance of an unbalanced process in determining the severity of lytic bone disease. J Clin Oncol. 1989, 7 (12): 1909-1914.PubMed
92.
go back to reference Ehrlich LA, Roodman GD: The role of immune cells and inflammatory cytokines in Paget's disease and multiple myeloma. Immunol Rev. 2005, 208: 252-266.PubMedCrossRef Ehrlich LA, Roodman GD: The role of immune cells and inflammatory cytokines in Paget's disease and multiple myeloma. Immunol Rev. 2005, 208: 252-266.PubMedCrossRef
93.
94.
go back to reference Pellat-Deceunynck C, et al: Adhesion molecules on human myeloma cells: significant changes in expression related to malignancy, tumor spreading, and immortalization. Cancer Res. 1995, 55 (16): 3647-3653.PubMed Pellat-Deceunynck C, et al: Adhesion molecules on human myeloma cells: significant changes in expression related to malignancy, tumor spreading, and immortalization. Cancer Res. 1995, 55 (16): 3647-3653.PubMed
95.
go back to reference Damiano JS, et al: Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood. 1999, 93 (5): 1658-1667.PubMed Damiano JS, et al: Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood. 1999, 93 (5): 1658-1667.PubMed
96.
go back to reference Westhoff MA, et al: Identification of a novel switch in the dominant forms of cell adhesion-mediated drug resistance in glioblastoma cells. Oncogene. 2008, 27 (39): 5169-5181.PubMedCrossRef Westhoff MA, et al: Identification of a novel switch in the dominant forms of cell adhesion-mediated drug resistance in glioblastoma cells. Oncogene. 2008, 27 (39): 5169-5181.PubMedCrossRef
97.
go back to reference Matsunaga T, et al: Combination therapy of an anticancer drug with the FNIII14 peptide of fibronectin effectively overcomes cell adhesion-mediated drug resistance of acute myelogenous leukemia. Leukemia. 2008, 22 (2): 353-360.PubMedCrossRef Matsunaga T, et al: Combination therapy of an anticancer drug with the FNIII14 peptide of fibronectin effectively overcomes cell adhesion-mediated drug resistance of acute myelogenous leukemia. Leukemia. 2008, 22 (2): 353-360.PubMedCrossRef
98.
go back to reference Alsayed Y, et al: Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007, 109 (7): 2708-2717.PubMedCentralPubMed Alsayed Y, et al: Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007, 109 (7): 2708-2717.PubMedCentralPubMed
99.
go back to reference Lapidot T: Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/CXCR4 interactions. Ann N Y Acad Sci. 2001, 938: 83-95.PubMedCrossRef Lapidot T: Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/CXCR4 interactions. Ann N Y Acad Sci. 2001, 938: 83-95.PubMedCrossRef
100.
go back to reference Miyamoto T, Weissman IL, Akashi K: AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci U S A. 2000, 97 (13): 7521-7526.PubMedCentralPubMedCrossRef Miyamoto T, Weissman IL, Akashi K: AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci U S A. 2000, 97 (13): 7521-7526.PubMedCentralPubMedCrossRef
101.
go back to reference Meng S, et al: Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004, 10 (24): 8152-8162.PubMedCrossRef Meng S, et al: Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004, 10 (24): 8152-8162.PubMedCrossRef
103.
104.
go back to reference Vereecque R, et al: Gene transfer of GM-CSF, CD80 and CD154 cDNA enhances survival in a murine model of acute leukemia with persistence of a minimal residual disease. Gene Ther. 2000, 7 (15): 1312-1316.PubMedCrossRef Vereecque R, et al: Gene transfer of GM-CSF, CD80 and CD154 cDNA enhances survival in a murine model of acute leukemia with persistence of a minimal residual disease. Gene Ther. 2000, 7 (15): 1312-1316.PubMedCrossRef
105.
go back to reference Saudemont A, Quesnel B: In a model of tumor dormancy, long-term persistent leukemic cells have increased B7-H1 and B7.1 expression and resist CTL-mediated lysis. Blood. 2004, 104 (7): 2124-2133.PubMedCrossRef Saudemont A, Quesnel B: In a model of tumor dormancy, long-term persistent leukemic cells have increased B7-H1 and B7.1 expression and resist CTL-mediated lysis. Blood. 2004, 104 (7): 2124-2133.PubMedCrossRef
107.
go back to reference Tirapu I, et al: Low surface expression of B7-1 (CD80) is an immunoescape mechanism of colon carcinoma. Cancer Res. 2006, 66 (4): 2442-2450.PubMedCrossRef Tirapu I, et al: Low surface expression of B7-1 (CD80) is an immunoescape mechanism of colon carcinoma. Cancer Res. 2006, 66 (4): 2442-2450.PubMedCrossRef
108.
go back to reference Pratt G, Goodyear O, Moss P: Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007, 138 (5): 563-579.PubMedCrossRef Pratt G, Goodyear O, Moss P: Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007, 138 (5): 563-579.PubMedCrossRef
110.
go back to reference Beyer M, et al: In vivo peripheral expansion of naive CD4 + CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood. 2006, 107 (10): 3940-3949.PubMedCrossRef Beyer M, et al: In vivo peripheral expansion of naive CD4 + CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood. 2006, 107 (10): 3940-3949.PubMedCrossRef
111.
go back to reference Muthu Raja KR, et al: Increased T regulatory cells are associated with adverse clinical features and predict progression in multiple myeloma. PLoS One. 2012, 7 (10): e47077-PubMedCentralPubMedCrossRef Muthu Raja KR, et al: Increased T regulatory cells are associated with adverse clinical features and predict progression in multiple myeloma. PLoS One. 2012, 7 (10): e47077-PubMedCentralPubMedCrossRef
112.
go back to reference Dhodapkar KM, et al: Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma. Blood. 2008, 112 (7): 2878-2885.PubMedCentralPubMedCrossRef Dhodapkar KM, et al: Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma. Blood. 2008, 112 (7): 2878-2885.PubMedCentralPubMedCrossRef
113.
go back to reference Prabhala RH, et al: Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood. 2010, 115 (26): 5385-5392.PubMedCentralPubMedCrossRef Prabhala RH, et al: Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood. 2010, 115 (26): 5385-5392.PubMedCentralPubMedCrossRef
114.
go back to reference Gorgun GT, et al: Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood. 2013, 121 (15): 2975-2987.PubMedCentralPubMedCrossRef Gorgun GT, et al: Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood. 2013, 121 (15): 2975-2987.PubMedCentralPubMedCrossRef
115.
go back to reference Carbone E, et al: HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood. 2005, 105 (1): 251-258.PubMedCrossRef Carbone E, et al: HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood. 2005, 105 (1): 251-258.PubMedCrossRef
116.
go back to reference Dhodapkar MV, et al: A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med. 2003, 197 (12): 1667-1676.PubMedCentralPubMedCrossRef Dhodapkar MV, et al: A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med. 2003, 197 (12): 1667-1676.PubMedCentralPubMedCrossRef
Metadata
Title
Fact or fiction - identifying the elusive multiple myeloma stem cell
Authors
Joshua Kellner
Bei Liu
Yubin Kang
Zihai Li
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2013
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-6-91

Other articles of this Issue 1/2013

Journal of Hematology & Oncology 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine