Skip to main content
Top
Published in: Journal of Medical Case Reports 1/2012

Open Access 01-12-2012 | Case report

46,XX ovotesticular disorder in a Mexican patient with Beckwith–Wiedemann syndrome: a case report

Authors: Nelly Margarita Macías-Gómez, Evelia Leal-Ugarte, Melva Gutiérrez-Angulo, Guadalupe Domínguez-Quezada, Horacio Rivera, Patricio Barros-Núñez

Published in: Journal of Medical Case Reports | Issue 1/2012

Login to get access

Abstract

Introduction

Beckwith–Wiedemann syndrome is an overgrowth syndrome that is characterized by hypoglycemia at birth, coarse face, hemihypertrophy and an increased risk to develop embryonal tumors. In approximately 15% of patients, the inheritance is autosomal dominant with variable expressivity and incomplete penetrance, whereas the remainder of Beckwith–Wiedemann syndrome cases are sporadic. Beckwith–Wiedemann syndrome molecular etiologies are complex and involve the two imprinting centers 1 (IC1) and 2 (IC2) of 11p15 region. This case report describes, for the first time, the unusual association of ovotesticular disorder in a patient from Morelia, Mexico with Wiedemann-Beckwith syndrome.

Case presentation

We report the case of a Mexican six-year-old girl with Beckwith–Wiedemann Syndrome, ambiguous genitalia, and bilateral ovotestes. She has a 46,XX karyotype without evidence of Y-chromosome sequences detected by fluorescence in situ hybridization with both SRY and wcp-Y probes.

Conclusion

Although a random association between these two conditions cannot be excluded, future analysis of this patient with Beckwith–Wiedemann syndrome and 46,XX ovotesticular disorder may lead to new insights into these complex pathologies. We speculate that a possible misregulation in the imprinted genes network has a fundamental role in the coexistence of these two disorders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Smith AC, Choufani S, Ferreira JC, Weksberg R: Growth regulation, imprinted genes, and chromosome 11p15.5. Pediatr Res. 2007, 61 (5Pt 2): 43R-47R.CrossRefPubMed Smith AC, Choufani S, Ferreira JC, Weksberg R: Growth regulation, imprinted genes, and chromosome 11p15.5. Pediatr Res. 2007, 61 (5Pt 2): 43R-47R.CrossRefPubMed
2.
go back to reference Diaz-Meyer N, Day CD, Khatod K, Maher ER, Cooper W, Reik W, Junien C, Graham G, Algar E, Der Kaloustian VM, Higgins MJ: Silencing of CDKN1C (p57KIP2) is associated with hypomethylation at KvDMR1 in Beckwith-Wiedemann syndrome. J Med Genet. 2003, 40: 797-801. 10.1136/jmg.40.11.797.CrossRefPubMedPubMedCentral Diaz-Meyer N, Day CD, Khatod K, Maher ER, Cooper W, Reik W, Junien C, Graham G, Algar E, Der Kaloustian VM, Higgins MJ: Silencing of CDKN1C (p57KIP2) is associated with hypomethylation at KvDMR1 in Beckwith-Wiedemann syndrome. J Med Genet. 2003, 40: 797-801. 10.1136/jmg.40.11.797.CrossRefPubMedPubMedCentral
3.
go back to reference Algar E, Dagar V, Sebaj M, Pachter N: An 11p15 imprinting center region 2 deletion in a family with Beckwith-Wiedemann syndrome provides insights into imprinting control at CDKN1C. PLoS One. 2011, 6: e29034-10.1371/journal.pone.0029034.CrossRefPubMedPubMedCentral Algar E, Dagar V, Sebaj M, Pachter N: An 11p15 imprinting center region 2 deletion in a family with Beckwith-Wiedemann syndrome provides insights into imprinting control at CDKN1C. PLoS One. 2011, 6: e29034-10.1371/journal.pone.0029034.CrossRefPubMedPubMedCentral
4.
go back to reference Arima T, Kamikihara T, Hayashida T, Kato K, Inoue T, Shirayoshi Y, Oshimura M, Soejima H, Mukai T, Wake N: ZAC, LIT1 (KCNQ10T1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome. Nucleic Acids Res. 2005, 33: 2650-2660. 10.1093/nar/gki555.CrossRefPubMedPubMedCentral Arima T, Kamikihara T, Hayashida T, Kato K, Inoue T, Shirayoshi Y, Oshimura M, Soejima H, Mukai T, Wake N: ZAC, LIT1 (KCNQ10T1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome. Nucleic Acids Res. 2005, 33: 2650-2660. 10.1093/nar/gki555.CrossRefPubMedPubMedCentral
5.
go back to reference Russo S, Finelli P, Recalcati MP, Ferraiuolo S, Cogliati F, Dalla Bernardina B, Tibiletti MG, Agosti M, Sala M, Bonati MT, Larizza L: Molecular and genomic characterisation of cryptic chromosomal alterations leading to paternal duplication of the 11p15.5 Beckwith-Wiedemann region. J Med Genet. 2006, 43: e39-10.1136/jmg.2005.038398.CrossRefPubMedPubMedCentral Russo S, Finelli P, Recalcati MP, Ferraiuolo S, Cogliati F, Dalla Bernardina B, Tibiletti MG, Agosti M, Sala M, Bonati MT, Larizza L: Molecular and genomic characterisation of cryptic chromosomal alterations leading to paternal duplication of the 11p15.5 Beckwith-Wiedemann region. J Med Genet. 2006, 43: e39-10.1136/jmg.2005.038398.CrossRefPubMedPubMedCentral
6.
go back to reference Elliot M, Maher ER: Beckwith-Wiedemann syndrome. J Med Genet. 1994, 31: 560-564. 10.1136/jmg.31.7.560.CrossRef Elliot M, Maher ER: Beckwith-Wiedemann syndrome. J Med Genet. 1994, 31: 560-564. 10.1136/jmg.31.7.560.CrossRef
7.
go back to reference Enklaar T, Zabel BU, Prawitt D: Beckwith-Wiedemann syndrome: multiple molecular mechanisms. Expert Rev Mol Med. 2006, 8: 1-19.CrossRefPubMed Enklaar T, Zabel BU, Prawitt D: Beckwith-Wiedemann syndrome: multiple molecular mechanisms. Expert Rev Mol Med. 2006, 8: 1-19.CrossRefPubMed
8.
go back to reference Weksberg R, Smith AC, Squire J, Sadowski P: Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development. Hum Mol Genet. 2003, 12: R61-R68. 10.1093/hmg/ddg067.CrossRefPubMed Weksberg R, Smith AC, Squire J, Sadowski P: Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development. Hum Mol Genet. 2003, 12: R61-R68. 10.1093/hmg/ddg067.CrossRefPubMed
9.
go back to reference Kuhnle U, Krob G, Maier E: True hermaphroditism: presentation, management, outcome. Endocrinologist. 2003, 13: 214-218. 10.1097/01.ten.0000081681.43801.52.CrossRef Kuhnle U, Krob G, Maier E: True hermaphroditism: presentation, management, outcome. Endocrinologist. 2003, 13: 214-218. 10.1097/01.ten.0000081681.43801.52.CrossRef
10.
go back to reference Kousta E, Papathanasiou A, Skordis N: Sex determination and disorders of sex development according to the revised nomenclature and classification in 46, XX individuals. Hormones (Athens). 2010, 9: 218-131.CrossRef Kousta E, Papathanasiou A, Skordis N: Sex determination and disorders of sex development according to the revised nomenclature and classification in 46, XX individuals. Hormones (Athens). 2010, 9: 218-131.CrossRef
11.
go back to reference Ortenberg J, Oddoux C, Craver R, McElreavey K, Salas-Cortes L, Guillen-Navarro E, Ostrer H, Sarafoglou K, Clarke V, Yee H: SRY gene expression in the ovotestes of XX true hermaphrodites. J Urol. 2002, 167: 1828-1831. 10.1016/S0022-5347(05)65242-1.CrossRefPubMed Ortenberg J, Oddoux C, Craver R, McElreavey K, Salas-Cortes L, Guillen-Navarro E, Ostrer H, Sarafoglou K, Clarke V, Yee H: SRY gene expression in the ovotestes of XX true hermaphrodites. J Urol. 2002, 167: 1828-1831. 10.1016/S0022-5347(05)65242-1.CrossRefPubMed
12.
go back to reference Schamahl J, Eicher EM, Washburn LL, Capel B: SRY induce cell proliferation in the mouse gonad. Development. 2000, 127: 65-73. Schamahl J, Eicher EM, Washburn LL, Capel B: SRY induce cell proliferation in the mouse gonad. Development. 2000, 127: 65-73.
13.
go back to reference Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, Severac D, Chotard L, Kahli M, Le Digarcher A, Pavlidis P, Journot L: Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell. 2006, 11: 711-722. 10.1016/j.devcel.2006.09.003.CrossRefPubMed Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, Severac D, Chotard L, Kahli M, Le Digarcher A, Pavlidis P, Journot L: Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell. 2006, 11: 711-722. 10.1016/j.devcel.2006.09.003.CrossRefPubMed
14.
go back to reference Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forné T, Jammes H, Ainscough JF, Surani MA, Journot L, Dandolo L: H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development. 2009, 136: 3413-3421. 10.1242/dev.036061.CrossRefPubMed Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forné T, Jammes H, Ainscough JF, Surani MA, Journot L, Dandolo L: H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development. 2009, 136: 3413-3421. 10.1242/dev.036061.CrossRefPubMed
15.
go back to reference Tsuda T, Markova D, Wang H, Evangelisti L, Pan TC, Chu ML: Zinc finger protein Zac1 is expressed in chondrogenic sites of the mouse. Dev Dyn. 2004, 229: 340-348. 10.1002/dvdy.10439.CrossRefPubMed Tsuda T, Markova D, Wang H, Evangelisti L, Pan TC, Chu ML: Zinc finger protein Zac1 is expressed in chondrogenic sites of the mouse. Dev Dyn. 2004, 229: 340-348. 10.1002/dvdy.10439.CrossRefPubMed
16.
go back to reference Zhang L, Lin D, Zhang Y, Ma G, Zhang W: A homologue of Sox11 predominantly expressed in the ovary of the orange-spotted grouper Epinephelus coioides. Comp Biochem Physiol B Biochem Mol Biol. 2008, 149: 345-353. 10.1016/j.cbpb.2007.10.006.CrossRefPubMed Zhang L, Lin D, Zhang Y, Ma G, Zhang W: A homologue of Sox11 predominantly expressed in the ovary of the orange-spotted grouper Epinephelus coioides. Comp Biochem Physiol B Biochem Mol Biol. 2008, 149: 345-353. 10.1016/j.cbpb.2007.10.006.CrossRefPubMed
Metadata
Title
46,XX ovotesticular disorder in a Mexican patient with Beckwith–Wiedemann syndrome: a case report
Authors
Nelly Margarita Macías-Gómez
Evelia Leal-Ugarte
Melva Gutiérrez-Angulo
Guadalupe Domínguez-Quezada
Horacio Rivera
Patricio Barros-Núñez
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Medical Case Reports / Issue 1/2012
Electronic ISSN: 1752-1947
DOI
https://doi.org/10.1186/1752-1947-6-301

Other articles of this Issue 1/2012

Journal of Medical Case Reports 1/2012 Go to the issue