Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2013

Open Access 01-12-2013 | Research

Development and characterization of a high-throughput in vitro cord formation model insensitive to VEGF inhibition

Authors: Beverly L Falcon, Belinda O’Clair, Don McClure, Glenn F Evans, Julie Stewart, Michelle L Swearingen, Yuefeng Chen, Kevin Allard, Linda N Lee, Kuldeep Neote, Dyke P McEwen, Mark T Uhlik, Sudhakar Chintharlapalli

Published in: Journal of Hematology & Oncology | Issue 1/2013

Login to get access

Abstract

Background

Anti-VEGF therapy reduces tumor blood vessels, however, some vessels always remain. These VEGF insensitive vessels may help support continued tumor growth and metastases. Many in vitro assays examining multiple steps of the angiogenic process have been described, but the majority of these assays are sensitive to VEGF inhibition. There has been little focus on the development of high-throughput, in vitro assays to model the vessels that are insensitive to VEGF inhibition.

Methods

Here, we describe a fixed end-point and kinetic, high-throughput stem cell co-culture model of cord formation.

Results

In this system, cords develop within 24 hours, at which point they begin to lose sensitivity to VEGF inhibitors, bevacizumab, and ramucirumab. Consistent with the hypothesis that other angiogenic factors maintain VEGF-independent vessels, pharmacologic intervention with a broad spectrum anti-angiogenic antagonist (suramin), a vascular disrupting agent (combretastatin), or a combination of VEGF and Notch pathway inhibitors reduced the established networks. In addition, we used our in vitro approach to develop an in vivo co-implant vasculogenesis model that connects with the endogenous vasculature to form functional blood vessels. Similar to the in vitro system, over time these vessels become insensitive to VEGF inhibition.

Conclusion

Together, these models may be used to identify novel drugs targeting tumor vessels that are not sensitive to VEGF inhibition.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kim ES, Serur A, Huang J, Manley CA, McCrudden KW, Frischer JS, Soffer SZ, Ring L, New T, Zabski S: Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc Natl Acad Sci U S A. 2002, 99: 11399-11404. 10.1073/pnas.172398399.PubMedCentralCrossRefPubMed Kim ES, Serur A, Huang J, Manley CA, McCrudden KW, Frischer JS, Soffer SZ, Ring L, New T, Zabski S: Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc Natl Acad Sci U S A. 2002, 99: 11399-11404. 10.1073/pnas.172398399.PubMedCentralCrossRefPubMed
2.
go back to reference Prewett M, Huber J, Li Y, Santiago A, O’Connor W, King K, Overholser J, Hooper A, Pytowski B, Witte L: Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res. 1999, 59: 5209-5218.PubMed Prewett M, Huber J, Li Y, Santiago A, O’Connor W, King K, Overholser J, Hooper A, Pytowski B, Witte L: Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res. 1999, 59: 5209-5218.PubMed
3.
go back to reference Ellis LM, Hicklin DJ: VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008, 8: 579-591. 10.1038/nrc2403.CrossRefPubMed Ellis LM, Hicklin DJ: VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008, 8: 579-591. 10.1038/nrc2403.CrossRefPubMed
4.
go back to reference Casanovas O, Hicklin DJ, Bergers G, Hanahan D: Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005, 8: 299-309. 10.1016/j.ccr.2005.09.005.CrossRefPubMed Casanovas O, Hicklin DJ, Bergers G, Hanahan D: Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005, 8: 299-309. 10.1016/j.ccr.2005.09.005.CrossRefPubMed
5.
go back to reference Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS: Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009, 15: 232-239. 10.1016/j.ccr.2009.01.021.PubMedCentralCrossRefPubMed Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS: Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009, 15: 232-239. 10.1016/j.ccr.2009.01.021.PubMedCentralCrossRefPubMed
6.
go back to reference Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009, 15: 220-231. 10.1016/j.ccr.2009.01.027.PubMedCentralCrossRefPubMed Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009, 15: 220-231. 10.1016/j.ccr.2009.01.027.PubMedCentralCrossRefPubMed
7.
go back to reference Griffioen AW, Mans LA, de Graaf AM, Nowak-Sliwinska P, de Hoog CL, de Jong TA, Vyth-Dreese FA, van Beijnum JR, Bex A, Jonasch E: Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients. Clin Cancer Res. 2012, 18: 3961-3971. 10.1158/1078-0432.CCR-12-0002.PubMedCentralCrossRefPubMed Griffioen AW, Mans LA, de Graaf AM, Nowak-Sliwinska P, de Hoog CL, de Jong TA, Vyth-Dreese FA, van Beijnum JR, Bex A, Jonasch E: Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients. Clin Cancer Res. 2012, 18: 3961-3971. 10.1158/1078-0432.CCR-12-0002.PubMedCentralCrossRefPubMed
8.
go back to reference Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD, McDonald DM: Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol. 2004, 165: 35-52. 10.1016/S0002-9440(10)63273-7.PubMedCentralCrossRefPubMed Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD, McDonald DM: Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol. 2004, 165: 35-52. 10.1016/S0002-9440(10)63273-7.PubMedCentralCrossRefPubMed
9.
go back to reference Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M: AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007, 11: 83-95. 10.1016/j.ccr.2006.11.021.PubMedCentralCrossRefPubMed Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M: AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007, 11: 83-95. 10.1016/j.ccr.2006.11.021.PubMedCentralCrossRefPubMed
10.
go back to reference Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E: Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004, 6: 553-563.PubMed Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E: Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004, 6: 553-563.PubMed
11.
go back to reference Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E: Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest. 1999, 103: 159-165. 10.1172/JCI5028.PubMedCentralCrossRefPubMed Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E: Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest. 1999, 103: 159-165. 10.1172/JCI5028.PubMedCentralCrossRefPubMed
12.
go back to reference Benjamin LE, Hemo I, Keshet E: A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development. 1998, 125: 1591-1598.PubMed Benjamin LE, Hemo I, Keshet E: A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development. 1998, 125: 1591-1598.PubMed
13.
go back to reference Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest. 2003, 111: 1287-1295.PubMedCentralCrossRefPubMed Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest. 2003, 111: 1287-1295.PubMedCentralCrossRefPubMed
15.
go back to reference Cascone T, Herynk MH, Xu L, Du Z, Kadara H, Nilsson MB, Oborn CJ, Park YY, Erez B, Jacoby JJ: Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. J Clin Invest. 2011, 121: 1313-1328. 10.1172/JCI42405.PubMedCentralCrossRefPubMed Cascone T, Herynk MH, Xu L, Du Z, Kadara H, Nilsson MB, Oborn CJ, Park YY, Erez B, Jacoby JJ: Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. J Clin Invest. 2011, 121: 1313-1328. 10.1172/JCI42405.PubMedCentralCrossRefPubMed
16.
go back to reference Takeda T, Okuyama H, Nishizawa Y, Tomita S, Inoue M: Hypoxia inducible factor-1alpha is necessary for invasive phenotype in Vegf-deleted islet cell tumors. Sci Rep. 2012, 2: 494-PubMedCentralCrossRefPubMed Takeda T, Okuyama H, Nishizawa Y, Tomita S, Inoue M: Hypoxia inducible factor-1alpha is necessary for invasive phenotype in Vegf-deleted islet cell tumors. Sci Rep. 2012, 2: 494-PubMedCentralCrossRefPubMed
17.
go back to reference Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005, 307: 58-62. 10.1126/science.1104819.CrossRefPubMed Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005, 307: 58-62. 10.1126/science.1104819.CrossRefPubMed
18.
go back to reference Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004, 64: 3731-3736. 10.1158/0008-5472.CAN-04-0074.CrossRefPubMed Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004, 64: 3731-3736. 10.1158/0008-5472.CAN-04-0074.CrossRefPubMed
19.
go back to reference Nagy JA, Chang SH, Shih SC, Dvorak AM, Dvorak HF: Heterogeneity of the tumor vasculature. Semin Thromb Hemost. 2010, 36: 321-331. 10.1055/s-0030-1253454.PubMedCentralCrossRefPubMed Nagy JA, Chang SH, Shih SC, Dvorak AM, Dvorak HF: Heterogeneity of the tumor vasculature. Semin Thromb Hemost. 2010, 36: 321-331. 10.1055/s-0030-1253454.PubMedCentralCrossRefPubMed
20.
go back to reference Nagy JA, Dvorak HF: Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets. Clin Exp Metastasis. 2012, 29: 657-662. 10.1007/s10585-012-9500-6.PubMedCentralCrossRefPubMed Nagy JA, Dvorak HF: Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets. Clin Exp Metastasis. 2012, 29: 657-662. 10.1007/s10585-012-9500-6.PubMedCentralCrossRefPubMed
21.
go back to reference Sitohy B, Nagy JA, Jaminet SC, Dvorak HF: Tumor-surrogate blood vessel subtypes exhibit differential susceptibility to anti-VEGF therapy. Cancer Res. 2011, 71: 7021-7028. 10.1158/0008-5472.CAN-11-1693.PubMedCentralCrossRefPubMed Sitohy B, Nagy JA, Jaminet SC, Dvorak HF: Tumor-surrogate blood vessel subtypes exhibit differential susceptibility to anti-VEGF therapy. Cancer Res. 2011, 71: 7021-7028. 10.1158/0008-5472.CAN-11-1693.PubMedCentralCrossRefPubMed
22.
go back to reference Merfeld-Clauss S, Gollahalli N, March KL, Traktuev DO: Adipose tissue progenitor cells directly interact with endothelial cells to induce vascular network formation. Tissue Eng Part A. 2010, 16: 2953-2966. 10.1089/ten.tea.2009.0635.PubMedCentralCrossRefPubMed Merfeld-Clauss S, Gollahalli N, March KL, Traktuev DO: Adipose tissue progenitor cells directly interact with endothelial cells to induce vascular network formation. Tissue Eng Part A. 2010, 16: 2953-2966. 10.1089/ten.tea.2009.0635.PubMedCentralCrossRefPubMed
23.
go back to reference Evensen L, Link W, Lorens JB: Imaged-based high-throughput screening for anti-angiogenic drug discovery. Curr Pharm Des. 2010, 16: 3958-3963. 10.2174/138161210794455030.CrossRefPubMed Evensen L, Link W, Lorens JB: Imaged-based high-throughput screening for anti-angiogenic drug discovery. Curr Pharm Des. 2010, 16: 3958-3963. 10.2174/138161210794455030.CrossRefPubMed
24.
go back to reference Evensen L, Micklem DR, Link W, Lorens JB: A novel imaging-based high-throughput screening approach to anti-angiogenic drug discovery. Cytometry A. 2010, 77: 41-51.PubMed Evensen L, Micklem DR, Link W, Lorens JB: A novel imaging-based high-throughput screening approach to anti-angiogenic drug discovery. Cytometry A. 2010, 77: 41-51.PubMed
25.
go back to reference Prigozhina NL, Heisel A, Wei K, Noberini R, Hunter EA, Calzolari D, Seldeen JR, Pasquale EB, Ruiz-Lozano P, Mercola M, Price JH: Characterization of a novel angiogenic model based on stable, fluorescently labelled endothelial cell lines amenable to scale-up for high content screening. Biol Cell. 2011, 103: 467-481. 10.1042/BC20100146.PubMedCentralCrossRefPubMed Prigozhina NL, Heisel A, Wei K, Noberini R, Hunter EA, Calzolari D, Seldeen JR, Pasquale EB, Ruiz-Lozano P, Mercola M, Price JH: Characterization of a novel angiogenic model based on stable, fluorescently labelled endothelial cell lines amenable to scale-up for high content screening. Biol Cell. 2011, 103: 467-481. 10.1042/BC20100146.PubMedCentralCrossRefPubMed
26.
go back to reference Hetheridge C, Mavria G, Mellor H: Uses of the in vitro endothelial-fibroblast organotypic co-culture assay in angiogenesis research. Biochem Soc Trans. 2011, 39: 1597-1600. 10.1042/BST20110738.CrossRefPubMed Hetheridge C, Mavria G, Mellor H: Uses of the in vitro endothelial-fibroblast organotypic co-culture assay in angiogenesis research. Biochem Soc Trans. 2011, 39: 1597-1600. 10.1042/BST20110738.CrossRefPubMed
27.
go back to reference Falcon BL, Hashizume H, Koumoutsakos P, Chou J, Bready JV, Coxon A, Oliner JD, McDonald DM: Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am J Pathol. 2009, 175: 2159-2170. 10.2353/ajpath.2009.090391.PubMedCentralCrossRefPubMed Falcon BL, Hashizume H, Koumoutsakos P, Chou J, Bready JV, Coxon A, Oliner JD, McDonald DM: Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am J Pathol. 2009, 175: 2159-2170. 10.2353/ajpath.2009.090391.PubMedCentralCrossRefPubMed
28.
go back to reference Sennino B, Falcon BL, McCauley D, Le T, McCauley T, Kurz JC, Haskell A, Epstein DM, McDonald DM: Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102. Cancer Res. 2007, 67: 7358-7367. 10.1158/0008-5472.CAN-07-0293.PubMedCentralCrossRefPubMed Sennino B, Falcon BL, McCauley D, Le T, McCauley T, Kurz JC, Haskell A, Epstein DM, McDonald DM: Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102. Cancer Res. 2007, 67: 7358-7367. 10.1158/0008-5472.CAN-07-0293.PubMedCentralCrossRefPubMed
29.
go back to reference You WK, Sennino B, Williamson CW, Falcon B, Hashizume H, Yao LC, Aftab DT, McDonald DM: VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer. Cancer Res. 2011, 71: 4758-4768. 10.1158/0008-5472.CAN-10-2527.PubMedCentralCrossRefPubMed You WK, Sennino B, Williamson CW, Falcon B, Hashizume H, Yao LC, Aftab DT, McDonald DM: VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer. Cancer Res. 2011, 71: 4758-4768. 10.1158/0008-5472.CAN-10-2527.PubMedCentralCrossRefPubMed
30.
go back to reference Armulik A, Abramsson A, Betsholtz C: Endothelial/pericyte interactions. Circ Res. 2005, 97: 512-523. 10.1161/01.RES.0000182903.16652.d7.CrossRefPubMed Armulik A, Abramsson A, Betsholtz C: Endothelial/pericyte interactions. Circ Res. 2005, 97: 512-523. 10.1161/01.RES.0000182903.16652.d7.CrossRefPubMed
31.
go back to reference Betsholtz C, Lindblom P, Gerhardt H: Role of pericytes in vascular morphogenesis. EXS. 2005, 94: 115-125.PubMed Betsholtz C, Lindblom P, Gerhardt H: Role of pericytes in vascular morphogenesis. EXS. 2005, 94: 115-125.PubMed
32.
go back to reference Enge M, Bjarnegard M, Gerhardt H, Gustafsson E, Kalen M, Asker N, Hammes HP, Shani M, Fassler R, Betsholtz C: Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J. 2002, 21: 4307-4316. 10.1093/emboj/cdf418.PubMedCentralCrossRefPubMed Enge M, Bjarnegard M, Gerhardt H, Gustafsson E, Kalen M, Asker N, Hammes HP, Shani M, Fassler R, Betsholtz C: Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J. 2002, 21: 4307-4316. 10.1093/emboj/cdf418.PubMedCentralCrossRefPubMed
33.
go back to reference Shen J, Vil MD, Prewett M, Damoci C, Zhang H, Li H, Jimenez X, Deevi DS, Iacolina M, Kayas A: Development of a fully human anti-PDGFRbeta antibody that suppresses growth of human tumor xenografts and enhances antitumor activity of an anti-VEGFR2 antibody. Neoplasia. 2009, 11: 594-604.PubMedCentralCrossRefPubMed Shen J, Vil MD, Prewett M, Damoci C, Zhang H, Li H, Jimenez X, Deevi DS, Iacolina M, Kayas A: Development of a fully human anti-PDGFRbeta antibody that suppresses growth of human tumor xenografts and enhances antitumor activity of an anti-VEGFR2 antibody. Neoplasia. 2009, 11: 594-604.PubMedCentralCrossRefPubMed
34.
go back to reference Li JL, Sainson RC, Oon CE, Turley H, Leek R, Sheldon H, Bridges E, Shi W, Snell C, Bowden ET: DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res. 2011, 71: 6073-6083. 10.1158/0008-5472.CAN-11-1704.CrossRefPubMed Li JL, Sainson RC, Oon CE, Turley H, Leek R, Sheldon H, Bridges E, Shi W, Snell C, Bowden ET: DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res. 2011, 71: 6073-6083. 10.1158/0008-5472.CAN-11-1704.CrossRefPubMed
35.
go back to reference Lanz TA, Hosley JD, Adams WJ, Merchant KM: Studies of Abeta pharmacodynamics in the brain, cerebrospinal fluid, and plasma in young (plaque-free) Tg2576 mice using the gamma-secretase inhibitor N2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-di hydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide (LY-411575). J Pharmacol Exp Ther. 2004, 309: 49-55. 10.1124/jpet.103.060715.CrossRefPubMed Lanz TA, Hosley JD, Adams WJ, Merchant KM: Studies of Abeta pharmacodynamics in the brain, cerebrospinal fluid, and plasma in young (plaque-free) Tg2576 mice using the gamma-secretase inhibitor N2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-di hydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide (LY-411575). J Pharmacol Exp Ther. 2004, 309: 49-55. 10.1124/jpet.103.060715.CrossRefPubMed
36.
go back to reference Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T, Engstrom L, Pinzon-Ortiz M, Fine JS, Lee HJ: Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem. 2004, 279: 12876-12882.CrossRefPubMed Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T, Engstrom L, Pinzon-Ortiz M, Fine JS, Lee HJ: Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem. 2004, 279: 12876-12882.CrossRefPubMed
37.
go back to reference Bishop ET, Bell GT, Bloor S, Broom IJ, Hendry NF, Wheatley DN: An in vitro model of angiogenesis: basic features. Angiogenesis. 1999, 3: 335-344. 10.1023/A:1026546219962.CrossRefPubMed Bishop ET, Bell GT, Bloor S, Broom IJ, Hendry NF, Wheatley DN: An in vitro model of angiogenesis: basic features. Angiogenesis. 1999, 3: 335-344. 10.1023/A:1026546219962.CrossRefPubMed
38.
go back to reference Chen Y, Wei T, Yan L, Lawrence F, Qian HR, Burkholder TP, Starling JJ, Yingling JM, Shou J: Developing and applying a gene functional association network for anti-angiogenic kinase inhibitor activity assessment in an angiogenesis co-culture model. BMC Genomics. 2008, 9: 264-10.1186/1471-2164-9-264.PubMedCentralCrossRefPubMed Chen Y, Wei T, Yan L, Lawrence F, Qian HR, Burkholder TP, Starling JJ, Yingling JM, Shou J: Developing and applying a gene functional association network for anti-angiogenic kinase inhibitor activity assessment in an angiogenesis co-culture model. BMC Genomics. 2008, 9: 264-10.1186/1471-2164-9-264.PubMedCentralCrossRefPubMed
39.
go back to reference Donovan D, Brown NJ, Bishop ET, Lewis CE: Comparison of three in vitro human ‘angiogenesis’ assays with capillaries formed in vivo. Angiogenesis. 2001, 4: 113-121. 10.1023/A:1012218401036.CrossRefPubMed Donovan D, Brown NJ, Bishop ET, Lewis CE: Comparison of three in vitro human ‘angiogenesis’ assays with capillaries formed in vivo. Angiogenesis. 2001, 4: 113-121. 10.1023/A:1012218401036.CrossRefPubMed
40.
go back to reference Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G: Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006, 444: 1032-1037. 10.1038/nature05355.CrossRefPubMed Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G: Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006, 444: 1032-1037. 10.1038/nature05355.CrossRefPubMed
41.
go back to reference Ridgway J, Zhang G, Wu Y, Stawicki S, Liang WC, Chanthery Y, Kowalski J, Watts RJ, Callahan C, Kasman I: Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature. 2006, 444: 1083-1087. 10.1038/nature05313.CrossRefPubMed Ridgway J, Zhang G, Wu Y, Stawicki S, Liang WC, Chanthery Y, Kowalski J, Watts RJ, Callahan C, Kasman I: Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature. 2006, 444: 1083-1087. 10.1038/nature05313.CrossRefPubMed
42.
go back to reference Evensen L, Micklem DR, Blois A, Berge SV, Aarsaether N, Littlewood-Evans A, Wood J, Lorens JB: Mural cell associated VEGF is required for organotypic vessel formation. PLoS One. 2009, 4: e5798-10.1371/journal.pone.0005798.PubMedCentralCrossRefPubMed Evensen L, Micklem DR, Blois A, Berge SV, Aarsaether N, Littlewood-Evans A, Wood J, Lorens JB: Mural cell associated VEGF is required for organotypic vessel formation. PLoS One. 2009, 4: e5798-10.1371/journal.pone.0005798.PubMedCentralCrossRefPubMed
43.
go back to reference Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML: Autocrine VEGF signaling is required for vascular homeostasis. Cell. 2007, 130: 691-703. 10.1016/j.cell.2007.06.054.PubMedCentralCrossRefPubMed Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML: Autocrine VEGF signaling is required for vascular homeostasis. Cell. 2007, 130: 691-703. 10.1016/j.cell.2007.06.054.PubMedCentralCrossRefPubMed
44.
go back to reference Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L: VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol. 2006, 7: 359-371. 10.1038/nrm1911.CrossRefPubMed Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L: VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol. 2006, 7: 359-371. 10.1038/nrm1911.CrossRefPubMed
45.
go back to reference Vincent L, Kermani P, Young LM, Cheng J, Zhang F, Shido K, Lam G, Bompais-Vincent H, Zhu Z, Hicklin DJ: Combretastatin A4 phosphate induces rapid regression of tumor neovessels and growth through interference with vascular endothelial-cadherin signaling. J Clin Invest. 2005, 115: 2992-3006. 10.1172/JCI24586.PubMedCentralCrossRefPubMed Vincent L, Kermani P, Young LM, Cheng J, Zhang F, Shido K, Lam G, Bompais-Vincent H, Zhu Z, Hicklin DJ: Combretastatin A4 phosphate induces rapid regression of tumor neovessels and growth through interference with vascular endothelial-cadherin signaling. J Clin Invest. 2005, 115: 2992-3006. 10.1172/JCI24586.PubMedCentralCrossRefPubMed
46.
go back to reference Jockovich ME, Bajenaru ML, Pina Y, Suarez F, Feuer W, Fini ME, Murray TG: Retinoblastoma tumor vessel maturation impacts efficacy of vessel targeting in the LH(BETA)T(AG) mouse model. Invest Ophthalmol Vis Sci. 2007, 48: 2476-2482. 10.1167/iovs.06-1397.CrossRefPubMed Jockovich ME, Bajenaru ML, Pina Y, Suarez F, Feuer W, Fini ME, Murray TG: Retinoblastoma tumor vessel maturation impacts efficacy of vessel targeting in the LH(BETA)T(AG) mouse model. Invest Ophthalmol Vis Sci. 2007, 48: 2476-2482. 10.1167/iovs.06-1397.CrossRefPubMed
47.
go back to reference Nathan P, Zweifel M, Padhani AR, Koh DM, Ng M, Collins DJ, Harris A, Carden C, Smythe J, Fisher N: Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer. Clin Cancer Res. 2012, 18: 3428-3439. 10.1158/1078-0432.CCR-11-3376.CrossRefPubMed Nathan P, Zweifel M, Padhani AR, Koh DM, Ng M, Collins DJ, Harris A, Carden C, Smythe J, Fisher N: Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer. Clin Cancer Res. 2012, 18: 3428-3439. 10.1158/1078-0432.CCR-11-3376.CrossRefPubMed
48.
go back to reference Siemann DW, Shi W: Dual targeting of tumor vasculature: combining Avastin and vascular disrupting agents (CA4P or OXi4503). Anticancer Res. 2008, 28: 2027-2031.PubMedCentralPubMed Siemann DW, Shi W: Dual targeting of tumor vasculature: combining Avastin and vascular disrupting agents (CA4P or OXi4503). Anticancer Res. 2008, 28: 2027-2031.PubMedCentralPubMed
49.
go back to reference Lee JA, Uhlik MT, Moxham CM, Tomandl D, Sall DJ: Modern phenotypic drug discovery is a viable, neoclassic pharma strategy. J Med Chem. 2012, 55: 4527-4538. 10.1021/jm201649s.CrossRefPubMed Lee JA, Uhlik MT, Moxham CM, Tomandl D, Sall DJ: Modern phenotypic drug discovery is a viable, neoclassic pharma strategy. J Med Chem. 2012, 55: 4527-4538. 10.1021/jm201649s.CrossRefPubMed
50.
go back to reference Meier T, Uhlik M, Chintharlapalli S, Dowless M, Van Horn R, Stewart J, Blosser W, Cook J, Young D, Ye X: Tasisulam sodium, an antitumor agent that inhibits mitotic progression and induces vascular normalization. Mol Cancer Ther. 2011, 10: 2168-2178. 10.1158/1535-7163.MCT-11-0323.CrossRefPubMed Meier T, Uhlik M, Chintharlapalli S, Dowless M, Van Horn R, Stewart J, Blosser W, Cook J, Young D, Ye X: Tasisulam sodium, an antitumor agent that inhibits mitotic progression and induces vascular normalization. Mol Cancer Ther. 2011, 10: 2168-2178. 10.1158/1535-7163.MCT-11-0323.CrossRefPubMed
51.
go back to reference Melero-Martin JM, Bischoff J: Chapter 13. An in vivo experimental model for postnatal vasculogenesis. Methods Enzymol. 2008, 445: 303-329.CrossRefPubMed Melero-Martin JM, Bischoff J: Chapter 13. An in vivo experimental model for postnatal vasculogenesis. Methods Enzymol. 2008, 445: 303-329.CrossRefPubMed
52.
go back to reference Falcon BL, Stewart J, Ezell S, Hanson J, Wijsman J, Ye X, Westin E, Donoho G, Credille K, Uhlik MT: High-content multiplexed tissue imaging and quantification for cancer drug discovery. Drug Discov Today. 2012, Epub ahead of print Falcon BL, Stewart J, Ezell S, Hanson J, Wijsman J, Ye X, Westin E, Donoho G, Credille K, Uhlik MT: High-content multiplexed tissue imaging and quantification for cancer drug discovery. Drug Discov Today. 2012, Epub ahead of print
Metadata
Title
Development and characterization of a high-throughput in vitro cord formation model insensitive to VEGF inhibition
Authors
Beverly L Falcon
Belinda O’Clair
Don McClure
Glenn F Evans
Julie Stewart
Michelle L Swearingen
Yuefeng Chen
Kevin Allard
Linda N Lee
Kuldeep Neote
Dyke P McEwen
Mark T Uhlik
Sudhakar Chintharlapalli
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2013
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-6-31

Other articles of this Issue 1/2013

Journal of Hematology & Oncology 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine