Skip to main content
Top
Published in: Journal of Medical Case Reports 1/2012

Open Access 01-12-2012 | Case report

Minimal access direct spondylolysis repair using a pedicle screw-rod system: a case series

Author: Mohamed Mohi Eldin

Published in: Journal of Medical Case Reports | Issue 1/2012

Login to get access

Abstract

Introduction

Symptomatic spondylolysis is always challenging to treat because the pars defect causing the instability needs to be stabilized while segmental fusion needs to be avoided. Direct repair of the pars defect is ideal in cases of spondylolysis in which posterior decompression is not necessary. We report clinical results using segmental pedicle-screw-rod fixation with bone grafting in patients with symptomatic spondylolysis, a modification of a technique first reported by Tokuhashi and Matsuzaki in 1996. We also describe the surgical technique, assess the fusion and analyze the outcomes of patients.

Case presentation

At Cairo University Hospital, eight out of twelve Egyptian patients’ acute pars fractures healed after conservative management. Of those, two young male patients underwent an operative procedure for chronic low back pain secondary to pars defect. Case one was a 25-year-old Egyptian man who presented with a one-year history of axial low back pain, not radiating to the lower limbs, after falling from height. Case two was a 29-year-old Egyptian man who presented with a one-year history of axial low back pain and a one-year history of mild claudication and infrequent radiation to the leg, never below the knee. Utilizing a standardized mini-access fluoroscopically-guided surgical protocol, fixation was established with two titanium pedicle screws place into both pedicles, at the same level as the pars defect, without violating the facet joint. The cleaned pars defect was grafted; a curved titanium rod was then passed under the base of the spinous process of the affected vertebra, bridging the loose fragment, and attached to the pedicle screw heads, to uplift the spinal process, followed by compression of the defect. The patients were discharged three days after the procedure, with successful fusion at one-year follow-up. No rod breakage or implant-related complications were reported.

Conclusions

Where there is no evidence of frank spondylolisthesis or displacement and pain does not radiate below the knee, we recommend direct repair of the pars interarticularis fracture, especially in young active adults. We describe a modified form of the Buck screw procedure with a minimally invasive, image-guided method of pars interarticularis fixation. The use of image guidance simplifies the otherwise difficult visualization required for pars interarticularis screw placement and allows minimal skin and muscle dissection, which may translate into a more rapid postoperative recovery.
Appendix
Available only for authorised users
Literature
1.
go back to reference Deguchi M, RapoV AJ, Zdeblick TA: Biomechanical comparison of spondylolysis fixation techniques. Spine. 1999, 24 (4): 328-333. 10.1097/00007632-199902150-00004.CrossRefPubMed Deguchi M, RapoV AJ, Zdeblick TA: Biomechanical comparison of spondylolysis fixation techniques. Spine. 1999, 24 (4): 328-333. 10.1097/00007632-199902150-00004.CrossRefPubMed
2.
go back to reference Tokuhashi Y, Matsuzaki H: Repair of defects in spondylolysis by segmental pedicular screw hook fixation: a preliminary report. Spine. 1996, 21: 2041-2045. 10.1097/00007632-199609010-00023.CrossRefPubMed Tokuhashi Y, Matsuzaki H: Repair of defects in spondylolysis by segmental pedicular screw hook fixation: a preliminary report. Spine. 1996, 21: 2041-2045. 10.1097/00007632-199609010-00023.CrossRefPubMed
3.
go back to reference Louis R: Pars interarticularis reconstruction of spondylolysis using plates and screws with grafting without arthrodesis. Rev Chir Orthop Reparatrice Appar Mot. 1988, 74 (6): 549-557.PubMed Louis R: Pars interarticularis reconstruction of spondylolysis using plates and screws with grafting without arthrodesis. Rev Chir Orthop Reparatrice Appar Mot. 1988, 74 (6): 549-557.PubMed
4.
go back to reference Pfirrmann WA, Metzdor A, Zanetti M: Magnetic resonance classification of lumbar intervertebral disc degeneration. SPINE. 2001, 26 (17): 1873-1878. 10.1097/00007632-200109010-00011.CrossRefPubMed Pfirrmann WA, Metzdor A, Zanetti M: Magnetic resonance classification of lumbar intervertebral disc degeneration. SPINE. 2001, 26 (17): 1873-1878. 10.1097/00007632-200109010-00011.CrossRefPubMed
5.
go back to reference Morita T, Ikata T, Katoh S: Pathogenesis of spondylolysis and spondylolisthesis in young athletes based on a radiological and MRI study. North American Spine Society/Japanese Spine Research Society Spine Across the Sea meeting: 18–24 April 1994; Maui, Hawaii. 1994 Morita T, Ikata T, Katoh S: Pathogenesis of spondylolysis and spondylolisthesis in young athletes based on a radiological and MRI study. North American Spine Society/Japanese Spine Research Society Spine Across the Sea meeting: 18–24 April 1994; Maui, Hawaii. 1994
6.
go back to reference Wiltse LL, Newman PH, Macnab I: Classification of spondylolysis and spondylolisthesis. Clin Orthop. 1976, 117: 23-29.PubMed Wiltse LL, Newman PH, Macnab I: Classification of spondylolysis and spondylolisthesis. Clin Orthop. 1976, 117: 23-29.PubMed
7.
go back to reference Blanda J, Bethem D, Moats W, Lew M: Defects of pars interarticularis in athletes: a protocol for nonoperative treatment. J Spinal Disord. 1993, 6: 406-411. 10.1097/00002517-199306050-00007.CrossRefPubMed Blanda J, Bethem D, Moats W, Lew M: Defects of pars interarticularis in athletes: a protocol for nonoperative treatment. J Spinal Disord. 1993, 6: 406-411. 10.1097/00002517-199306050-00007.CrossRefPubMed
8.
go back to reference Buck JE: Direct repair of the defect in spondylolisthesis: preliminary report. J Bone Joint Surg Br. 1970, 52 (3): 432-437.PubMed Buck JE: Direct repair of the defect in spondylolisthesis: preliminary report. J Bone Joint Surg Br. 1970, 52 (3): 432-437.PubMed
9.
go back to reference Buring K, Fredensborg N: Osteosynthesis of spondylolysis. Acta Orthop Scand. 1973, 44: 91-92. Buring K, Fredensborg N: Osteosynthesis of spondylolysis. Acta Orthop Scand. 1973, 44: 91-92.
10.
go back to reference Kimura M: My method of filling the lesion with spongy bone in spondylolysis and spondylolisthesis [in Japanese]. Seikei Geka. 1968, 19: 285-296.PubMed Kimura M: My method of filling the lesion with spongy bone in spondylolysis and spondylolisthesis [in Japanese]. Seikei Geka. 1968, 19: 285-296.PubMed
11.
go back to reference Morscher E, Gerber B, Fasel J: Surgical treatment of spondylolisthesis by bone grafting and direct stabilization of spondylolysis by means of a hook screw. Arch Orthop Trauma Surg. 1984, 103: 175-178. 10.1007/BF00435550.CrossRefPubMed Morscher E, Gerber B, Fasel J: Surgical treatment of spondylolisthesis by bone grafting and direct stabilization of spondylolysis by means of a hook screw. Arch Orthop Trauma Surg. 1984, 103: 175-178. 10.1007/BF00435550.CrossRefPubMed
12.
go back to reference Scott JHS: The Edinburgh repair of isthmic (Group II) spondylolysis. J Bone Joint Surg Br. 1987, 69-B: 491- Scott JHS: The Edinburgh repair of isthmic (Group II) spondylolysis. J Bone Joint Surg Br. 1987, 69-B: 491-
13.
go back to reference Hardcastle P, Annear P, Foster DH, Chakera TM, McCormick C, Khangure M, Burnett A: Spinal abnormality in young fast bowlers. J Bone Joint Surg Br. 1992, 74: 421-425.PubMed Hardcastle P, Annear P, Foster DH, Chakera TM, McCormick C, Khangure M, Burnett A: Spinal abnormality in young fast bowlers. J Bone Joint Surg Br. 1992, 74: 421-425.PubMed
14.
go back to reference Nicol RO, Scott JH: Lytic spondylolysis: repair by wiring. Spine. 1986, 11: 1027-1030. 10.1097/00007632-198612000-00011.CrossRefPubMed Nicol RO, Scott JH: Lytic spondylolysis: repair by wiring. Spine. 1986, 11: 1027-1030. 10.1097/00007632-198612000-00011.CrossRefPubMed
15.
go back to reference Roca J, Moretta D, Fuster S, Roca A: Direct repair of spondylolysis. Clin Orthop Relat Res. 1989, 246: 86-91.PubMed Roca J, Moretta D, Fuster S, Roca A: Direct repair of spondylolysis. Clin Orthop Relat Res. 1989, 246: 86-91.PubMed
16.
go back to reference Johnson GV, Thompson AG: The Scott wiring technique for direct repair of lumbar spondylolysis. J Bone Joint Surg Br. 1992, 74: 426-430.PubMed Johnson GV, Thompson AG: The Scott wiring technique for direct repair of lumbar spondylolysis. J Bone Joint Surg Br. 1992, 74: 426-430.PubMed
17.
go back to reference Ulibarri JA, Anderson PA, Escarcega T, Mann D, Noonan KJ: Biomechanical and clinical evaluation of a novel technique for surgical repair of spondylolysis in adolescents. Spine. 2006, 31: 2067-2072. 10.1097/01.brs.0000231777.24270.2b.CrossRefPubMed Ulibarri JA, Anderson PA, Escarcega T, Mann D, Noonan KJ: Biomechanical and clinical evaluation of a novel technique for surgical repair of spondylolysis in adolescents. Spine. 2006, 31: 2067-2072. 10.1097/01.brs.0000231777.24270.2b.CrossRefPubMed
Metadata
Title
Minimal access direct spondylolysis repair using a pedicle screw-rod system: a case series
Author
Mohamed Mohi Eldin
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Medical Case Reports / Issue 1/2012
Electronic ISSN: 1752-1947
DOI
https://doi.org/10.1186/1752-1947-6-396

Other articles of this Issue 1/2012

Journal of Medical Case Reports 1/2012 Go to the issue