Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2012

Open Access 01-12-2012 | Research

Early presentation of gait impairment in Wolfram Syndrome

Authors: Kristen A Pickett, Ryan P Duncan, James Hoekel, Bess Marshall, Tamara Hershey, Gammon M Earhart, And the Washington University Wolfram Study Group

Published in: Orphanet Journal of Rare Diseases | Issue 1/2012

Login to get access

Abstract

Background

Classically characterized by early onset insulin-dependent diabetes mellitus, optic atrophy, deafness, diabetes insipidus, and neurological abnormalities, Wolfram syndrome (WFS) is also associated with atypical brainstem and cerebellar findings in the first decade of life. As such, we hypothesized that gait differences between individuals with WFS and typically developing (TD) individuals may be detectable across the course of the disease.

Methods

Gait was assessed for 13 individuals with WFS (min 6.4 yrs, max 25.8 yrs) and 29 age-matched, typically developing individuals (min 5.6 yrs, max 28.5 yrs) using a GAITRite ® walkway system. Velocity, cadence, step length, base of support and double support time were compared between groups.

Results

Across all tasks, individuals with WFS walked slower (p = 0.03), took shorter (p ≤ 0.001) and wider (p ≤ 0.001) steps and spent a greater proportion of the gait cycle in double support (p = 0.03) compared to TD individuals. Cadence did not differ between groups (p = 0.62). Across all tasks, age was significantly correlated with cadence and double support time in the TD group but only double support time was correlated with age in the WFS group and only during preferred pace forward (rs= 0.564, p = 0.045) and dual task forward walking (rs= 0.720, p = 0.006) tasks. Individuals with WFS also had a greater number of missteps during tandem walking (p ≤ 0.001). Within the WFS group, spatiotemporal measures of gait did not correlate with measures of visual acuity. Balance measures negatively correlated with normalized gait velocity during fast forward walking (rs = −0.59, p = 0.03) and percent of gait cycle in double support during backward walking (rs = −0.64, p = 0.03).

Conclusions

Quantifiable gait impairments can be detected in individuals with WFS earlier than previous clinical observations suggested. These impairments are not fully accounted for by the visual or balance deficits associated with WFS, and may be a reflection of early cerebellar and/or brainstem abnormalities. Effective patient-centered treatment paradigms could benefit from a more complete understanding of the progression of motor and other neurological symptom presentation in individuals with WFS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wolfram D, Wagener H: Diabetes mellitus and simple optic atrophy among siblings: Report of 4 cases. Mayo Clin Proc. 1938, 13: 715-718. Wolfram D, Wagener H: Diabetes mellitus and simple optic atrophy among siblings: Report of 4 cases. Mayo Clin Proc. 1938, 13: 715-718.
2.
go back to reference Barrett TG, Bundey SE, Macleod AF: Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet. 1995, 346 (8988): 1458-63. 10.1016/S0140-6736(95)92473-6.CrossRefPubMed Barrett TG, Bundey SE, Macleod AF: Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet. 1995, 346 (8988): 1458-63. 10.1016/S0140-6736(95)92473-6.CrossRefPubMed
3.
go back to reference Chaussenot A, et al: Neurologic features and genotype-phenotype correlation in Wolfram syndrome. Ann Neurol. 2011, 69 (3): 501-8. 10.1002/ana.22160.CrossRefPubMed Chaussenot A, et al: Neurologic features and genotype-phenotype correlation in Wolfram syndrome. Ann Neurol. 2011, 69 (3): 501-8. 10.1002/ana.22160.CrossRefPubMed
4.
go back to reference Cremers CW, Wijdeveld PG, Pinckers AJ: Juvenile diabetes mellitus, optic atrophy, hearing loss, diabetes insipidus, atonia of the urinary tract and bladder, and other abnormalities (Wolfram syndrome). A review of 88 cases from the literature with personal observations on 3 new patients. Acta Paediatr Scand Suppl. 1977, 264: 1-16.CrossRefPubMed Cremers CW, Wijdeveld PG, Pinckers AJ: Juvenile diabetes mellitus, optic atrophy, hearing loss, diabetes insipidus, atonia of the urinary tract and bladder, and other abnormalities (Wolfram syndrome). A review of 88 cases from the literature with personal observations on 3 new patients. Acta Paediatr Scand Suppl. 1977, 264: 1-16.CrossRefPubMed
5.
go back to reference Swift RG, et al: Psychiatric disorders in 36 families with Wolfram syndrome. Am J Psychiatry. 1991, 148 (6): 775-9.CrossRefPubMed Swift RG, et al: Psychiatric disorders in 36 families with Wolfram syndrome. Am J Psychiatry. 1991, 148 (6): 775-9.CrossRefPubMed
6.
go back to reference Grosse Aldenhovel HB, Gallenkamp U, Sulemana CA: Juvenile onset diabetes mellitus, central diabetes insipidus and optic atrophy (Wolfram syndrome)--neurological findings and prognostic implications. Neuropediatrics. 1991, 22 (2): 6-103.CrossRef Grosse Aldenhovel HB, Gallenkamp U, Sulemana CA: Juvenile onset diabetes mellitus, central diabetes insipidus and optic atrophy (Wolfram syndrome)--neurological findings and prognostic implications. Neuropediatrics. 1991, 22 (2): 6-103.CrossRef
7.
go back to reference Tekgul S, et al: Urological manifestations of the Wolfram syndrome: observations in 14 patients. J Urol. 1999, 161 (2): 616-7. 10.1016/S0022-5347(01)61982-7.CrossRefPubMed Tekgul S, et al: Urological manifestations of the Wolfram syndrome: observations in 14 patients. J Urol. 1999, 161 (2): 616-7. 10.1016/S0022-5347(01)61982-7.CrossRefPubMed
8.
go back to reference Fraser FC, Gunn T: Diabetes mellitus, diabetes insipidus, and optic atrophy. An autosomal recessive syndrome?. J Med Genet. 1977, 14 (3): 190-3. 10.1136/jmg.14.3.190.PubMedCentralCrossRefPubMed Fraser FC, Gunn T: Diabetes mellitus, diabetes insipidus, and optic atrophy. An autosomal recessive syndrome?. J Med Genet. 1977, 14 (3): 190-3. 10.1136/jmg.14.3.190.PubMedCentralCrossRefPubMed
9.
go back to reference Strom TM, et al: Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet. 1998, 7 (13): 2021-8. 10.1093/hmg/7.13.2021.CrossRefPubMed Strom TM, et al: Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet. 1998, 7 (13): 2021-8. 10.1093/hmg/7.13.2021.CrossRefPubMed
10.
go back to reference Inoue H, et al: A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet. 1998, 20 (2): 143-8. 10.1038/2441.CrossRefPubMed Inoue H, et al: A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet. 1998, 20 (2): 143-8. 10.1038/2441.CrossRefPubMed
11.
go back to reference Takeda K, et al: WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum Mol Genet. 2001, 10 (5): 477-84. 10.1093/hmg/10.5.477.CrossRefPubMed Takeda K, et al: WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum Mol Genet. 2001, 10 (5): 477-84. 10.1093/hmg/10.5.477.CrossRefPubMed
12.
go back to reference Amr S, et al: A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2. Am J Hum Genet. 2007, 81 (4): 673-83. 10.1086/520961.PubMedCentralCrossRefPubMed Amr S, et al: A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2. Am J Hum Genet. 2007, 81 (4): 673-83. 10.1086/520961.PubMedCentralCrossRefPubMed
13.
go back to reference Pakdemirli E, et al: Cranial magnetic resonance imaging of Wolfram (DIDMOAD) syndrome. Australas Radiol. 2005, 49 (2): 189-91. 10.1111/j.1440-1673.2005.01420.x.CrossRefPubMed Pakdemirli E, et al: Cranial magnetic resonance imaging of Wolfram (DIDMOAD) syndrome. Australas Radiol. 2005, 49 (2): 189-91. 10.1111/j.1440-1673.2005.01420.x.CrossRefPubMed
14.
go back to reference Ganie MA, et al: Presentation and clinical course of Wolfram (DIDMOAD) syndrome from North India. Diabet Med. 2011, 28 (11): 1337-42. 10.1111/j.1464-5491.2011.03377.x.CrossRefPubMed Ganie MA, et al: Presentation and clinical course of Wolfram (DIDMOAD) syndrome from North India. Diabet Med. 2011, 28 (11): 1337-42. 10.1111/j.1464-5491.2011.03377.x.CrossRefPubMed
16.
go back to reference Diener HC, Dichgans J: Pathophysiology of cerebellar ataxia. Mov Disord. 1992, 7 (2): 95-109. 10.1002/mds.870070202.CrossRefPubMed Diener HC, Dichgans J: Pathophysiology of cerebellar ataxia. Mov Disord. 1992, 7 (2): 95-109. 10.1002/mds.870070202.CrossRefPubMed
17.
go back to reference Thach WT, Bastian AJ: Role of the cerebellum in the control and adaptation of gait in health and disease. Prog Brain Res. 2004, 143: 353-66.CrossRefPubMed Thach WT, Bastian AJ: Role of the cerebellum in the control and adaptation of gait in health and disease. Prog Brain Res. 2004, 143: 353-66.CrossRefPubMed
18.
go back to reference Morton SM, Bastian AJ: Mechanisms of cerebellar gait ataxia. Cerebellum. 2007, 6 (1): 79-86. 10.1080/14734220601187741.CrossRefPubMed Morton SM, Bastian AJ: Mechanisms of cerebellar gait ataxia. Cerebellum. 2007, 6 (1): 79-86. 10.1080/14734220601187741.CrossRefPubMed
19.
go back to reference Horak FB, Diener HC: Cerebellar control of postural scaling and central set in stance. J Neurophysiol. 1994, 72 (2): 479-93.PubMed Horak FB, Diener HC: Cerebellar control of postural scaling and central set in stance. J Neurophysiol. 1994, 72 (2): 479-93.PubMed
20.
21.
go back to reference Viswanathan V, Medempudi S, Kadiri M: Wolfram syndrome. J Assoc Physicians India. 2008, 56: 197-9.PubMed Viswanathan V, Medempudi S, Kadiri M: Wolfram syndrome. J Assoc Physicians India. 2008, 56: 197-9.PubMed
22.
go back to reference Barrett TG, et al: Optic atrophy in Wolfram (DIDMOAD) syndrome. Eye (Lond). 1997, 11 (Pt 6): 882-8.CrossRef Barrett TG, et al: Optic atrophy in Wolfram (DIDMOAD) syndrome. Eye (Lond). 1997, 11 (Pt 6): 882-8.CrossRef
23.
go back to reference Hallemans A, et al: Development of independent locomotion in children with a severe visual impairment. Res Dev Disabil. 2011, 32 (6): 2069-74. 10.1016/j.ridd.2011.08.017.CrossRefPubMed Hallemans A, et al: Development of independent locomotion in children with a severe visual impairment. Res Dev Disabil. 2011, 32 (6): 2069-74. 10.1016/j.ridd.2011.08.017.CrossRefPubMed
24.
go back to reference Denckla MB: Revised Neurological Examination for Subtle Signs (1985). Psychopharmacol Bull. 1985, 21 (4): 773-800.PubMed Denckla MB: Revised Neurological Examination for Subtle Signs (1985). Psychopharmacol Bull. 1985, 21 (4): 773-800.PubMed
25.
go back to reference Thorpe DE, Dusing SC, Moore CG: Repeatability of temporospatial gait measures in children using the GAITRite electronic walkway. Arch Phys Med Rehabil. 2005, 86 (12): 2342-6. 10.1016/j.apmr.2005.07.301.CrossRefPubMed Thorpe DE, Dusing SC, Moore CG: Repeatability of temporospatial gait measures in children using the GAITRite electronic walkway. Arch Phys Med Rehabil. 2005, 86 (12): 2342-6. 10.1016/j.apmr.2005.07.301.CrossRefPubMed
26.
go back to reference Dusing SC, Thorpe DE: A normative sample of temporal and spatial gait parameters in children using the GAITRite electronic walkway. Gait Posture. 2007, 25 (1): 135-9. 10.1016/j.gaitpost.2006.06.003.CrossRefPubMed Dusing SC, Thorpe DE: A normative sample of temporal and spatial gait parameters in children using the GAITRite electronic walkway. Gait Posture. 2007, 25 (1): 135-9. 10.1016/j.gaitpost.2006.06.003.CrossRefPubMed
27.
go back to reference McAndrew Young PM, Dingwell JB: Voluntary changes in step width and step length during human walking affect dynamic margins of stability. Gait Posture. 2012, 36 (2): 24-219.CrossRef McAndrew Young PM, Dingwell JB: Voluntary changes in step width and step length during human walking affect dynamic margins of stability. Gait Posture. 2012, 36 (2): 24-219.CrossRef
28.
go back to reference Mari S, et al: Turning strategies in patients with cerebellar ataxia. Exp Brain Res. 2012, 222 (1–2): 65-75.CrossRefPubMed Mari S, et al: Turning strategies in patients with cerebellar ataxia. Exp Brain Res. 2012, 222 (1–2): 65-75.CrossRefPubMed
29.
go back to reference England SA, Granata KP: The influence of gait speed on local dynamic stability of walking. Gait Posture. 2007, 25 (2): 172-8. 10.1016/j.gaitpost.2006.03.003.PubMedCentralCrossRefPubMed England SA, Granata KP: The influence of gait speed on local dynamic stability of walking. Gait Posture. 2007, 25 (2): 172-8. 10.1016/j.gaitpost.2006.03.003.PubMedCentralCrossRefPubMed
30.
go back to reference Dingwell JB, et al: Slower speeds in patients with diabetic neuropathy lead to improved local dynamic stability of continuous overground walking. J Biomech. 2000, 33 (10): 1269-77. 10.1016/S0021-9290(00)00092-0.CrossRefPubMed Dingwell JB, et al: Slower speeds in patients with diabetic neuropathy lead to improved local dynamic stability of continuous overground walking. J Biomech. 2000, 33 (10): 1269-77. 10.1016/S0021-9290(00)00092-0.CrossRefPubMed
31.
go back to reference Patla AE, et al: Understanding the contribution of binocular vision to the control of adaptive locomotion. Exp Brain Res. 2002, 142 (4): 551-61. 10.1007/s00221-001-0948-x.CrossRefPubMed Patla AE, et al: Understanding the contribution of binocular vision to the control of adaptive locomotion. Exp Brain Res. 2002, 142 (4): 551-61. 10.1007/s00221-001-0948-x.CrossRefPubMed
32.
go back to reference Patla AE: Understanding the roles of vision in the control of human locomotion. Gait Posture. 1997, 5 (1): 54-69. 10.1016/S0966-6362(96)01109-5.CrossRef Patla AE: Understanding the roles of vision in the control of human locomotion. Gait Posture. 1997, 5 (1): 54-69. 10.1016/S0966-6362(96)01109-5.CrossRef
33.
go back to reference Nakamura T: Quantitative analysis of gait in the visually impaired. Disabil Rehabil. 1997, 19 (5): 194-7. 10.3109/09638289709166526.CrossRefPubMed Nakamura T: Quantitative analysis of gait in the visually impaired. Disabil Rehabil. 1997, 19 (5): 194-7. 10.3109/09638289709166526.CrossRefPubMed
34.
go back to reference Kumar S: Wolfram syndrome: important implications for pediatricians and pediatric endocrinologists. Pediatr Diabetes. 2010, 11 (1): 28-37. 10.1111/j.1399-5448.2009.00518.x.CrossRefPubMed Kumar S: Wolfram syndrome: important implications for pediatricians and pediatric endocrinologists. Pediatr Diabetes. 2010, 11 (1): 28-37. 10.1111/j.1399-5448.2009.00518.x.CrossRefPubMed
35.
go back to reference Sutherland DH, et al: The development of mature gait. J Bone Joint Surg Am. 1980, 62 (3): 336-53.PubMed Sutherland DH, et al: The development of mature gait. J Bone Joint Surg Am. 1980, 62 (3): 336-53.PubMed
36.
go back to reference Hillman SJ, et al: Development of temporal and distance parameters of gait in normal children. Gait Posture. 2009, 29 (1): 5-81.CrossRef Hillman SJ, et al: Development of temporal and distance parameters of gait in normal children. Gait Posture. 2009, 29 (1): 5-81.CrossRef
Metadata
Title
Early presentation of gait impairment in Wolfram Syndrome
Authors
Kristen A Pickett
Ryan P Duncan
James Hoekel
Bess Marshall
Tamara Hershey
Gammon M Earhart
And the Washington University Wolfram Study Group
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2012
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/1750-1172-7-92

Other articles of this Issue 1/2012

Orphanet Journal of Rare Diseases 1/2012 Go to the issue