Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2013

Open Access 01-12-2013 | Review

Epigenetic changes: a common theme in acute myelogenous leukemogenesis

Authors: Soraya E Gutierrez, Francisco A Romero-Oliva

Published in: Journal of Hematology & Oncology | Issue 1/2013

Login to get access

Abstract

Acute myeloid leukemia (AML) is a rather common disease, characterized by the presence of a clonal population of hematopoietic progenitor cells with impaired differentiation. Although traditionally AML has been considered the result of genetic alterations, more recently experimental evidence have demonstrated that epigenetic modifications are important in development and maintenance of leukemia cells. In this review we summarize current scientific knowledge of epigenetic alterations involved in leukemogenesis. We also highlight the developing of new technological strategies that are based on epigenetic processes and have been registered as Patents of Inventions in the United Nations dependent World Intellectual Property Office (WIPO) and the main Patent offices worldwide.
Appendix
Available only for authorised users
Literature
1.
go back to reference Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 2008, Lyon: IARC, 4 Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 2008, Lyon: IARC, 4
2.
go back to reference Wahlin A, Hornsten P, Jonsson H: Remission rate and survival in acute myeloid leukemia: impact of selection and chemotherapy. Eur J Haematol. 1991, 46 (4): 240-247.PubMedCrossRef Wahlin A, Hornsten P, Jonsson H: Remission rate and survival in acute myeloid leukemia: impact of selection and chemotherapy. Eur J Haematol. 1991, 46 (4): 240-247.PubMedCrossRef
3.
go back to reference Lowenberg B, Ossenkoppele GJ, Van Putten W, Schouten HC, Graux C, Ferrant A, Sonneveld P, Maertens J, Jongen-Lavrencic M, Von Lilienfeld-Toal M: High-dose daunorubicin in older patients with acute myeloid leukemia. N Engl J Med. 2009, 361 (13): 1235-1248. 10.1056/NEJMoa0901409.PubMedCrossRef Lowenberg B, Ossenkoppele GJ, Van Putten W, Schouten HC, Graux C, Ferrant A, Sonneveld P, Maertens J, Jongen-Lavrencic M, Von Lilienfeld-Toal M: High-dose daunorubicin in older patients with acute myeloid leukemia. N Engl J Med. 2009, 361 (13): 1235-1248. 10.1056/NEJMoa0901409.PubMedCrossRef
4.
go back to reference Kantarjian H, O’Brien S, Cortes J, Giles F, Faderl S, Jabbour E, Garcia-Manero G, Wierda W, Pierce S, Shan J: Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer. 2006, 106 (5): 1090-1098. 10.1002/cncr.21723.PubMedCrossRef Kantarjian H, O’Brien S, Cortes J, Giles F, Faderl S, Jabbour E, Garcia-Manero G, Wierda W, Pierce S, Shan J: Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer. 2006, 106 (5): 1090-1098. 10.1002/cncr.21723.PubMedCrossRef
5.
go back to reference Richmond TJ, Davey CA: The structure of DNA in the nucleosome core. Nature. 2003, 423 (6936): 145-150. 10.1038/nature01595.PubMedCrossRef Richmond TJ, Davey CA: The structure of DNA in the nucleosome core. Nature. 2003, 423 (6936): 145-150. 10.1038/nature01595.PubMedCrossRef
6.
go back to reference Li B, Carey M, Workman JL: The role of chromatin during transcription. Cell. 2007, 128 (4): 707-719. 10.1016/j.cell.2007.01.015.PubMedCrossRef Li B, Carey M, Workman JL: The role of chromatin during transcription. Cell. 2007, 128 (4): 707-719. 10.1016/j.cell.2007.01.015.PubMedCrossRef
7.
go back to reference Galm O, Herman JG, Baylin SB: The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev. 2006, 20 (1): 1-13. 10.1016/j.blre.2005.01.006.PubMedCrossRef Galm O, Herman JG, Baylin SB: The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev. 2006, 20 (1): 1-13. 10.1016/j.blre.2005.01.006.PubMedCrossRef
9.
go back to reference Barrero MJ, Berdasco M, Paramonov I, Bilic J, Vitaloni M, Esteller M, Izpisua Belmonte JC: DNA hypermethylation in somatic cells correlates with higher reprogramming efficiency. Stem cells. 2012, 30 (8): 1696-1702. 10.1002/stem.1138.PubMedCrossRef Barrero MJ, Berdasco M, Paramonov I, Bilic J, Vitaloni M, Esteller M, Izpisua Belmonte JC: DNA hypermethylation in somatic cells correlates with higher reprogramming efficiency. Stem cells. 2012, 30 (8): 1696-1702. 10.1002/stem.1138.PubMedCrossRef
10.
go back to reference Berdasco M, Esteller M: Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Developmental cell. 2010, 19 (5): 698-711. 10.1016/j.devcel.2010.10.005.PubMedCrossRef Berdasco M, Esteller M: Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Developmental cell. 2010, 19 (5): 698-711. 10.1016/j.devcel.2010.10.005.PubMedCrossRef
11.
go back to reference Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, Kosmider O, Le Couedic JP, Robert F, Alberdi A: Mutation in TET2 in myeloid cancers. N Engl J Med. 2009, 360 (22): 2289-2301. 10.1056/NEJMoa0810069.PubMedCrossRef Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, Kosmider O, Le Couedic JP, Robert F, Alberdi A: Mutation in TET2 in myeloid cancers. N Engl J Med. 2009, 360 (22): 2289-2301. 10.1056/NEJMoa0810069.PubMedCrossRef
12.
go back to reference Abdel-Wahab O, Pardanani A, Patel J, Wadleigh M, Lasho T, Heguy A, Beran M, Gilliland DG, Levine RL, Tefferi A: Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia. 2011, 25 (7): 1200-1202. 10.1038/leu.2011.58.PubMedPubMedCentralCrossRef Abdel-Wahab O, Pardanani A, Patel J, Wadleigh M, Lasho T, Heguy A, Beran M, Gilliland DG, Levine RL, Tefferi A: Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia. 2011, 25 (7): 1200-1202. 10.1038/leu.2011.58.PubMedPubMedCentralCrossRef
13.
go back to reference Abdel-Wahab O, Pardanani A, Rampal R, Lasho TL, Levine RL, Tefferi A: DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms. Leukemia. 2011, 25 (7): 1219-1220. 10.1038/leu.2011.82.PubMedPubMedCentralCrossRef Abdel-Wahab O, Pardanani A, Rampal R, Lasho TL, Levine RL, Tefferi A: DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms. Leukemia. 2011, 25 (7): 1219-1220. 10.1038/leu.2011.82.PubMedPubMedCentralCrossRef
14.
go back to reference Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J: DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010, 363 (25): 2424-2433. 10.1056/NEJMoa1005143.PubMedCentralPubMedCrossRef Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J: DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010, 363 (25): 2424-2433. 10.1056/NEJMoa1005143.PubMedCentralPubMedCrossRef
15.
go back to reference Figueroa ME, Skrabanek L, Li Y, Jiemjit A, Fandy TE, Paietta E, Fernandez H, Tallman MS, Greally JM, Carraway H: MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood. 2009, 114 (16): 3448-3458. 10.1182/blood-2009-01-200519.PubMedCentralPubMedCrossRef Figueroa ME, Skrabanek L, Li Y, Jiemjit A, Fandy TE, Paietta E, Fernandez H, Tallman MS, Greally JM, Carraway H: MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood. 2009, 114 (16): 3448-3458. 10.1182/blood-2009-01-200519.PubMedCentralPubMedCrossRef
16.
go back to reference Jiang Y, Dunbar A, Gondek LP, Mohan S, Rataul M, O’Keefe C, Sekeres M, Saunthararajah Y, Maciejewski JP: Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood. 2009, 113 (6): 1315-1325. 10.1182/blood-2008-06-163246.PubMedCentralPubMedCrossRef Jiang Y, Dunbar A, Gondek LP, Mohan S, Rataul M, O’Keefe C, Sekeres M, Saunthararajah Y, Maciejewski JP: Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood. 2009, 113 (6): 1315-1325. 10.1182/blood-2008-06-163246.PubMedCentralPubMedCrossRef
17.
go back to reference Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R: Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010, 468 (7325): 839-843. 10.1038/nature09586.PubMedCentralPubMedCrossRef Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R: Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010, 468 (7325): 839-843. 10.1038/nature09586.PubMedCentralPubMedCrossRef
18.
go back to reference Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH, Pandey S, Patel JP, Chung YR, Koche R: ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer cell. 2012, 22 (2): 180-193. 10.1016/j.ccr.2012.06.032.PubMedCentralPubMedCrossRef Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH, Pandey S, Patel JP, Chung YR, Koche R: ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer cell. 2012, 22 (2): 180-193. 10.1016/j.ccr.2012.06.032.PubMedCentralPubMedCrossRef
19.
go back to reference Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F: Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature genetics. 2010, 42 (2): 181-185. 10.1038/ng.518.PubMedCentralPubMedCrossRef Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F: Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature genetics. 2010, 42 (2): 181-185. 10.1038/ng.518.PubMedCentralPubMedCrossRef
20.
go back to reference Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR, Kouzarides T: JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature. 2009, 461 (7265): 819-822. 10.1038/nature08448.PubMedCentralPubMedCrossRef Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR, Kouzarides T: JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature. 2009, 461 (7265): 819-822. 10.1038/nature08448.PubMedCentralPubMedCrossRef
21.
go back to reference Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, Kasper LH, Lerach S, Tang H, Ma J: Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011, 471 (7337): 189-195. 10.1038/nature09730.PubMedCentralPubMedCrossRef Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, Kasper LH, Lerach S, Tang H, Ma J: Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011, 471 (7337): 189-195. 10.1038/nature09730.PubMedCentralPubMedCrossRef
22.
go back to reference Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA, Heatley SL, Holmfeldt L, Collins-Underwood JR, Ma J: CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011, 471 (7337): 235-239. 10.1038/nature09727.PubMedCentralPubMedCrossRef Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA, Heatley SL, Holmfeldt L, Collins-Underwood JR, Ma J: CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011, 471 (7337): 235-239. 10.1038/nature09727.PubMedCentralPubMedCrossRef
23.
go back to reference Bird A: DNA methylation patterns and epigenetic memory. Genes deve. 2002, 16 (1): 6-21. 10.1101/gad.947102.CrossRef Bird A: DNA methylation patterns and epigenetic memory. Genes deve. 2002, 16 (1): 6-21. 10.1101/gad.947102.CrossRef
24.
go back to reference Smith ZD, Meissner A: DNA methylation: roles in mammalian development. Nat Rev Genet. 2013, 14 (3): 204-220.PubMedCrossRef Smith ZD, Meissner A: DNA methylation: roles in mammalian development. Nat Rev Genet. 2013, 14 (3): 204-220.PubMedCrossRef
25.
go back to reference Wang Y, Leung FC: An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics. 2004, 20 (7): 1170-1177. 10.1093/bioinformatics/bth059.PubMedCrossRef Wang Y, Leung FC: An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics. 2004, 20 (7): 1170-1177. 10.1093/bioinformatics/bth059.PubMedCrossRef
26.
go back to reference Straussman R, Nejman D, Roberts D, Steinfeld I, Blum B, Benvenisty N, Simon I, Yakhini Z, Cedar H: Developmental programming of CpG island methylation profiles in the human genome. Nat Struct Biol. 2009, 16 (5): 564-571. 10.1038/nsmb.1594.CrossRef Straussman R, Nejman D, Roberts D, Steinfeld I, Blum B, Benvenisty N, Simon I, Yakhini Z, Cedar H: Developmental programming of CpG island methylation profiles in the human genome. Nat Struct Biol. 2009, 16 (5): 564-571. 10.1038/nsmb.1594.CrossRef
27.
go back to reference Suzuki MM, Bird A: DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008, 9 (6): 465-476. 10.1038/nrg2341.PubMedCrossRef Suzuki MM, Bird A: DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008, 9 (6): 465-476. 10.1038/nrg2341.PubMedCrossRef
28.
go back to reference Pai AA, Bell JT, Marioni JC, Pritchard JK, Gilad Y: A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues. PLoS genetics. 2011, 7 (2): e1001316-10.1371/journal.pgen.1001316.PubMedCentralPubMedCrossRef Pai AA, Bell JT, Marioni JC, Pritchard JK, Gilad Y: A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues. PLoS genetics. 2011, 7 (2): e1001316-10.1371/journal.pgen.1001316.PubMedCentralPubMedCrossRef
29.
go back to reference Zeng J, Konopka G, Hunt BG, Preuss TM, Geschwind D, Yi SV: Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution. Am J Hum Genet. 2012, 91 (3): 455-465. 10.1016/j.ajhg.2012.07.024.PubMedCentralPubMedCrossRef Zeng J, Konopka G, Hunt BG, Preuss TM, Geschwind D, Yi SV: Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution. Am J Hum Genet. 2012, 91 (3): 455-465. 10.1016/j.ajhg.2012.07.024.PubMedCentralPubMedCrossRef
30.
go back to reference Zemach A, McDaniel IE, Silva P, Zilberman D: Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010, 328 (5980): 916-919. 10.1126/science.1186366.PubMedCrossRef Zemach A, McDaniel IE, Silva P, Zilberman D: Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010, 328 (5980): 916-919. 10.1126/science.1186366.PubMedCrossRef
31.
32.
go back to reference Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S: CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011, 479 (7371): 74-79. 10.1038/nature10442.PubMedCrossRef Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S: CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011, 479 (7371): 74-79. 10.1038/nature10442.PubMedCrossRef
33.
go back to reference Wang HT, Weng MW, Chen WC, Yobin M, Pan J, Chung FL, Wu XR, Rom W, Tang MS: Effect of CpG methylation at different sequence context on acrolein- and BPDE-DNA binding and mutagenesis. Carcinogenesis. 2013, 34 (1): 220-227. 10.1093/carcin/bgs323.PubMedCentralPubMedCrossRef Wang HT, Weng MW, Chen WC, Yobin M, Pan J, Chung FL, Wu XR, Rom W, Tang MS: Effect of CpG methylation at different sequence context on acrolein- and BPDE-DNA binding and mutagenesis. Carcinogenesis. 2013, 34 (1): 220-227. 10.1093/carcin/bgs323.PubMedCentralPubMedCrossRef
34.
go back to reference Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature genetics. 1998, 19 (2): 187-191. 10.1038/561.PubMedCrossRef Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature genetics. 1998, 19 (2): 187-191. 10.1038/561.PubMedCrossRef
35.
go back to reference Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998, 393 (6683): 386-389. 10.1038/30764.PubMedCrossRef Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998, 393 (6683): 386-389. 10.1038/30764.PubMedCrossRef
37.
go back to reference Denis H, Ndlovu MN, Fuks F: Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO reports. 2011, 12 (7): 647-656. 10.1038/embor.2011.110.PubMedCentralPubMedCrossRef Denis H, Ndlovu MN, Fuks F: Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO reports. 2011, 12 (7): 647-656. 10.1038/embor.2011.110.PubMedCentralPubMedCrossRef
38.
go back to reference Lewandowska J, Bartoszek A: DNA methylation in cancer development, diagnosis and therapy–multiple opportunities for genotoxic agents to act as methylome disruptors or remediators. Mutagenesis. 2011, 26 (4): 475-487. 10.1093/mutage/ger019.PubMedCrossRef Lewandowska J, Bartoszek A: DNA methylation in cancer development, diagnosis and therapy–multiple opportunities for genotoxic agents to act as methylome disruptors or remediators. Mutagenesis. 2011, 26 (4): 475-487. 10.1093/mutage/ger019.PubMedCrossRef
40.
go back to reference Duthie SJ: Epigenetic modifications and human pathologies: cancer and CVD. Proc Nutr Soc. 2011, 70 (1): 47-56. 10.1017/S0029665110003952.PubMedCrossRef Duthie SJ: Epigenetic modifications and human pathologies: cancer and CVD. Proc Nutr Soc. 2011, 70 (1): 47-56. 10.1017/S0029665110003952.PubMedCrossRef
41.
42.
go back to reference Colacino JA, Arthur AE, Dolinoy DC, Sartor MA, Duffy SA, Chepeha DB, Bradford CR, Walline HM, McHugh JB, D’Silva N: Pretreatment dietary intake is associated with tumor suppressor DNA methylation in head and neck squamous cell carcinomas. Epigenetics. 2012, 7 (8): 883-891. 10.4161/epi.21038.PubMedCentralPubMedCrossRef Colacino JA, Arthur AE, Dolinoy DC, Sartor MA, Duffy SA, Chepeha DB, Bradford CR, Walline HM, McHugh JB, D’Silva N: Pretreatment dietary intake is associated with tumor suppressor DNA methylation in head and neck squamous cell carcinomas. Epigenetics. 2012, 7 (8): 883-891. 10.4161/epi.21038.PubMedCentralPubMedCrossRef
43.
go back to reference Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, Schifano E, Booth J, Van Putten W, Skrabanek L: DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer cell. 2010, 17 (1): 13-27. 10.1016/j.ccr.2009.11.020.PubMedCentralPubMedCrossRef Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, Schifano E, Booth J, Van Putten W, Skrabanek L: DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer cell. 2010, 17 (1): 13-27. 10.1016/j.ccr.2009.11.020.PubMedCentralPubMedCrossRef
44.
go back to reference Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath SD: Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009, 361 (11): 1058-1066. 10.1056/NEJMoa0903840.PubMedCentralPubMedCrossRef Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath SD: Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009, 361 (11): 1058-1066. 10.1056/NEJMoa0903840.PubMedCentralPubMedCrossRef
45.
go back to reference Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrozek K, Margeson D, Holland KB, Whitman SP, Becker H, Schwind S: IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Asia Pac J Clin Oncol. 2010, 28 (14): 2348-2355.CrossRef Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrozek K, Margeson D, Holland KB, Whitman SP, Becker H, Schwind S: IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Asia Pac J Clin Oncol. 2010, 28 (14): 2348-2355.CrossRef
46.
go back to reference Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE: The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer cell. 2010, 17 (3): 225-234. 10.1016/j.ccr.2010.01.020.PubMedCentralPubMedCrossRef Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE: The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer cell. 2010, 17 (3): 225-234. 10.1016/j.ccr.2010.01.020.PubMedCentralPubMedCrossRef
47.
go back to reference Akalin A, Garrett-Bakelman FE, Kormaksson M, Busuttil J, Zhang L, Khrebtukova I, Milne TA, Huang Y, Biswas D, Hess JL: Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS genetics. 2012, 8 (6): e1002781-10.1371/journal.pgen.1002781.PubMedCentralPubMedCrossRef Akalin A, Garrett-Bakelman FE, Kormaksson M, Busuttil J, Zhang L, Khrebtukova I, Milne TA, Huang Y, Biswas D, Hess JL: Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS genetics. 2012, 8 (6): e1002781-10.1371/journal.pgen.1002781.PubMedCentralPubMedCrossRef
48.
go back to reference Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer cell. 2011, 19 (1): 17-30. 10.1016/j.ccr.2010.12.014.PubMedCentralPubMedCrossRef Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer cell. 2011, 19 (1): 17-30. 10.1016/j.ccr.2010.12.014.PubMedCentralPubMedCrossRef
49.
go back to reference Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer cell. 2010, 18 (6): 553-567. 10.1016/j.ccr.2010.11.015.PubMedCentralPubMedCrossRef Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer cell. 2010, 18 (6): 553-567. 10.1016/j.ccr.2010.11.015.PubMedCentralPubMedCrossRef
50.
go back to reference Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009, 324 (5929): 930-935. 10.1126/science.1170116.PubMedCentralPubMedCrossRef Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009, 324 (5929): 930-935. 10.1126/science.1170116.PubMedCentralPubMedCrossRef
51.
go back to reference He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L: Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA. Science. 2011, 333 (6047): 1303-1307. 10.1126/science.1210944.PubMedCentralPubMedCrossRef He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L: Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA. Science. 2011, 333 (6047): 1303-1307. 10.1126/science.1210944.PubMedCentralPubMedCrossRef
52.
go back to reference Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y: Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science. 2011, 333 (6047): 1300-1303. 10.1126/science.1210597.PubMedCentralPubMedCrossRef Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y: Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science. 2011, 333 (6047): 1300-1303. 10.1126/science.1210597.PubMedCentralPubMedCrossRef
53.
go back to reference Maiti A, Drohat AC: Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem. 2011, 286 (41): 35334-35338. 10.1074/jbc.C111.284620.PubMedCentralPubMedCrossRef Maiti A, Drohat AC: Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem. 2011, 286 (41): 35334-35338. 10.1074/jbc.C111.284620.PubMedCentralPubMedCrossRef
54.
go back to reference Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC: Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 2004, 32 (14): 4100-4108. 10.1093/nar/gkh739.PubMedCentralPubMedCrossRef Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC: Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 2004, 32 (14): 4100-4108. 10.1093/nar/gkh739.PubMedCentralPubMedCrossRef
55.
go back to reference Yildirim O, Li R, Hung JH, Chen PB, Dong X, Ee LS, Weng Z, Rando OJ, Fazzio TG: Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell. 2011, 147 (7): 1498-1510. 10.1016/j.cell.2011.11.054.PubMedCentralPubMedCrossRef Yildirim O, Li R, Hung JH, Chen PB, Dong X, Ee LS, Weng Z, Rando OJ, Fazzio TG: Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell. 2011, 147 (7): 1498-1510. 10.1016/j.cell.2011.11.054.PubMedCentralPubMedCrossRef
56.
go back to reference Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W: Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011, 473 (7347): 398-402. 10.1038/nature10008.PubMedCrossRef Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W: Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011, 473 (7347): 398-402. 10.1038/nature10008.PubMedCrossRef
57.
go back to reference Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B: Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell. 2012, 149 (6): 1368-1380. 10.1016/j.cell.2012.04.027.PubMedCentralPubMedCrossRef Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B: Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell. 2012, 149 (6): 1368-1380. 10.1016/j.cell.2012.04.027.PubMedCentralPubMedCrossRef
58.
go back to reference Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, Van Vlierberghe P, Dolgalev I, Thomas S, Aminova O: Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012, 366 (12): 1079-1089. 10.1056/NEJMoa1112304.PubMedCentralPubMedCrossRef Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, Van Vlierberghe P, Dolgalev I, Thomas S, Aminova O: Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012, 366 (12): 1079-1089. 10.1056/NEJMoa1112304.PubMedCentralPubMedCrossRef
59.
go back to reference Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Kronke J, Bullinger L, Spath D, Kayser S, Zucknick M, Gotze K: IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010, 28 (22): 3636-3643. 10.1200/JCO.2010.28.3762.PubMedCrossRef Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Kronke J, Bullinger L, Spath D, Kayser S, Zucknick M, Gotze K: IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010, 28 (22): 3636-3643. 10.1200/JCO.2010.28.3762.PubMedCrossRef
60.
go back to reference Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, Leung IK, Li XS, Woon EC, Yang M: The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO reports. 2011, 12 (5): 463-469. 10.1038/embor.2011.43.PubMedCentralPubMedCrossRef Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, Leung IK, Li XS, Woon EC, Yang M: The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO reports. 2011, 12 (5): 463-469. 10.1038/embor.2011.43.PubMedCentralPubMedCrossRef
61.
go back to reference Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, Losman JA, Joensuu P, Bergmann U, Gross S: Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature. 2012, 483 (7390): 484-488. 10.1038/nature10898.PubMedCentralPubMedCrossRef Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, Losman JA, Joensuu P, Bergmann U, Gross S: Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature. 2012, 483 (7390): 484-488. 10.1038/nature10898.PubMedCentralPubMedCrossRef
62.
go back to reference Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C, Cowley GS, Root DE, Ebert BL, Kaelin WG: (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science. 2013, 339 (6127): 1621-1625. 10.1126/science.1231677.PubMedCrossRef Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C, Cowley GS, Root DE, Ebert BL, Kaelin WG: (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science. 2013, 339 (6127): 1621-1625. 10.1126/science.1231677.PubMedCrossRef
63.
go back to reference Suganuma T, Workman JL: Signals and combinatorial functions of histone modifications. Annu Rev Biochem. 2011, 80: 473-499. 10.1146/annurev-biochem-061809-175347.PubMedCrossRef Suganuma T, Workman JL: Signals and combinatorial functions of histone modifications. Annu Rev Biochem. 2011, 80: 473-499. 10.1146/annurev-biochem-061809-175347.PubMedCrossRef
65.
go back to reference Neumann H, Hancock SM, Buning R, Routh A, Chapman L, Somers J, Owen-Hughes T, Van Noort J, Rhodes D, Chin JW: A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Molecular cell. 2009, 36 (1): 153-163. 10.1016/j.molcel.2009.07.027.PubMedCentralPubMedCrossRef Neumann H, Hancock SM, Buning R, Routh A, Chapman L, Somers J, Owen-Hughes T, Van Noort J, Rhodes D, Chin JW: A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Molecular cell. 2009, 36 (1): 153-163. 10.1016/j.molcel.2009.07.027.PubMedCentralPubMedCrossRef
66.
go back to reference Muller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J, Winzer KJ, Dietel M, Weichert W, Denkert C: Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer - overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC cancer. 2013, 13 (1): 215-10.1186/1471-2407-13-215.PubMedCentralPubMedCrossRef Muller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J, Winzer KJ, Dietel M, Weichert W, Denkert C: Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer - overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC cancer. 2013, 13 (1): 215-10.1186/1471-2407-13-215.PubMedCentralPubMedCrossRef
67.
go back to reference Barbieri I, Cannizzaro E, Dawson MA: Bromodomains as therapeutic targets in cancer. Brief Funct Genomic. 2013, 12 (3): 219-230. 10.1093/bfgp/elt007.CrossRef Barbieri I, Cannizzaro E, Dawson MA: Bromodomains as therapeutic targets in cancer. Brief Funct Genomic. 2013, 12 (3): 219-230. 10.1093/bfgp/elt007.CrossRef
68.
go back to reference Pirooznia SK, Elefant F: Targeting specific HATs for neurodegenerative disease treatment: translating basic biology to therapeutic possibilities. Front cellular neuroscience. 2013, 7: 30-CrossRef Pirooznia SK, Elefant F: Targeting specific HATs for neurodegenerative disease treatment: translating basic biology to therapeutic possibilities. Front cellular neuroscience. 2013, 7: 30-CrossRef
69.
go back to reference Jenuwein T, Allis CD: Translating the histone code. Science. 2001, 293 (5532): 1074-1080. 10.1126/science.1063127.PubMedCrossRef Jenuwein T, Allis CD: Translating the histone code. Science. 2001, 293 (5532): 1074-1080. 10.1126/science.1063127.PubMedCrossRef
70.
go back to reference Gardner KE, Allis CD, Strahl BD: OPERating ON Chromatin, a Colorful Language where Context Matters. J Mol Biol. 2011, 409 (1): 36-46. 10.1016/j.jmb.2011.01.040.PubMedCentralPubMedCrossRef Gardner KE, Allis CD, Strahl BD: OPERating ON Chromatin, a Colorful Language where Context Matters. J Mol Biol. 2011, 409 (1): 36-46. 10.1016/j.jmb.2011.01.040.PubMedCentralPubMedCrossRef
71.
go back to reference Di Croce L: Chromatin modifying activity of leukaemia associated fusion proteins. Hum Mol Genet. 2005, 1: 77-84.CrossRef Di Croce L: Chromatin modifying activity of leukaemia associated fusion proteins. Hum Mol Genet. 2005, 1: 77-84.CrossRef
72.
go back to reference Wang GG, Allis CD, Chi P: Chromatin remodeling and cancer, Part I: Covalent histone modifications. Trends Mol Med. 2007, 13 (9): 363-372. 10.1016/j.molmed.2007.07.003.PubMedCrossRef Wang GG, Allis CD, Chi P: Chromatin remodeling and cancer, Part I: Covalent histone modifications. Trends Mol Med. 2007, 13 (9): 363-372. 10.1016/j.molmed.2007.07.003.PubMedCrossRef
73.
go back to reference Minucci S, Nervi C, Lo Coco F, Pelicci PG: Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias?. Oncogene. 2001, 20 (24): 3110-3115. 10.1038/sj.onc.1204336.PubMedCrossRef Minucci S, Nervi C, Lo Coco F, Pelicci PG: Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias?. Oncogene. 2001, 20 (24): 3110-3115. 10.1038/sj.onc.1204336.PubMedCrossRef
74.
go back to reference Tickenbrock L, Klein HU, Trento C, Hascher A, Gollner S, Baumer N, Kuss R, Agrawal S, Bug G, Serve H: Increased HDAC1 deposition at hematopoietic promoters in AML and its association with patient survival. Leukemia research. 2011, 35 (5): 620-625. 10.1016/j.leukres.2010.11.006.PubMedCrossRef Tickenbrock L, Klein HU, Trento C, Hascher A, Gollner S, Baumer N, Kuss R, Agrawal S, Bug G, Serve H: Increased HDAC1 deposition at hematopoietic promoters in AML and its association with patient survival. Leukemia research. 2011, 35 (5): 620-625. 10.1016/j.leukres.2010.11.006.PubMedCrossRef
75.
go back to reference Timmermann S, Lehrmann H, Polesskaya A, Harel-Bellan A: Histone acetylation and disease. Cell Mol Life Sci. 2001, 58 (5–6): 728-736.PubMedCrossRef Timmermann S, Lehrmann H, Polesskaya A, Harel-Bellan A: Histone acetylation and disease. Cell Mol Life Sci. 2001, 58 (5–6): 728-736.PubMedCrossRef
76.
go back to reference Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM: ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA. 1998, 95 (18): 10860-10865. 10.1073/pnas.95.18.10860.PubMedCentralPubMedCrossRef Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM: ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA. 1998, 95 (18): 10860-10865. 10.1073/pnas.95.18.10860.PubMedCentralPubMedCrossRef
77.
go back to reference Lin RJ, Nagy L, Inoue S, Shao W, Miller WH, Evans RM: Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature. 1998, 391 (6669): 811-814. 10.1038/35895.PubMedCrossRef Lin RJ, Nagy L, Inoue S, Shao W, Miller WH, Evans RM: Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature. 1998, 391 (6669): 811-814. 10.1038/35895.PubMedCrossRef
78.
go back to reference Van Damme M, Crompot E, Meuleman N, Mineur P, Bron D, Lagneaux L, Stamatopoulos B: HDAC isoenzyme expression is deregulated in chronic lymphocytic leukemia B-cells and has a complex prognostic significance. Epigenetics. 2012, 7 (12): 1403-1412. 10.4161/epi.22674.PubMedCentralPubMedCrossRef Van Damme M, Crompot E, Meuleman N, Mineur P, Bron D, Lagneaux L, Stamatopoulos B: HDAC isoenzyme expression is deregulated in chronic lymphocytic leukemia B-cells and has a complex prognostic significance. Epigenetics. 2012, 7 (12): 1403-1412. 10.4161/epi.22674.PubMedCentralPubMedCrossRef
79.
go back to reference Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ: Altered Hox expression and segmental identity in Mll-mutant mice. Nature. 1995, 378 (6556): 505-508. 10.1038/378505a0.PubMedCrossRef Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ: Altered Hox expression and segmental identity in Mll-mutant mice. Nature. 1995, 378 (6556): 505-508. 10.1038/378505a0.PubMedCrossRef
80.
go back to reference Yagi H, Deguchi K, Aono A, Tani Y, Kishimoto T, Komori T: Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood. 1998, 92 (1): 108-117.PubMed Yagi H, Deguchi K, Aono A, Tani Y, Kishimoto T, Komori T: Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood. 1998, 92 (1): 108-117.PubMed
81.
go back to reference Ayton P, Sneddon SF, Palmer DB, Rosewell IR, Owen MJ, Young B, Presley R, Subramanian V: Truncation of the Mll gene in exon 5 by gene targeting leads to early preimplantation lethality of homozygous embryos. Genesis. 2001, 30 (4): 201-212. 10.1002/gene.1066.PubMedCrossRef Ayton P, Sneddon SF, Palmer DB, Rosewell IR, Owen MJ, Young B, Presley R, Subramanian V: Truncation of the Mll gene in exon 5 by gene targeting leads to early preimplantation lethality of homozygous embryos. Genesis. 2001, 30 (4): 201-212. 10.1002/gene.1066.PubMedCrossRef
82.
go back to reference Ziemin-vanderPoel S, McCabe NR, Gill HJ, Espinosa R, Patel Y, Harden A, Rubinelli P, Smith SD, LeBeau MM, Rowley JD: Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA. 1991, 88 (23): 10735-10739. 10.1073/pnas.88.23.10735.CrossRef Ziemin-vanderPoel S, McCabe NR, Gill HJ, Espinosa R, Patel Y, Harden A, Rubinelli P, Smith SD, LeBeau MM, Rowley JD: Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA. 1991, 88 (23): 10735-10739. 10.1073/pnas.88.23.10735.CrossRef
83.
go back to reference Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD, Hess JL: MLL targets SET domain methyltransferase activity to Hox gene promoters. Molecular cell. 2002, 10 (5): 1107-1117. 10.1016/S1097-2765(02)00741-4.PubMedCrossRef Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD, Hess JL: MLL targets SET domain methyltransferase activity to Hox gene promoters. Molecular cell. 2002, 10 (5): 1107-1117. 10.1016/S1097-2765(02)00741-4.PubMedCrossRef
84.
go back to reference Cosgrove MS, Patel A: Mixed lineage leukemia: a structure-function perspective of the MLL1 protein. The FEBS journal. 2010, 277 (8): 1832-1842. 10.1111/j.1742-4658.2010.07609.x.PubMedCentralPubMedCrossRef Cosgrove MS, Patel A: Mixed lineage leukemia: a structure-function perspective of the MLL1 protein. The FEBS journal. 2010, 277 (8): 1832-1842. 10.1111/j.1742-4658.2010.07609.x.PubMedCentralPubMedCrossRef
85.
go back to reference Krivtsov AV, Armstrong SA: MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007, 7 (11): 823-833. 10.1038/nrc2253.PubMedCrossRef Krivtsov AV, Armstrong SA: MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007, 7 (11): 823-833. 10.1038/nrc2253.PubMedCrossRef
86.
go back to reference Marschalek R: Mechanisms of leukemogenesis by MLL fusion proteins. Br J Haematol. 2011, 152 (2): 141-154. 10.1111/j.1365-2141.2010.08459.x.PubMedCrossRef Marschalek R: Mechanisms of leukemogenesis by MLL fusion proteins. Br J Haematol. 2011, 152 (2): 141-154. 10.1111/j.1365-2141.2010.08459.x.PubMedCrossRef
87.
go back to reference Lavau C, Du C, Thirman M, Zeleznik-Le N: Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J. 2000, 19 (17): 4655-4664. 10.1093/emboj/19.17.4655.PubMedCentralPubMedCrossRef Lavau C, Du C, Thirman M, Zeleznik-Le N: Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J. 2000, 19 (17): 4655-4664. 10.1093/emboj/19.17.4655.PubMedCentralPubMedCrossRef
88.
go back to reference Dobson CL, Warren AJ, Pannell R, Forster A, Lavenir I, Corral J, Smith AJ, Rabbitts TH: The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J. 1999, 18 (13): 3564-3574. 10.1093/emboj/18.13.3564.PubMedCentralPubMedCrossRef Dobson CL, Warren AJ, Pannell R, Forster A, Lavenir I, Corral J, Smith AJ, Rabbitts TH: The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J. 1999, 18 (13): 3564-3574. 10.1093/emboj/18.13.3564.PubMedCentralPubMedCrossRef
89.
go back to reference DiMartino JF, Ayton PM, Chen EH, Naftzger CC, Young BD, Cleary ML: The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. Blood. 2002, 99 (10): 3780-3785. 10.1182/blood.V99.10.3780.PubMedCrossRef DiMartino JF, Ayton PM, Chen EH, Naftzger CC, Young BD, Cleary ML: The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. Blood. 2002, 99 (10): 3780-3785. 10.1182/blood.V99.10.3780.PubMedCrossRef
90.
go back to reference Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM, Su L, Xu G, Zhang Y: hDOT1L links histone methylation to leukemogenesis. Cell. 2005, 121 (2): 167-178. 10.1016/j.cell.2005.02.020.PubMedCrossRef Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM, Su L, Xu G, Zhang Y: hDOT1L links histone methylation to leukemogenesis. Cell. 2005, 121 (2): 167-178. 10.1016/j.cell.2005.02.020.PubMedCrossRef
91.
go back to reference Hublitz P, Albert M, Peters AH: Mechanisms of transcriptional repression by histone lysine methylation. Int J Dev Biol. 2009, 53 (2–3): 335-354.PubMedCrossRef Hublitz P, Albert M, Peters AH: Mechanisms of transcriptional repression by histone lysine methylation. Int J Dev Biol. 2009, 53 (2–3): 335-354.PubMedCrossRef
92.
go back to reference Nguyen AT, Taranova O, He J, Zhang Y: DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood. 2011, 117 (25): 6912-6922. 10.1182/blood-2011-02-334359.PubMedCentralPubMedCrossRef Nguyen AT, Taranova O, He J, Zhang Y: DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood. 2011, 117 (25): 6912-6922. 10.1182/blood-2011-02-334359.PubMedCentralPubMedCrossRef
93.
go back to reference Monroe SC, Jo SY, Sanders DS, Basrur V, Elenitoba-Johnson KS, Slany RK, Hess JL: MLL-AF9 and MLL-ENL alter the dynamic association of transcriptional regulators with genes critical for leukemia. Exp Hematol. 2011, 39 (1): 77-86-71-75.PubMedCrossRef Monroe SC, Jo SY, Sanders DS, Basrur V, Elenitoba-Johnson KS, Slany RK, Hess JL: MLL-AF9 and MLL-ENL alter the dynamic association of transcriptional regulators with genes critical for leukemia. Exp Hematol. 2011, 39 (1): 77-86-71-75.PubMedCrossRef
94.
go back to reference Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y: Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat Cell Biol. 2006, 8 (9): 1017-1024. 10.1038/ncb1464.PubMedCentralPubMedCrossRef Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y: Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat Cell Biol. 2006, 8 (9): 1017-1024. 10.1038/ncb1464.PubMedCentralPubMedCrossRef
95.
go back to reference He J, Nguyen AT, Zhang Y: KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood. 2011, 117 (14): 3869-3880. 10.1182/blood-2010-10-312736.PubMedCentralPubMedCrossRef He J, Nguyen AT, Zhang Y: KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood. 2011, 117 (14): 3869-3880. 10.1182/blood-2010-10-312736.PubMedCentralPubMedCrossRef
96.
go back to reference Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, Stone RM, Nelson D, Powell BL, DeCastro CM: Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. Int J Clin Oncol. 2002, 20 (10): 2429-2440. 10.1200/JCO.2002.04.117.CrossRef Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, Stone RM, Nelson D, Powell BL, DeCastro CM: Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. Int J Clin Oncol. 2002, 20 (10): 2429-2440. 10.1200/JCO.2002.04.117.CrossRef
97.
go back to reference Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, Klimek V, Slack J, De Castro C, Ravandi F: Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006, 106 (8): 1794-1803. 10.1002/cncr.21792.PubMedCrossRef Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, Klimek V, Slack J, De Castro C, Ravandi F: Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006, 106 (8): 1794-1803. 10.1002/cncr.21792.PubMedCrossRef
98.
go back to reference Chu BF, Karpenko MJ, Liu Z, Aimiuwu J, Villalona-Calero MA, Chan KK, Grever MR, Otterson GA: Phase I study of 5-aza-2′-deoxycytidine in combination with valproic acid in non-small-cell lung cancer. Cancer Chemother Pharmacol. 2013, 71 (1): 115-121. 10.1007/s00280-012-1986-8.PubMedCrossRef Chu BF, Karpenko MJ, Liu Z, Aimiuwu J, Villalona-Calero MA, Chan KK, Grever MR, Otterson GA: Phase I study of 5-aza-2′-deoxycytidine in combination with valproic acid in non-small-cell lung cancer. Cancer Chemother Pharmacol. 2013, 71 (1): 115-121. 10.1007/s00280-012-1986-8.PubMedCrossRef
99.
go back to reference Cogdill AP, Frederick DT, Cooper ZA, Garber HR, Ferrone CR, Fiedler A, Rosenberg L, Thayer SP, Warshaw AL, Wargo JA: Targeting the MAGE A3 antigen in pancreatic cancer. Surgery. 2012, 152 (3 Suppl 1): S13-18.PubMedCentralPubMedCrossRef Cogdill AP, Frederick DT, Cooper ZA, Garber HR, Ferrone CR, Fiedler A, Rosenberg L, Thayer SP, Warshaw AL, Wargo JA: Targeting the MAGE A3 antigen in pancreatic cancer. Surgery. 2012, 152 (3 Suppl 1): S13-18.PubMedCentralPubMedCrossRef
100.
go back to reference Schneider-Stock R, Diab-Assef M, Rohrbeck A, Foltzer-Jourdainne C, Boltze C, Hartig R, Schonfeld P, Roessner A, Gali-Muhtasib H: 5-Aza-cytidine is a potent inhibitor of DNA methyltransferase 3a and induces apoptosis in HCT-116 colon cancer cells via Gadd45- and p53-dependent mechanisms. J Pharmacol Exp Ther. 2005, 312 (2): 525-536.PubMedCrossRef Schneider-Stock R, Diab-Assef M, Rohrbeck A, Foltzer-Jourdainne C, Boltze C, Hartig R, Schonfeld P, Roessner A, Gali-Muhtasib H: 5-Aza-cytidine is a potent inhibitor of DNA methyltransferase 3a and induces apoptosis in HCT-116 colon cancer cells via Gadd45- and p53-dependent mechanisms. J Pharmacol Exp Ther. 2005, 312 (2): 525-536.PubMedCrossRef
101.
102.
go back to reference McCabe MT, Brandes JC, Vertino PM: Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res. 2009, 15 (12): 3927-3937. 10.1158/1078-0432.CCR-08-2784.PubMedCentralPubMedCrossRef McCabe MT, Brandes JC, Vertino PM: Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res. 2009, 15 (12): 3927-3937. 10.1158/1078-0432.CCR-08-2784.PubMedCentralPubMedCrossRef
103.
go back to reference Christman JK: 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002, 21 (35): 5483-5495. 10.1038/sj.onc.1205699.PubMedCrossRef Christman JK: 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002, 21 (35): 5483-5495. 10.1038/sj.onc.1205699.PubMedCrossRef
104.
go back to reference Derissen EJ, Beijnen JH, Schellens JH: Concise drug review: azacitidine and decitabine. Oncologist. 2013, 18 (5): 619-624. 10.1634/theoncologist.2012-0465.PubMedCentralPubMedCrossRef Derissen EJ, Beijnen JH, Schellens JH: Concise drug review: azacitidine and decitabine. Oncologist. 2013, 18 (5): 619-624. 10.1634/theoncologist.2012-0465.PubMedCentralPubMedCrossRef
105.
go back to reference Prince HM, Bishton MJ, Harrison SJ: Clinical studies of histone deacetylase inhibitors. Clin Cancer Res. 2009, 15 (12): 3958-3969. 10.1158/1078-0432.CCR-08-2785.PubMedCrossRef Prince HM, Bishton MJ, Harrison SJ: Clinical studies of histone deacetylase inhibitors. Clin Cancer Res. 2009, 15 (12): 3958-3969. 10.1158/1078-0432.CCR-08-2785.PubMedCrossRef
106.
go back to reference Yang X-J, Seto E: The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol. 2008, 9 (3): 206-218. 10.1038/nrm2346.PubMedCentralPubMedCrossRef Yang X-J, Seto E: The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol. 2008, 9 (3): 206-218. 10.1038/nrm2346.PubMedCentralPubMedCrossRef
107.
go back to reference Mai A: The therapeutic uses of chromatin-modifying agents. Expert Opin Ther Targets. 2007, 11 (6): 835-851. 10.1517/14728222.11.6.835.PubMedCrossRef Mai A: The therapeutic uses of chromatin-modifying agents. Expert Opin Ther Targets. 2007, 11 (6): 835-851. 10.1517/14728222.11.6.835.PubMedCrossRef
108.
go back to reference Federico M, Bagella L: Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. J Biomed Biotechnol. 2011, 2011: 475641-PubMedCentralPubMedCrossRef Federico M, Bagella L: Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. J Biomed Biotechnol. 2011, 2011: 475641-PubMedCentralPubMedCrossRef
109.
go back to reference Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U, Kundu TK: Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem. 2004, 279 (49): 51163-51171. 10.1074/jbc.M409024200.PubMedCrossRef Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U, Kundu TK: Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem. 2004, 279 (49): 51163-51171. 10.1074/jbc.M409024200.PubMedCrossRef
110.
go back to reference Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK: Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem. 2004, 279 (32): 33716-33726. 10.1074/jbc.M402839200.PubMedCrossRef Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK: Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem. 2004, 279 (32): 33716-33726. 10.1074/jbc.M402839200.PubMedCrossRef
111.
go back to reference Sun Y, Jiang X, Chen S, Price BD: Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett. 2006, 580 (18): 4353-4356. 10.1016/j.febslet.2006.06.092.PubMedCrossRef Sun Y, Jiang X, Chen S, Price BD: Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett. 2006, 580 (18): 4353-4356. 10.1016/j.febslet.2006.06.092.PubMedCrossRef
Metadata
Title
Epigenetic changes: a common theme in acute myelogenous leukemogenesis
Authors
Soraya E Gutierrez
Francisco A Romero-Oliva
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2013
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-6-57

Other articles of this Issue 1/2013

Journal of Hematology & Oncology 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine