Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2012

Open Access 01-12-2012 | Review

Recent updates on the role of microRNAs in prostate cancer

Authors: Oudai Hassan, Aamir Ahmad, Seema Sethi, Fazlul H Sarkar

Published in: Journal of Hematology & Oncology | Issue 1/2012

Login to get access

Abstract

MicroRNAs (miRNAs) are short non-coding RNAs that are involved in several important biological processes through regulation of genes post-transcriptionally. Carcinogenesis is one of the key biological processes where miRNAs play important role in the regulation of genes. The miRNAs elicit their effects by binding to the 3' untranslated region (3'UTR) of their target mRNAs, leading to the inhibition of translation or the degradation of the mRNA, depending on the degree of complementary base pairing. To-date more than 1,000 miRNAs are postulated to exist, although the field is moving rapidly. Currently, miRNAs are becoming the center of interest in a number of research areas, particularly in oncology, as documented by exponential growth in publications in the last decade. These studies have shown that miRNAs are deregulated in a wide variety of human cancers. Thus, it is reasonable to ask the question whether further understanding on the role of miRNAs could be useful for diagnosis, prognosis and predicting therapeutic response for prostate cancer (PCa). Therefore, in this review article, we will discuss the potential roles of different miRNAs in PCa in order to provide up-to-date information, which is expected to stimulate further research in the field for realizing the benefit of miRNA-targeted therapeutic approach for the treatment of metastatic castrate resistant prostate cancer (mCRPC) in the near future because there is no curative treatment for mCRPC at the moment.
Literature
1.
go back to reference Peng X, Guo W, Liu T, Wang X, Tu X, Xiong D et al: Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One. 2011, 6: e20341-10.1371/journal.pone.0020341.PubMedCentralCrossRefPubMed Peng X, Guo W, Liu T, Wang X, Tu X, Xiong D et al: Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One. 2011, 6: e20341-10.1371/journal.pone.0020341.PubMedCentralCrossRefPubMed
2.
go back to reference Hao Y, Zhao Y, Zhao X, He C, Pang X, Wu TC et al: Improvement of prostate cancer detection by integrating the PSA test with miRNA expression profiling. Cancer Invest. 2011, 29: 318-324. 10.3109/07357907.2011.554477.PubMedCentralCrossRefPubMed Hao Y, Zhao Y, Zhao X, He C, Pang X, Wu TC et al: Improvement of prostate cancer detection by integrating the PSA test with miRNA expression profiling. Cancer Invest. 2011, 29: 318-324. 10.3109/07357907.2011.554477.PubMedCentralCrossRefPubMed
3.
go back to reference Wach S, Nolte E, Szczyrba J, Stohr R, Hartmann A, Orntoft T et al: MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer. 2011, 130: 611-621.CrossRefPubMed Wach S, Nolte E, Szczyrba J, Stohr R, Hartmann A, Orntoft T et al: MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer. 2011, 130: 611-621.CrossRefPubMed
4.
go back to reference Xu B, Niu X, Zhang X, Tao J, Wu D, Wang Z et al: miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem. 2011, 350: 207-213. 10.1007/s11010-010-0700-6.CrossRefPubMed Xu B, Niu X, Zhang X, Tao J, Wu D, Wang Z et al: miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem. 2011, 350: 207-213. 10.1007/s11010-010-0700-6.CrossRefPubMed
5.
go back to reference Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ: The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. Genes Dev. 2004, 18: 132-137. 10.1101/gad.1165404.PubMedCentralCrossRefPubMed Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ: The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. Genes Dev. 2004, 18: 132-137. 10.1101/gad.1165404.PubMedCentralCrossRefPubMed
7.
go back to reference Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75: 843-854. 10.1016/0092-8674(93)90529-Y.CrossRefPubMed Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75: 843-854. 10.1016/0092-8674(93)90529-Y.CrossRefPubMed
8.
go back to reference Wightman B, Ha I, Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993, 75: 855-862. 10.1016/0092-8674(93)90530-4.CrossRefPubMed Wightman B, Ha I, Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993, 75: 855-862. 10.1016/0092-8674(93)90530-4.CrossRefPubMed
9.
go back to reference Vandenboom Ii TG, Li Y, Philip PA, Sarkar FH: MicroRNA and Cancer: Tiny molecules with major implications. Curr Genomics. 2008, 9: 97-109. 10.2174/138920208784139555.PubMedCentralCrossRefPubMed Vandenboom Ii TG, Li Y, Philip PA, Sarkar FH: MicroRNA and Cancer: Tiny molecules with major implications. Curr Genomics. 2008, 9: 97-109. 10.2174/138920208784139555.PubMedCentralCrossRefPubMed
10.
go back to reference Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000, 403: 901-906. 10.1038/35002607.CrossRefPubMed Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000, 403: 901-906. 10.1038/35002607.CrossRefPubMed
11.
go back to reference Griffiths-Jones S, Grocock RJ, Van DS, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34: D140-D144. 10.1093/nar/gkj112.PubMedCentralCrossRefPubMed Griffiths-Jones S, Grocock RJ, Van DS, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34: D140-D144. 10.1093/nar/gkj112.PubMedCentralCrossRefPubMed
12.
go back to reference Ambros V: MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003, 113: 673-676. 10.1016/S0092-8674(03)00428-8.CrossRefPubMed Ambros V: MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003, 113: 673-676. 10.1016/S0092-8674(03)00428-8.CrossRefPubMed
13.
go back to reference Coppola V, De MR, Bonci D: MicroRNAs and prostate cancer. Endocr Relat Cancer. 2010, 17: F1-F17. 10.1677/ERC-09-0172.CrossRefPubMed Coppola V, De MR, Bonci D: MicroRNAs and prostate cancer. Endocr Relat Cancer. 2010, 17: F1-F17. 10.1677/ERC-09-0172.CrossRefPubMed
14.
go back to reference Bushati N, Cohen SM: microRNA functions. Annu Rev Cell Dev Biol. 2007, 23: 175-205. 10.1146/annurev.cellbio.23.090506.123406.CrossRefPubMed Bushati N, Cohen SM: microRNA functions. Annu Rev Cell Dev Biol. 2007, 23: 175-205. 10.1146/annurev.cellbio.23.090506.123406.CrossRefPubMed
15.
go back to reference Stefani G, Slack FJ: Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol. 2008, 9: 219-230. 10.1038/nrm2347.CrossRefPubMed Stefani G, Slack FJ: Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol. 2008, 9: 219-230. 10.1038/nrm2347.CrossRefPubMed
17.
go back to reference Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD: MicroRNAs: new regulators of immune cell development and function. Nat Immunol. 2008, 9: 839-845. 10.1038/ni.f.209.CrossRefPubMed Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD: MicroRNAs: new regulators of immune cell development and function. Nat Immunol. 2008, 9: 839-845. 10.1038/ni.f.209.CrossRefPubMed
19.
20.
go back to reference Bushati N, Cohen SM: MicroRNAs in neurodegeneration. Curr Opin Neurobiol. 2008, 18: 292-296. 10.1016/j.conb.2008.07.001.CrossRefPubMed Bushati N, Cohen SM: MicroRNAs in neurodegeneration. Curr Opin Neurobiol. 2008, 18: 292-296. 10.1016/j.conb.2008.07.001.CrossRefPubMed
21.
go back to reference Kloosterman WP, Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006, 11: 441-450. 10.1016/j.devcel.2006.09.009.CrossRefPubMed Kloosterman WP, Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006, 11: 441-450. 10.1016/j.devcel.2006.09.009.CrossRefPubMed
22.
23.
go back to reference Pang Y, Young CY, Yuan H: MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai). 2010, 42: 363-369. 10.1093/abbs/gmq038.CrossRef Pang Y, Young CY, Yuan H: MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai). 2010, 42: 363-369. 10.1093/abbs/gmq038.CrossRef
24.
go back to reference Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S et al: Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One. 2010, 5: e8697-10.1371/journal.pone.0008697.PubMedCentralCrossRefPubMed Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S et al: Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One. 2010, 5: e8697-10.1371/journal.pone.0008697.PubMedCentralCrossRefPubMed
25.
go back to reference Aqeilan RI, Calin GA, Croce CM: miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010, 17: 215-220. 10.1038/cdd.2009.69.CrossRefPubMed Aqeilan RI, Calin GA, Croce CM: miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010, 17: 215-220. 10.1038/cdd.2009.69.CrossRefPubMed
26.
go back to reference Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M et al: An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA. 2007, 104: 19983-19988. 10.1073/pnas.0706641104.PubMedCentralCrossRefPubMed Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M et al: An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA. 2007, 104: 19983-19988. 10.1073/pnas.0706641104.PubMedCentralCrossRefPubMed
27.
go back to reference Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH et al: MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene. 2008, 27: 4373-4379. 10.1038/onc.2008.72.CrossRefPubMed Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH et al: MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene. 2008, 27: 4373-4379. 10.1038/onc.2008.72.CrossRefPubMed
28.
go back to reference Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK et al: Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer. 2006, 5: 24-10.1186/1476-4598-5-24.PubMedCentralCrossRefPubMed Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK et al: Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer. 2006, 5: 24-10.1186/1476-4598-5-24.PubMedCentralCrossRefPubMed
29.
go back to reference Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T: MicroRNA expression profiling in prostate cancer. Cancer Res. 2007, 67: 6130-6135. 10.1158/0008-5472.CAN-07-0533.CrossRefPubMed Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T: MicroRNA expression profiling in prostate cancer. Cancer Res. 2007, 67: 6130-6135. 10.1158/0008-5472.CAN-07-0533.CrossRefPubMed
30.
go back to reference Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH et al: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004, 23: 4051-4060. 10.1038/sj.emboj.7600385.PubMedCentralCrossRefPubMed Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH et al: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004, 23: 4051-4060. 10.1038/sj.emboj.7600385.PubMedCentralCrossRefPubMed
31.
go back to reference Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature. 2004, 432: 231-235. 10.1038/nature03049.CrossRefPubMed Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature. 2004, 432: 231-235. 10.1038/nature03049.CrossRefPubMed
32.
go back to reference Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al: The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003, 425: 415-419. 10.1038/nature01957.CrossRefPubMed Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al: The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003, 425: 415-419. 10.1038/nature01957.CrossRefPubMed
33.
go back to reference Bohnsack MT, Czaplinski K, Gorlich D: Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004, 10: 185-191. 10.1261/rna.5167604.PubMedCentralCrossRefPubMed Bohnsack MT, Czaplinski K, Gorlich D: Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004, 10: 185-191. 10.1261/rna.5167604.PubMedCentralCrossRefPubMed
34.
go back to reference Yi R, Qin Y, Macara IG, Cullen BR: Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003, 17: 3011-3016. 10.1101/gad.1158803.PubMedCentralCrossRefPubMed Yi R, Qin Y, Macara IG, Cullen BR: Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003, 17: 3011-3016. 10.1101/gad.1158803.PubMedCentralCrossRefPubMed
35.
go back to reference Bernstein E, Caudy AA, Hammond SM, Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001, 409: 363-366. 10.1038/35053110.CrossRefPubMed Bernstein E, Caudy AA, Hammond SM, Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001, 409: 363-366. 10.1038/35053110.CrossRefPubMed
36.
go back to reference Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH: Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 2001, 15: 2654-2659. 10.1101/gad.927801.PubMedCentralCrossRefPubMed Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH: Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 2001, 15: 2654-2659. 10.1101/gad.927801.PubMedCentralCrossRefPubMed
37.
go back to reference Hammond SM, Bernstein E, Beach D, Hannon GJ: An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000, 404: 293-296. 10.1038/35005107.CrossRefPubMed Hammond SM, Bernstein E, Beach D, Hannon GJ: An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000, 404: 293-296. 10.1038/35005107.CrossRefPubMed
38.
go back to reference Schwarz DS, Hutvagner G, Haley B, Zamore PD: Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell. 2002, 10: 537-548. 10.1016/S1097-2765(02)00651-2.CrossRefPubMed Schwarz DS, Hutvagner G, Haley B, Zamore PD: Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell. 2002, 10: 537-548. 10.1016/S1097-2765(02)00651-2.CrossRefPubMed
39.
go back to reference Visvader JE, Lindeman GJ: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008, 8: 755-768. 10.1038/nrc2499.CrossRefPubMed Visvader JE, Lindeman GJ: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008, 8: 755-768. 10.1038/nrc2499.CrossRefPubMed
40.
42.
go back to reference Dick JE: Normal and leukemic human stem cells assayed in SCID mice. Semin Immunol. 1996, 8: 197-206. 10.1006/smim.1996.0025.CrossRefPubMed Dick JE: Normal and leukemic human stem cells assayed in SCID mice. Semin Immunol. 1996, 8: 197-206. 10.1006/smim.1996.0025.CrossRefPubMed
43.
go back to reference Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE: Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006, 12: 1167-1174. 10.1038/nm1483.CrossRefPubMed Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE: Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006, 12: 1167-1174. 10.1038/nm1483.CrossRefPubMed
44.
go back to reference Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ: Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005, 65: 10946-10951. 10.1158/0008-5472.CAN-05-2018.CrossRefPubMed Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ: Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005, 65: 10946-10951. 10.1158/0008-5472.CAN-05-2018.CrossRefPubMed
45.
go back to reference Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al: Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene. 2006, 25: 1696-1708. 10.1038/sj.onc.1209327.CrossRefPubMed Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al: Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene. 2006, 25: 1696-1708. 10.1038/sj.onc.1209327.CrossRefPubMed
46.
go back to reference Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG: Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res. 2007, 67: 6796-6805. 10.1158/0008-5472.CAN-07-0490.CrossRefPubMed Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG: Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res. 2007, 67: 6796-6805. 10.1158/0008-5472.CAN-07-0490.CrossRefPubMed
47.
go back to reference Croce CM, Calin GA: miRNAs, cancer, and stem cell division. Cell. 2005, 122: 6-7. 10.1016/j.cell.2005.06.036.CrossRefPubMed Croce CM, Calin GA: miRNAs, cancer, and stem cell division. Cell. 2005, 122: 6-7. 10.1016/j.cell.2005.06.036.CrossRefPubMed
48.
go back to reference Melton C, Judson RL, Blelloch R: Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature. 2010, 463: 621-626. 10.1038/nature08725.PubMedCentralCrossRefPubMed Melton C, Judson RL, Blelloch R: Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature. 2010, 463: 621-626. 10.1038/nature08725.PubMedCentralCrossRefPubMed
49.
go back to reference Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al: let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007, 131: 1109-1123. 10.1016/j.cell.2007.10.054.CrossRefPubMed Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al: let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007, 131: 1109-1123. 10.1016/j.cell.2007.10.054.CrossRefPubMed
50.
go back to reference Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al: Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009, 138: 592-603. 10.1016/j.cell.2009.07.011.PubMedCentralCrossRefPubMed Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al: Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009, 138: 592-603. 10.1016/j.cell.2009.07.011.PubMedCentralCrossRefPubMed
51.
go back to reference Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY et al: Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004, 270: 488-498. 10.1016/j.ydbio.2004.02.019.CrossRefPubMed Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY et al: Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004, 270: 488-498. 10.1016/j.ydbio.2004.02.019.CrossRefPubMed
52.
go back to reference He L, He X, Lim LP, De SE, Xuan Z, Liang Y et al: A microRNA component of the p53 tumour suppressor network. Nature. 2007, 447: 1130-1134. 10.1038/nature05939.PubMedCentralCrossRefPubMed He L, He X, Lim LP, De SE, Xuan Z, Liang Y et al: A microRNA component of the p53 tumour suppressor network. Nature. 2007, 447: 1130-1134. 10.1038/nature05939.PubMedCentralCrossRefPubMed
53.
go back to reference Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007, 26: 731-743. 10.1016/j.molcel.2007.05.017.CrossRefPubMed Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007, 26: 731-743. 10.1016/j.molcel.2007.05.017.CrossRefPubMed
54.
go back to reference Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007, 26: 745-752. 10.1016/j.molcel.2007.05.010.PubMedCentralCrossRefPubMed Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007, 26: 745-752. 10.1016/j.molcel.2007.05.010.PubMedCentralCrossRefPubMed
55.
go back to reference Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE : p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007, 17: 1298-1307. 10.1016/j.cub.2007.06.068.CrossRefPubMed Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE : p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007, 17: 1298-1307. 10.1016/j.cub.2007.06.068.CrossRefPubMed
56.
go back to reference Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A et al: Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 2007, 6: 1586-1593. 10.4161/cc.6.13.4436.CrossRefPubMed Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A et al: Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 2007, 6: 1586-1593. 10.4161/cc.6.13.4436.CrossRefPubMed
57.
go back to reference Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011, 17: 211-215. 10.1038/nm.2284.PubMedCentralCrossRefPubMed Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011, 17: 211-215. 10.1038/nm.2284.PubMedCentralCrossRefPubMed
58.
go back to reference Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 2009, 139: 871-890. 10.1016/j.cell.2009.11.007.CrossRefPubMed Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 2009, 139: 871-890. 10.1016/j.cell.2009.11.007.CrossRefPubMed
59.
go back to reference Leshem O, Madar S, Kogan-Sakin I, Kamer I, Goldstein I, Brosh R et al: TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One. 2011, 6: e21650-10.1371/journal.pone.0021650.PubMedCentralCrossRefPubMed Leshem O, Madar S, Kogan-Sakin I, Kamer I, Goldstein I, Brosh R et al: TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One. 2011, 6: e21650-10.1371/journal.pone.0021650.PubMedCentralCrossRefPubMed
61.
go back to reference Bracken CP, Gregory PA, Khew-Goodall Y, Goodall GJ: The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cell Mol Life Sci. 2009, 66: 1682-1699. 10.1007/s00018-009-8750-1.CrossRefPubMed Bracken CP, Gregory PA, Khew-Goodall Y, Goodall GJ: The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cell Mol Life Sci. 2009, 66: 1682-1699. 10.1007/s00018-009-8750-1.CrossRefPubMed
63.
go back to reference Ahmad A, Ali AS, Ali S, Wang Z, Kong D, Sarkar FH: MicroRNAs: Targets of Interest in Breast Cancer Research. MicroRNA: Expression, Detection and Therapeutic Strategies. Edited by: Mulligan JA. 2011, New York: Nova Publishers, 59-78. Ahmad A, Ali AS, Ali S, Wang Z, Kong D, Sarkar FH: MicroRNAs: Targets of Interest in Breast Cancer Research. MicroRNA: Expression, Detection and Therapeutic Strategies. Edited by: Mulligan JA. 2011, New York: Nova Publishers, 59-78.
64.
go back to reference Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F et al: Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010, 126: 1166-1176.PubMed Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F et al: Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010, 126: 1166-1176.PubMed
65.
go back to reference Ozen M, Creighton CJ, Ozdemir M, Ittmann M: Widespread deregulation of microRNA expression in human prostate cancer. Oncogene. 2008, 27: 1788-1793. 10.1038/sj.onc.1210809.CrossRefPubMed Ozen M, Creighton CJ, Ozdemir M, Ittmann M: Widespread deregulation of microRNA expression in human prostate cancer. Oncogene. 2008, 27: 1788-1793. 10.1038/sj.onc.1210809.CrossRefPubMed
66.
go back to reference Fu X, Xue C, Huang Y, Xie Y, Li Y: The activity and expression of microRNAs in prostate cancers. Mol Biosyst. 2010, 6: 2561-2572. 10.1039/c0mb00100g.CrossRefPubMed Fu X, Xue C, Huang Y, Xie Y, Li Y: The activity and expression of microRNAs in prostate cancers. Mol Biosyst. 2010, 6: 2561-2572. 10.1039/c0mb00100g.CrossRefPubMed
67.
go back to reference Clape C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F et al: miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One. 2009, 4: e7542-10.1371/journal.pone.0007542.PubMedCentralCrossRefPubMed Clape C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F et al: miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One. 2009, 4: e7542-10.1371/journal.pone.0007542.PubMedCentralCrossRefPubMed
68.
go back to reference Micalizzi DS, Farabaugh SM, Ford HL: Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010, 15: 117-134. 10.1007/s10911-010-9178-9.PubMedCentralCrossRefPubMed Micalizzi DS, Farabaugh SM, Ford HL: Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010, 15: 117-134. 10.1007/s10911-010-9178-9.PubMedCentralCrossRefPubMed
69.
go back to reference Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR et al: miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells. 2009, 27: 1712-1721. 10.1002/stem.101.PubMedCentralCrossRefPubMed Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR et al: miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells. 2009, 27: 1712-1721. 10.1002/stem.101.PubMedCentralCrossRefPubMed
70.
go back to reference Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S et al: Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One. 2010, 5: e12445-10.1371/journal.pone.0012445.PubMedCentralCrossRefPubMed Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S et al: Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One. 2010, 5: e12445-10.1371/journal.pone.0012445.PubMedCentralCrossRefPubMed
71.
go back to reference Brase JC, Johannes M, Schlomm T, Falth M, Haese A, Steuber T et al: Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 2011, 128: 608-616. 10.1002/ijc.25376.CrossRefPubMed Brase JC, Johannes M, Schlomm T, Falth M, Haese A, Steuber T et al: Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 2011, 128: 608-616. 10.1002/ijc.25376.CrossRefPubMed
72.
go back to reference Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L et al: Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene. 2011, 30: 4231-4242. 10.1038/onc.2011.140.CrossRefPubMed Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L et al: Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene. 2011, 30: 4231-4242. 10.1038/onc.2011.140.CrossRefPubMed
74.
go back to reference Ahmad A, Aboukameel A, Kong D, Wang Z, Sethi S, Chen W et al: Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res. 2011, 71: 3400-3409. 10.1158/0008-5472.CAN-10-0965.PubMedCentralCrossRefPubMed Ahmad A, Aboukameel A, Kong D, Wang Z, Sethi S, Chen W et al: Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res. 2011, 71: 3400-3409. 10.1158/0008-5472.CAN-10-0965.PubMedCentralCrossRefPubMed
75.
go back to reference Sikand K, Slaibi JE, Singh R, Slane SD, Shukla GC: miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int J Cancer. 2010, DOI: 10.1002/ijc.25753 Sikand K, Slaibi JE, Singh R, Slane SD, Shukla GC: miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int J Cancer. 2010, DOI: 10.1002/ijc.25753
76.
go back to reference Sun T, Wang Q, Balk S, Brown M, Lee GS, Kantoff P: The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res. 2009, 69: 3356-3363. 10.1158/0008-5472.CAN-08-4112.PubMedCentralCrossRefPubMed Sun T, Wang Q, Balk S, Brown M, Lee GS, Kantoff P: The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res. 2009, 69: 3356-3363. 10.1158/0008-5472.CAN-08-4112.PubMedCentralCrossRefPubMed
77.
go back to reference Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA et al: miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem. 2007, 282: 23716-23724. 10.1074/jbc.M701805200.CrossRefPubMed Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA et al: miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem. 2007, 282: 23716-23724. 10.1074/jbc.M701805200.CrossRefPubMed
78.
go back to reference Zheng C, Yinghao S, Li J: MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2. Med Oncol. 2011, DOI: 10.1007/s12032-011-9934-8 Zheng C, Yinghao S, Li J: MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2. Med Oncol. 2011, DOI: 10.1007/s12032-011-9934-8
79.
go back to reference Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY: miR-21-mediated tumor growth. Oncogene. 2007, 26: 2799-2803. 10.1038/sj.onc.1210083.CrossRefPubMed Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY: miR-21-mediated tumor growth. Oncogene. 2007, 26: 2799-2803. 10.1038/sj.onc.1210083.CrossRefPubMed
80.
go back to reference Selcuklu SD, Donoghue MT, Spillane C: miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans. 2009, 37: 918-925. 10.1042/BST0370918.CrossRefPubMed Selcuklu SD, Donoghue MT, Spillane C: miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans. 2009, 37: 918-925. 10.1042/BST0370918.CrossRefPubMed
81.
go back to reference Li T, Li D, Sha J, Sun P, Huang Y: MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun. 2009, 383: 280-285. 10.1016/j.bbrc.2009.03.077.CrossRefPubMed Li T, Li D, Sha J, Sun P, Huang Y: MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun. 2009, 383: 280-285. 10.1016/j.bbrc.2009.03.077.CrossRefPubMed
82.
go back to reference Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH et al: miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res. 2009, 69: 7165-7169. 10.1158/0008-5472.CAN-09-1448.PubMedCentralCrossRefPubMed Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH et al: miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res. 2009, 69: 7165-7169. 10.1158/0008-5472.CAN-09-1448.PubMedCentralCrossRefPubMed
83.
go back to reference Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S et al: Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One. 2011, 6: e17850-10.1371/journal.pone.0017850.PubMedCentralCrossRefPubMed Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S et al: Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One. 2011, 6: e17850-10.1371/journal.pone.0017850.PubMedCentralCrossRefPubMed
84.
go back to reference Lee YS, Kim HK, Chung S, Kim KS, Dutta A: Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem. 2005, 280: 16635-16641. 10.1074/jbc.M412247200.CrossRefPubMed Lee YS, Kim HK, Chung S, Kim KS, Dutta A: Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem. 2005, 280: 16635-16641. 10.1074/jbc.M412247200.CrossRefPubMed
85.
go back to reference Vere White RW, Vinall RL, Tepper CG, Shi XB: MicroRNAs and their potential for translation in prostate cancer. Urol Oncol. 2009, 27: 307-311. 10.1016/j.urolonc.2009.01.004.CrossRef Vere White RW, Vinall RL, Tepper CG, Shi XB: MicroRNAs and their potential for translation in prostate cancer. Urol Oncol. 2009, 27: 307-311. 10.1016/j.urolonc.2009.01.004.CrossRef
86.
go back to reference Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM et al: Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010, 70: 3606-3617. 10.1158/0008-5472.CAN-09-4598.PubMedCentralCrossRefPubMed Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM et al: Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010, 70: 3606-3617. 10.1158/0008-5472.CAN-09-4598.PubMedCentralCrossRefPubMed
87.
go back to reference Ali S, Almhanna K, Chen W, Philip PA, Sarkar FH: Differentially expressed miRNAs in the plasma may provide a molecular signature for aggressive pancreatic cancer. Am J Transl Res. 2010, 3: 28-47.PubMedCentralPubMed Ali S, Almhanna K, Chen W, Philip PA, Sarkar FH: Differentially expressed miRNAs in the plasma may provide a molecular signature for aggressive pancreatic cancer. Am J Transl Res. 2010, 3: 28-47.PubMedCentralPubMed
88.
go back to reference Ali S, Banerjee S, Logna F, Bao B, Philip PA, Korc M et al: Inactivation of Ink4a/Arf leads to deregulated expression of miRNAs in K-Ras transgenic mouse model of pancreatic cancer. J Cell Physiol. 2011, DOI:10.1002/jcp.24036 Ali S, Banerjee S, Logna F, Bao B, Philip PA, Korc M et al: Inactivation of Ink4a/Arf leads to deregulated expression of miRNAs in K-Ras transgenic mouse model of pancreatic cancer. J Cell Physiol. 2011, DOI:10.1002/jcp.24036
89.
go back to reference Ali S, Ahmad A, Aboukameel A, Bao B, Padhye S, Philip PA et al: Increased Ras GTPase activity is regulated by miRNAs that can be attenuated by CDF treatment in pancreatic cancer cells. Cancer Lett. 2012, DOI:10.1016/j.canlet.2012.01.013 Ali S, Ahmad A, Aboukameel A, Bao B, Padhye S, Philip PA et al: Increased Ras GTPase activity is regulated by miRNAs that can be attenuated by CDF treatment in pancreatic cancer cells. Cancer Lett. 2012, DOI:10.1016/j.canlet.2012.01.013
90.
go back to reference Yu Y, Kanwar SS, Patel BB, Oh PS, Nautiyal J, Sarkar FH et al: MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFbetaR2) in colon cancer cells. Carcinogenesis. 2012, 33: 68-76. 10.1093/carcin/bgr246.PubMedCentralCrossRefPubMed Yu Y, Kanwar SS, Patel BB, Oh PS, Nautiyal J, Sarkar FH et al: MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFbetaR2) in colon cancer cells. Carcinogenesis. 2012, 33: 68-76. 10.1093/carcin/bgr246.PubMedCentralCrossRefPubMed
Metadata
Title
Recent updates on the role of microRNAs in prostate cancer
Authors
Oudai Hassan
Aamir Ahmad
Seema Sethi
Fazlul H Sarkar
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2012
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-5-9

Other articles of this Issue 1/2012

Journal of Hematology & Oncology 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine