Skip to main content
Top
Published in: Journal of Medical Case Reports 1/2010

Open Access 01-12-2010 | Case report

Lack of correlation between pulmonary disease and cystic fibrosis transmembrane conductance regulator dysfunction in cystic fibrosis: a case report

Authors: Hara Levy, Carolynn L Cannon, Daniel Asher, Christopher García, Robert H Cleveland, Gerald B Pier, Michael R Knowles, Andrew A Colin

Published in: Journal of Medical Case Reports | Issue 1/2010

Login to get access

Abstract

Introduction

Mutations in both alleles of the cystic fibrosis transmembrane conductance regulator gene result in the disease cystic fibrosis, which usually manifests as chronic sinopulmonary disease, pancreatic insufficiency, elevated sodium chloride loss in sweat, infertility among men due to agenesis of the vas deferens and other symptoms including liver disease.

Case presentation

We describe a pair of African-American brothers, aged 21 and 27, with cystic fibrosis. They were homozygous for a rare frameshift mutation in the cystic fibrosis transmembrane conductance regulator 3791delC, which would be expected to cause significant morbidity. Although 80% of cystic fibrosis patients are colonized with Pseudomonas aeruginosa by eight years of age, the older brother had no serum opsonic antibody titer to P. aeruginosa by age 13 and therefore would have failed to mount an effective antibody response to the alginate (mucoid polysaccharide) capsule of P. aeruginosa. He was not colonized with P. aeruginosa until 24 years of age. Similarly, the younger brother was not colonized with P. aeruginosa until age 20 and had no significant lung disease.

Conclusion

Despite a prevailing idea in cystic fibrosis research that the amount of functional cystic fibrosis transmembrane conductance regulator predicts clinical status, our results indicated that respiratory disease severity in cystic fibrosis exhibits phenotypic heterogeneity. If this heterogeneity is, in part, genetic, it is most likely derived from genes outside the cystic fibrosis transmembrane conductance regulator locus.
Appendix
Available only for authorised users
Literature
1.
go back to reference Welsh MJ, Smith AE: Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993, 73: 1251-1254. 10.1016/0092-8674(93)90353-R.CrossRefPubMed Welsh MJ, Smith AE: Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993, 73: 1251-1254. 10.1016/0092-8674(93)90353-R.CrossRefPubMed
2.
go back to reference Zielinski J, Tsui LC: Cystic fibrosis: genotypic and phenotypic variations. Annual Review of Genetics. 1995, 29: 777-807. 10.1146/annurev.ge.29.120195.004021.CrossRef Zielinski J, Tsui LC: Cystic fibrosis: genotypic and phenotypic variations. Annual Review of Genetics. 1995, 29: 777-807. 10.1146/annurev.ge.29.120195.004021.CrossRef
3.
go back to reference Kerem E, Kerem B: Genotype-phenotype correlations in cystic fibrosis. Pediatr Pulmonol. 1996, 22: 387-395. 10.1002/(SICI)1099-0496(199612)22:6<387::AID-PPUL7>3.0.CO;2-G.CrossRefPubMed Kerem E, Kerem B: Genotype-phenotype correlations in cystic fibrosis. Pediatr Pulmonol. 1996, 22: 387-395. 10.1002/(SICI)1099-0496(199612)22:6<387::AID-PPUL7>3.0.CO;2-G.CrossRefPubMed
4.
go back to reference de Gracia J, Mata F, Alvarez A, Casals T, Gatner S, Vendrell M, de la Rosa D, Guarner L, Hermosilla E: Genotype-phenotype correlation for pulmonary function in cystic fibrosis. Thorax. 2005, 60: 558-563. 10.1136/thx.2004.031153.CrossRefPubMedPubMedCentral de Gracia J, Mata F, Alvarez A, Casals T, Gatner S, Vendrell M, de la Rosa D, Guarner L, Hermosilla E: Genotype-phenotype correlation for pulmonary function in cystic fibrosis. Thorax. 2005, 60: 558-563. 10.1136/thx.2004.031153.CrossRefPubMedPubMedCentral
5.
go back to reference Macek M, Mackova A, Hamosh A, Hilman BC, Selden RF, Lucotte G, Friedman KJ, Knowles MR, Rosenstein BJ, Cutting GR: Identification of common cystic fibrosis mutations in African-Americans with cystic fibrosis increases the detection rate to 75%. Am J Hum Genet. 1997, 60: 1122-1127.PubMedPubMedCentral Macek M, Mackova A, Hamosh A, Hilman BC, Selden RF, Lucotte G, Friedman KJ, Knowles MR, Rosenstein BJ, Cutting GR: Identification of common cystic fibrosis mutations in African-Americans with cystic fibrosis increases the detection rate to 75%. Am J Hum Genet. 1997, 60: 1122-1127.PubMedPubMedCentral
6.
go back to reference Skerrett SJ, Liggitt HD, Hajjar AM, Wilson CB: Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus. J Immunol. 2004, 172: 3377-3381.CrossRefPubMed Skerrett SJ, Liggitt HD, Hajjar AM, Wilson CB: Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus. J Immunol. 2004, 172: 3377-3381.CrossRefPubMed
7.
go back to reference Henry R, Mellis C, Petrovic L: Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol. 1992, 12: 158-161. 10.1002/ppul.1950120306.CrossRefPubMed Henry R, Mellis C, Petrovic L: Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol. 1992, 12: 158-161. 10.1002/ppul.1950120306.CrossRefPubMed
8.
go back to reference Huang NN, Schidlow DV, Szatrowski TH, Palmer J, Laraya-Cuasay LR, Yeung W, Hardy K, Quitell L, Fiel S: Clinical features, survival rate, and prognostic factors in adults with cystic fibrosis. Am J Med. 1987, 82: 871-879. 10.1016/0002-9343(87)90147-1.CrossRefPubMed Huang NN, Schidlow DV, Szatrowski TH, Palmer J, Laraya-Cuasay LR, Yeung W, Hardy K, Quitell L, Fiel S: Clinical features, survival rate, and prognostic factors in adults with cystic fibrosis. Am J Med. 1987, 82: 871-879. 10.1016/0002-9343(87)90147-1.CrossRefPubMed
9.
go back to reference Johnson C, Butler SM, Konstan MW, Morgan W, Wohl ME: Factors influencing outcomes in cystic fibrosis: a center-based analysis. Chest. 2003, 123: 20-27. 10.1378/chest.123.1.20.CrossRefPubMed Johnson C, Butler SM, Konstan MW, Morgan W, Wohl ME: Factors influencing outcomes in cystic fibrosis: a center-based analysis. Chest. 2003, 123: 20-27. 10.1378/chest.123.1.20.CrossRefPubMed
10.
go back to reference Brasfield D, Hicks G, Soong S, Peters J, Tiller R: Evaluation of scoring system of the chest radiograph in cystic fibrosis: a collaborative study. AJR Am J Roentgenol. 1980, 134: 1195-1198.CrossRefPubMed Brasfield D, Hicks G, Soong S, Peters J, Tiller R: Evaluation of scoring system of the chest radiograph in cystic fibrosis: a collaborative study. AJR Am J Roentgenol. 1980, 134: 1195-1198.CrossRefPubMed
11.
go back to reference Cleveland RH, Neish AS, Zurakowski D, Nichols DP, Wohl ME, Colin AA: Cystic fibrosis: a system for assessing and predicting progression. AJR Am J Roentgenol. 1998, 170: 1067-1072.CrossRefPubMed Cleveland RH, Neish AS, Zurakowski D, Nichols DP, Wohl ME, Colin AA: Cystic fibrosis: a system for assessing and predicting progression. AJR Am J Roentgenol. 1998, 170: 1067-1072.CrossRefPubMed
12.
go back to reference Cleveland RH, Neish AS, Zurakowski D, Nichols DP, Wohl ME, Colin AA: Cystic fibrosis: predictors of accelerated decline and distribution of disease in 230 patients. AJR Am J Roentgenol. 1998, 171: 1311-1315.CrossRefPubMed Cleveland RH, Neish AS, Zurakowski D, Nichols DP, Wohl ME, Colin AA: Cystic fibrosis: predictors of accelerated decline and distribution of disease in 230 patients. AJR Am J Roentgenol. 1998, 171: 1311-1315.CrossRefPubMed
13.
go back to reference Cutting GR, Kasch LM, Rosenstein BJ, Tsui LC, Kazazian HH, Antonarakis SE: Two patients with cystic fibrosis, nonsense mutations in each cystic fibrosis gene, and mild pulmonary disease. N Engl J Med. 1990, 323: 1685-1689. 10.1056/NEJM199012133232407.CrossRefPubMed Cutting GR, Kasch LM, Rosenstein BJ, Tsui LC, Kazazian HH, Antonarakis SE: Two patients with cystic fibrosis, nonsense mutations in each cystic fibrosis gene, and mild pulmonary disease. N Engl J Med. 1990, 323: 1685-1689. 10.1056/NEJM199012133232407.CrossRefPubMed
14.
go back to reference Zerhusen B, Ma J: Function of the second nucleotide-binding fold in the CFTR chloride channel. FEBS Lett. 1999, 459: 177-185. 10.1016/S0014-5793(99)01230-2.CrossRefPubMed Zerhusen B, Ma J: Function of the second nucleotide-binding fold in the CFTR chloride channel. FEBS Lett. 1999, 459: 177-185. 10.1016/S0014-5793(99)01230-2.CrossRefPubMed
15.
go back to reference Gentzsch M, Aleksandrov A, Aleksandrov L, Riordan JR: Functional analysis of the C-terminal boundary of the second nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator and structural implications. Biochem J. 2002, 366: 541-548. 10.1042/BJ20020511.CrossRefPubMedPubMedCentral Gentzsch M, Aleksandrov A, Aleksandrov L, Riordan JR: Functional analysis of the C-terminal boundary of the second nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator and structural implications. Biochem J. 2002, 366: 541-548. 10.1042/BJ20020511.CrossRefPubMedPubMedCentral
Metadata
Title
Lack of correlation between pulmonary disease and cystic fibrosis transmembrane conductance regulator dysfunction in cystic fibrosis: a case report
Authors
Hara Levy
Carolynn L Cannon
Daniel Asher
Christopher García
Robert H Cleveland
Gerald B Pier
Michael R Knowles
Andrew A Colin
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of Medical Case Reports / Issue 1/2010
Electronic ISSN: 1752-1947
DOI
https://doi.org/10.1186/1752-1947-4-117

Other articles of this Issue 1/2010

Journal of Medical Case Reports 1/2010 Go to the issue